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Towards Robust Physical-world Backdoor Attacks on
Lane Detection
Anonymous Authors

ABSTRACT
Deep learning-based lane detection (LD) plays a critical role in
autonomous driving systems, such as adaptive cruise control. How-
ever, it is vulnerable to backdoor attacks. Existing backdoor attack
methods on LD exhibit limited effectiveness in dynamic real-world
scenarios, primarily because they fail to consider dynamic scene
factors, including changes in driving perspectives (e.g., viewpoint
transformations) and environmental conditions (e.g., weather or
lighting changes). To tackle this issue, this paper introduces Bad-
LANE, a dynamic scene adaptation backdoor attack for LD designed
to withstand changes in real-world dynamic scene factors. To ad-
dress the challenges posed by changing driving perspectives, we
propose an amorphous trigger pattern composed of shapeless pixels.
This trigger design allows the backdoor to be activated by various
forms or shapes of mud spots or pollution on the road or lens,
enabling adaptation to changes in vehicle observation viewpoints
during driving. To mitigate the effects of environmental changes,
we design a meta-learning framework to train meta-generators
tailored to different environmental conditions. These generators
producemeta-triggers that incorporate diverse environmental infor-
mation, such as weather or lighting conditions, as the initialization
of the trigger patterns for backdoor implantation, thus enabling
adaptation to dynamic environments. Extensive experiments on
various commonly used LD models in both digital and physical
domains validate the effectiveness of our attacks, outperforming
other baselines significantly (+25.15% on average in Attack Success
Rate). Our code is available on the anonymous website.

CCS CONCEPTS
• Security and privacy; • Computing methodologies→ Com-
puter vision;

KEYWORDS
Lane Detection, Backdoor Attack

1 INTRODUCTION
The advent of deep neural networks (DNNs) has precipitated a
paradigm shift in the domain of autonomous driving [1, 5, 27],
substantially increasing the perceptual and decision-making fac-
ulties of autonomous vehicles. Among them, lane detection (LD)
plays an important role, enabling vehicles to discern road markings
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(a) Far-View

(c) Highlight

(b) Near-View

(d) Rain

Figure 1: Illustration of our attack on LD scenarios (ground
truth in blue, model prediction in red, and triggers in green).
Our attacks can be activated by diverse forms of triggers (e.g.,
mud spots, lens pollution) in various driving perspectives
and environmental changes (e.g., highlight, rain).

with high precision, thus forming subsequent decisions and control
mechanisms essential for navigation and safety [8, 17, 28].

Unfortunately, recent studies have underscored the susceptibility
of DNNs to backdoor attacks [9, 19, 44], posing significant risks to
the integrity and safety of autonomous driving systems. By training
on a poisoned dataset, backdoor attacks enable attackers to manipu-
late model behavior through specific triggers during inference, thus
challenging the reliability of deep learning applications. Although
initial studies have shown the feasibility of backdoor attacks on LD
models in simple static scenes [10], it remains largely unexplored
whether backdoor attacks remain effective in real-world dynamic
scenes (e.g., complex weather conditions, and viewpoints). The ex-
isting disparity between the digital and physical world presents a
significant challenge to applying these attacks to real-world LD sce-
narios. In the real-world LD scenarios, we posit that dynamic scenes
pose strong challenges preventing a successful backdoor attack: ❶

Traditional backdoor attacks are designed around static imagery
with invariant triggers, which clash with the ever-changing per-
spectives of moving vehicles. This complicates the execution of
physical attacks. ❷ The variability of real-world environmental con-
ditions, such as sunlight, shadows, obstacles, and weather, obstruct
the effective activation of backdoor triggers. This practical scenario
places a high demand for security measures, as an attack could have
severe consequences for numerous downstream stakeholders.

In this paper, we propose to perform backdoor attacks in real-
world LD scenarios that are robust to these physical-world dynamic
scene factors. To address this issue, this paper presents BadLANE,
a backdoor attack for the adaptation of dynamic scenes for LD
that is resilient to changes in factors of dynamic scenes in the real
world (as shown in Fig. 1). To address the variability of driving
perspectives, we propose injecting backdoors using an amorphous

https://anonymous.4open.science/r/BadLANE-6460
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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pattern inspired by the natural occurrence of mud. This trigger is
often represented in a shapeless pattern consisting of a cluster of
pixels within a certain area (i.e., varying in position, shape, view-
point, and size). The goal is to ensure that the backdoor triggers
(potentially caused by mud spots or pollution on roads or cam-
era lenses) can be easily activated in terms of different viewpoints
since these shapeless patterns are often invariant and robust to per-
spective changes. Considering the challenges of variability under
environmental conditions, we design a meta-learning framework
[7, 22, 48] and reframe the concept of triggers as learning samples
and the introduction of the backdoor as a novel task. Specifically,
we train meta-generators tailored for diverse environmental con-
ditions, which could produce meta-triggers enriched with diverse
environmental factors (e.g., sunlight, shadows, rain). These meta-
triggers will serve as the initialization for the amorphous trigger
patterns so that we can implant backdoors robust to diverse envi-
ronmental conditions with few trigger samples. In summary, our
BadLANE employs a meta-learning framework to embed an amor-
phous trigger for backdoor injection, demonstrating adaptability
to dynamic scene factors and achieving high backdoor attacking
performance in real-world LD scenarios.

Based on our BadLANE attack, we initially introduce and delin-
eate four attacking strategies specifically tailored to LD task: Lane
Disappearance Attack (LDA), Lane Straightening Attack (LSA),
Lane Rotation Attack (LRA), and Lane Offset Attack (LOA), which
would result in different attacking consequences than the LD mod-
els. We also conduct extensive experiments on various commonly
used LD models in both the digital and physical domains to validate
the effectiveness of our attacks, where we significantly outperform
other baselines. Our main contributions are:
• We introduce a physically robust backdoor method BadLANE and
design an amorphous trigger that can be activated by various
forms/shapes of mud spots or pollution in the real world.

• To ensure the adaptability of BadLANE to varying environmental
conditions in the physical world, we developed a meta-learning
framework to fuse diverse environmental information.

• Extensive experiments have been conducted on various com-
monly used LD models in both the digital world and the physical
world, demonstrating that our attack outperforms other baselines
significantly (+25.15% on average in Attack Success Rate).

2 RELATEDWORK
2.1 Lane Detection
Lane detection is a critical component of autonomous driving sys-
tems, enabling vehicles to identify and follow lane markings to
maintain their trajectory on the road. It serves as a foundational
technology for Advanced Driver Assistance Systems (ADAS) [49].
Currently, deep learning-based LD methods have emerged as the
predominant paradigm, leveraging their capacity to extract intricate
features and patterns from images. They can be categorized mainly
as follows: Anchor-based methods [39, 40, 45, 51]. These meth-
ods introduce the concept of anchors from object detection models
into LD task, using a predefined set of anchor points to identify
and locate lane markings in the image. Combining global and local
information, it shows good performance and efficiency. Row-wise
classification methods [24, 35, 36]. These methods transform the

problem into a row-wise classification task by predicting the most
likely positions of the lane markings in each row of the image.
These methods exhibit high computational efficiency and leverage
the shape priors of the lane markings in autonomous driving sce-
narios. Parameterized curve-based methods [6, 25, 41]. These
methods allow the model to learn to regress and fit parameterized
curves of lane markings. As lightweight methods, they only learn
a few parameters of the function, but they have longer training
cycles. Segmentation-based methods [12, 29, 33, 46, 50]. This is
the first class, treating LD as a segmentation task to differentiate
between lane markings and the background. Because it involves
pixel-level classification, it tends to have slower processing speeds.

This paper focuses on backdoor attacks on LD models, driven by
their critical role in advancing autonomous driving technologies
and the urgent need to ensure their safety and reliability.

2.2 Backdoor Attacks
Backdoor attacks are a security threat in deep learning models
[19, 44]. Specifically, during the training process, adversaries inject
triggers into the training set and implant backdoors in the model.
During inference, the model behaves correctly on clean data. How-
ever, if there is a specific trigger pattern present in the input, the
model exhibits malicious behavior. Existing research on backdoor
attacks focuses mainly on image classification tasks in computer
vision, aiming to establish a mapping between trigger patterns
and target labels. Gu et al. [9] introduced the first backdoor attack
in deep learning using a patch-based trigger by poisoning some
training samples. Chen et al. [4] first discussed the requirement of
invisibility of backdoor attacks by merging the image and trigger.
Other methods include SIG [2] based on sine signals, SSBA [20]
based on sample-specific trigger inputs, and WANET [30] based
on distortion, among others. For other tasks, Chan et al. [3] first
proposed backdoor attacks for the object detection task, while Liu et
al. [23] proposed backdoor attacks at the pre-training model stage
for different downstream tasks. In the context of the LD back-
door attack, Han et al. [10] proposed for the first time a physical
backdoor attack for the LD task. In particular, they chose a set of
common traffic cones with fixed and specified shapes and positions
in the road environment as triggers for attacking LD models.

Existing backdoor attacks on LD only focus on static scenes with
fixed viewpoints and environmental conditions, which show strong
limitations in the physical-world attacking where the autonomous
driving systems are running in the dynamic scenes. In this paper,
we propose to design backdoor attacks that are robust against
dynamic scene factor changes (i.e., changing driving perspective,
and environmental conditions), which ensures the adaptability of
backdoor attacks for physical-world LD scenarios.

3 METHODOLOGY
3.1 Problem Definition
Consider an LD model 𝑓 , defined by its parameters 𝜃 , which pro-
cesses an input image 𝒙 . This image is associated with true labels
𝒚 = [𝑙1, 𝑙2, ..., 𝑙𝑛], where 𝑛 represents the total number of lanes
depicted, and each 𝑙𝑖 corresponds to the 𝑖-th lane, delineated as a
series of points: 𝑙𝑖 = {𝑝1, 𝑝2, ..., 𝑝𝑚}. Typically, the prediction target
of the LD model is: 𝑓𝜃 (𝒙) → 𝒚.
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Our goal is to implant a backdoor in the training phase to get the
LDmodel 𝑓𝜃 ′ , which enables it to accurately predict lane boundaries
for benign image input 𝒙 . However, when encountering images that
contain a specific trigger 𝒕 , the model 𝑓𝜃 ′ is expected to erroneously
predict the lane boundaries as 𝑓𝜃 ′ (𝒙 + 𝒕) → 𝒚′, where the predicted
lanes in 𝒚′ = [𝑙 ′1, 𝑙

′
2, ..., 𝑙

′
𝑛] are deliberately altered by our attack

strategy to achieve a specific malicious intent. It is assumed that
the attacker has access only to the original training dataset D and
is capable of creating a poisoned dataset D′ through manipulation.
The problem can be formulated as:

argmin
𝜃 ′

E(𝒙′
𝒊,𝒚

′
𝒊 )∼D′ [L(𝑓𝜃 ′ (𝒙′𝒊),𝒚

′
𝒊)], (1)

where L is the training loss function for the LD model.

3.2 Attack Strategies
In the context of the LD task, particularly considering the poten-
tial hazards in autonomous driving scenarios, we introduce four
quantifiable attack strategies. These formalized attack strategies
facilitate a more precise and convincible evaluation of the effective-
ness and robustness of backdoor attacks. As shown in Fig. 3.

Lane Disappearance Attack (LDA). The most straightforward
strategy for lane attacks involves the complete removal of all lane
boundaries within an image, thereby rendering the LD system inop-
erative. When an image containing a trigger is fed into the backdoor
LD model, it fails to detect any lane boundaries. The specific trans-
formation formula for the label is 𝑙 ′

𝑖
= 𝜙 (𝑖 = 1, 2, . . . , 𝑛), i.e., there

are no points included in the lane.
Lane Straightening Attack (LSA). The straightening attack

may cause vehicles that should turn to continue straight ahead,
resulting in possible collisions and consequential harm. For each
lane boundary in the image, a straight line parameter curve is fit-
ted starting from the lane boundary’s starting position based on
the slope of the line. Subsequently, the positions of lane points
that deviate from this curve are modified to align with the straight
line. The specific transformation formula for the labels is 𝑙 ′

𝑖
=

{𝑝1, ..., 𝑝𝑘 , 𝑝′𝑘+1, ..., 𝑝
′
𝑚} (𝑖 = 1, 2, . . . , 𝑛), where 𝑝′

𝑘+1, ..., 𝑝
′
𝑚 are de-

termined by the straight line parameter curve fitted by 𝑝1, ..., 𝑝𝑘 .
Lane Rotation Attack (LRA). The lane rotation attack poses

a significant risk by potentially directing vehicles into adjacent or
oncoming lanes. Given a rotation angle 𝛼 , for each lane boundary in
the image, a curve equation is fitted using cubic spline interpolation.
The curve is then rotated about its respective starting point, and
the corresponding new horizontal coordinate values for the vertical
coordinates in the label can be calculated. The specific transforma-
tion formula for the labels is 𝑙 ′

𝑖
= {𝑝1, 𝑝′2, ..., 𝑝

′
𝑚} (𝑖 = 1, 2, . . . , 𝑛),

where 𝑝′2, ..., 𝑝
′
𝑚 is determined by the equation: ∠𝑝′

𝑗
𝑝1𝑝 𝑗 = 𝛼 .

Lane Offset Attack (LOA). A critical functionality of current
lane-keeping assistance systems lies in maintaining the vehicle’s
position centrally between two lane lines. If all lane positions out-
put by the LD system are offset by several pixels 𝛽 from the ac-
tual positions, it will cause the vehicle to deviate from the cor-
rect position. The specific transformation formula for the labels is
𝑙 ′
𝑖
= {𝑝′1, 𝑝

′
2, ..., 𝑝

′
𝑚} (𝑖 = 1, 2, . . . , 𝑛), where 𝑝′

𝑗
= 𝑝 𝑗 + (𝛽, 0) i.e., all

lane points add a fixed value to the horizontal coordinates.

Note that for all aforementioned attack strategies, the lane points
whose coordinates extend beyond the image bounds after transfor-
mation are discarded.

3.3 Amorphous Pattern
Existing backdoor attacks are mostly designed based on the two-
dimensional image with static observation perspectives. Such trig-
gers are characterized by immutable patterns, viewpoints, sizes,
and positions, and they suffer from limitations that hinder their ap-
plication in the physical world. Our objective is to design a trigger
capable of reliable activation under dynamic driving perspectives,
unfettered by constraints related to position, shape, viewpoint, or
size. Given the susceptibility of LD models to adversarial attacks
leveraging dirty road conditions [38] and the vulnerability of DNNs
to color-offset backdoor attacks [15], we introduce an amorphous
pattern for trigger design. This trigger draws inspiration from the
prevalent mud elements encountered in natural settings.

Specifically, to enhance the generalization of our trigger mecha-
nism, we gather a comprehensive collection of mud patterns setM
from the internet and real world, aiming to delineate the defining
attributes of brown-colored pixels. From each pattern in M, we
extract all values of brown pixels. In this way, we can create a color
set C comprising a variety of shades of brown with distinct 𝑅𝐺𝐵
pixel attributes:

C = {(𝑟, 𝑔, 𝑏) ∈ M | IsBrown(𝑟, 𝑔, 𝑏)}. (2)
Concurrently, we develop an amorphous mask generator 𝐺𝑚

to diversify the shapes of triggers, as illustrated in Fig. 2. Given
that irregular-shaped masks can be approximated by polygons, we
randomly generate combinations of line segments to endow them
with irregular boundaries, and randomly remove some internal
points to achieve a state of discretization. The pseudo-algorithm of
𝐺𝑚 can be found in Supplementary Material. Given a rectangular
area of size𝑤 ×ℎ, the𝐺𝑚 can generate an amorphous mask within
a specified size. Our amorphous pattern 𝒕 can be formalized as:

𝒕 =
𝑘⋃
𝑖=1

𝑝𝑖 = {𝑝𝑖 [(𝑤𝑖 , ℎ𝑖 ), 𝑐𝑖 ] | (𝑤𝑖 , ℎ𝑖 ) ∈ 𝐺𝑚 (𝑤,ℎ), 𝑐𝑖 ∈ C},

s.t.∀𝑖, 𝑗 ∈ {1, . . . , 𝑘}, 𝑖 ≠ 𝑗 ⇒ (𝑤𝑖 , ℎ𝑖 ) ≠ (𝑤 𝑗 , ℎ 𝑗 ),
(3)

where 𝑝𝑖 represents each brown pixel within the pattern and the
quantity is 𝑘 . For each image to be poisoned, we generate an amor-
phous pattern 𝒕 and add it to a random location to obtain the ma-
licious image. Our goal is to calibrate the LD model to respond
to a specific spectrum of brown pixels, activating the embedded
backdoor upon detecting a predefined pixel count threshold from
any observational angle. As demonstrated in Fig. 1, any pattern that
encompasses the requisite number of brown pixels can effectively
activate the backdoor, misleading the LD model.

3.4 Meta-trigger Generation
To enhance the robustness of backdoor attacks against environmen-
tal changes (e.g., various weather or lighting conditions), we intro-
duce a meta-learning framework to train specific meta-generators
tailored to different environmental conditions. These generators
can produce meta-triggers that integrate diverse environmental
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Figure 2: Overall Framework. BadLANE employs an amorphous pattern for trigger design, which is extracted from various
mud patterns and shaped with a mask generator. By utilizing them to construct meta-tasks, we introduce a meta-learning
framework to generate meta-triggers that integrate diverse environmental information through sampling benign images.

factors through sampling benign images, as the initialization of
the amorphous trigger patterns for backdoor implantation. In this
way, we can implant backdoors robust to diverse environmental
conditions with few trigger samples.

Meta-learning [7, 22, 32] has attracted widespread attention in
recent years for its potential to help models/samples learn better
initialization states to more effectively complete new tasks [7, 48].
Its principles have been widely applied in various fields such as
computer vision [37, 47, 48], natural language processing [13, 18],
etc. Inspired by this, we reframe the concept of triggers as learn-
ing samples and the introduction of the backdoor as a novel task.
Specifically, in the backdoor attack scenario, themeta-task is de-
fined as follows: Given a benign image 𝒙 and an amorphous pattern
trigger under a certain environmental condition 𝒕𝒆 , the goal is to
learn a conditional generation model (called meta-generator) that
produces a meta-trigger 𝒕𝒎 incorporating information from the
trigger in that environment through sampling 𝒙 , as illustrated in
Fig. 2. For a specific LD model type to attack, we utilize its feature
extractor (backbone) from the model trained on clean dataset as
the teacher model 𝑓 . By minimizing the feature distance of the 𝑓

between 𝒙 + 𝒕𝒎 and 𝒙 + 𝒕𝒆 , and maximizing the feature distance
between 𝒙 + 𝒕𝒆 and 𝒙 , we update the parameters of the generator,
which could be formulated as follows:

L = ∥ 𝑓 (𝒙 + 𝒕𝒎) − 𝑓 (𝒙 + 𝒕𝒆)∥22 − 𝜆∥ 𝑓 (𝒙 + 𝒕𝒎) − 𝑓 (𝒙)∥22, (4)

where 𝜆 is the harmonic coefficient. Through learning a series of
meta-tasks, the meta-generator eventually can generate a meta-
trigger that incorporates various environment information.

Inspired by [47], we use conditional generative flow (c-Glow)
[26] as themeta-generator and let it capture the conditional distribu-
tion of the benign image and sample the 𝒕𝒎 , denoted as 𝑝 (𝒕𝒎 |𝒙, 𝝋),
where 𝒕𝒎 = 𝐺𝝋 (𝑧; 𝒙), 𝐺 is the generator with parameters 𝝋 and
𝑧 represents a random vector following the Gaussian distribution.
Given a set of tasks {T𝑖 }𝑁𝑖=1, we adopt the batch approach of REP-
TILE [32] for meta-learning. We select 𝑛 tasks to create a batch and
utilize Adam [16] to update the task-specific parameters 𝜔 times

for each task T𝑖 . The procedure for inner-loop optimization can be
described as:

𝝓 (T𝑖 ) = Adam(L(Ti), 𝝋, 𝜔, 𝜇), (5)

where 𝝓 (T𝑖 ) represents the final task-specific parameters of the
meta-generator 𝐺 after performing 𝜔 steps of Adam for task T𝑖 ,
starting from𝝋. At each step of the𝜔 , trigger information is sampled
from the current conditional distribution. L(T𝑖 ) denotes the loss
of the 𝑖-th task and 𝜇 is the learning rate.

For outer loop optimization, we update the parameters 𝝋 using
the generated task-specific parameters in a batch, with a learning
rate 𝛾 . It can be written as follows:

𝝋 = 𝝋 + 𝛾 1
𝑛

𝑛∑︁
𝑖=1

(𝝓 (T𝑖 ) − 𝝋) . (6)

3.5 Overall Framework
Fig. 2 illustrates the overall framework of our BadLANE . To con-
structmeta-tasks, we collect benign images from the training dataset
D and generate triggers using amorphous patterns under varied
environmental conditions at a designated probability, including nor-
mal environment. Given D and a poisoning rate 𝑝 , we randomly
select samples from D to generate a set of malicious images 𝑿 ′

for replacement. These images predominantly incorporate image-
specific meta-triggers, produced by sampling each benign image
with themeta-generator and placed randomly. They provide a better
initialization state for the model to learn triggers in various environ-
ments. A small subset of 𝑿 ′ contains amorphous pattern triggers
under different environmental conditions, which guide the model
in better adapting to new tasks based on the initialization state.
Following adjustments to the labels using attack strategies outlined
in Section 3.2, we compile the poisoned dataset D′. Training the
LD model with D′ results in the implantation of the BadLANE
backdoor. The overall pseudo-algorithm of our BadLANE can be
found in Supplementary Material.
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4 EXPERIMENTS
4.1 Experimental Setup
Dataset. Our experiments are conducted on the most widely used
LD dataset TuSimple [43]. It consists of 3626 images in the training
set and 2782 images in the test set, each with a resolution of 1280 ×
720 pixels and containing a maximum of 5 lanes. We also evaluate
on CULane dataset [34] and we observe similar tendencies (results
are shown in Supplementary Material).

Model Architectures. To fully evaluate the effectiveness of our
method across different types of DNN-based LD models. Without
loss of generality, we select four representative model architec-
tures from various categories: LaneATT [40], UFLD v2 (Ultra Fast
Lane Detection v2) [36], PolyLaneNet [41] and RESA (Recurrent
Feature-Shift Aggregator) [50].A detailed introduction to these model
architectures can be found in the Supplementary Material.

Backdoor Attack Baselines. Due to the particularity of au-
tonomous driving scenarios, many backdoor attacks targeted at the
digital world are not applicable, as they are unlikely to be deployed
in the real world (such as Wanet [31] and Sample-specific [21] that
add perturbation overall the image). Therefore, we consider several
representative methods: ❶ Fixed Patterns: BadNets [9], it adds a
fixed white pattern to the bottom right corner of the clean image.
❷ Fixed Images: Blended [4], it blends a fixed universal image as
the trigger with a clean image. ❸ Real Objects: LD-Attack [10], it
uses common objects such as traffic cones in the physical world as
triggers. These methods can be triggered in the physical world by
printing patterns or placing actual objects.

Evaluation Metric. In image classification tasks, the effective-
ness of backdoor attacks is typically evaluated using the Attack
Success Rate (ASR) [19]. For LD task, LD-Attack [10] suggests using
the rotation angle as a metric to quantify the performance of back-
door attacks. It does not apply to our proposed attack strategies, as
themagnitude of the rotation angle is not a reliable measure of align-
ment with our predetermined attack objectives. A more effective
backdoor should align more closely with our pre-set lane point co-
ordinates, rather than simply having a larger rotation angle. Hence,
we propose using the classical ASR based on LD task to assess the
effectiveness of backdoor attacks. On Tusimple, ACC is commonly
used as an evaluation metric to measure the performance of a model
[40, 43]. Its calculation formula is 𝐴𝐶𝐶 = Σ𝑖𝐶𝑖/Σ𝑖𝑆𝑖 , where 𝐶𝑖 rep-
resents the number of correctly predicted lane points (mismatch
distance between prediction and ground truth is within a certain
threshold) and 𝑆𝑖 represents the total number of lane points in the
ground truth for the 𝑖-th test image. The threshold is empirically set
to 20 pixels. Similarly, for poisoned annotation labels, let 𝑆∗

𝑖
repre-

sent the total number of lane points, and 𝐶∗
𝑖
represent the number

of correctly predicted lane points in the poisoned annotation. The
ASR calculation is: 𝐴𝑆𝑅 = Σ𝑖𝐶

∗
𝑖
/Σ𝑖𝑆∗𝑖 . For ACC and ASR, higher

values of these metrics indicate better methods.
Implementation Details. For all experiments, we set the poi-

soning rate of backdoor attacks to 10%, and the size of the trigger is
uniformly set to 900 pixels. Specifically, for BadNets and Blended,
the trigger size is 30 × 30 pixels and set at the bottom right corner
of the image; for LD-Attack, the area of traffic cones is 900 pixels
and fixed on the middle-left lane. following [10]; for our method,
we randomly select 900 pixels within a 100 × 100 pixels square
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(a) clean (b) attack (c) attack

Figure 3: Visualization of different attack strategies. Our Bad-
LANE can be activated by various forms/shapes of mud spots
and is robust to dynamic scene factors.

with random positions in the image. For all model architectures,
we follow the parameter settings in their original papers. For the
meta-generator training, we adopt the same architecture for the
generator c-Glow following [26] and it outputs meta-trigger with a
size of 100 × 100 pixels. Before training, we pre-train the c-Glow
to provide a better initial state. As for meta-training, we utilize
the Tusimple training dataset and generate 10 meta-tasks for each
image. Triggers in meta-tasks are randomly added environmental
conditions with a probability of 0.15 for each type. The generator is
trained for 5 epochs with a batch size of 16. The update step size 𝜔
of the inner optimization is set to 4. The learning rates of the inner
and outer loops are set to 𝜇 = 0.0003 and 𝛾 = 0.0006.

4.2 Comparison with Baseline Attacks
Evaluation methodology. To comprehensively simulate the real-
world dynamic scenes in autonomous driving, we follow [11, 42]
and consider eight typical dynamic scene factors for backdoor at-
tack evaluation, including ❶ Driving perspective changes: position,
shape, viewpoint, and size of the trigger, and ❷ common environ-
mental conditions: sunlight, shadow, rain, and snow. Examples of
BadLANE attacks under these dynamic scene factors are illustrated
in Fig. 3. In our main experiment, we adopt the LOA strategy and
set the offset pixels to 60.

Results. As shown in Tab. 1, we can draw some observations
that: ❶ Traditional attack methods perform well in the static scene
(shown in “Origin”). However, their ASRs drop sharply when driv-
ing perspectives or environmental conditions change. Especially
when the trigger’s position or size changes, or when it encounters
the sunlight and shadow environmental conditions. For example,
for the LD-Attack method in LaneATT, its ASR sharply decreases
when the position of the trigger change (-38.88%) or in sunlight en-
vironment (-42.82%). ❷ Our BadLANE attack consistently achieves
the highest ASR in all dynamic cases, maintaining effectiveness
in the face of various dynamic scene factors in the real world and
outperforming other baselines significantly (+24.47% on average).
Moreover, it turns out to be universally effective across various
LD models. ❸ Our attack maintains high ACCs on clean samples
comparable to uninfected models. It demonstrates the effectiveness
of our attack on keeping the original functionality of the model. ❹
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Table 1: Results (%) of different backdoor attack methods on different models under various dynamic scene factors using the
LOA strategy. Our attack consistently achieves the highest attacking performance against different dynamic scene factors.

Model Attack ACC ASR ASR (Driving Perspective Changes) ASR (Environmental Conditions) ASR
Vanilla Infected Origin Position Shape Viewpoint Size Sunlight Shadow Rain Snow Average

LaneATT
BadNets

95.78
94.97 93.88 53.44 84.23 85.59 62.88 76.82 52.29 81.47 71.39 73.55

Blended 94.93 93.32 52.63 88.68 75.38 56.94 54.40 65.62 78.68 66.05 70.19
LD-Attack 95.11 94.18 55.30 85.10 64.10 92.73 51.36 52.41 78.55 60.29 70.47
BadLANE 95.01 94.43 86.52 94.38 94.41 93.00 92.03 94.07 93.78 92.42 92.78

UFLD v2
BadNets

95.95
95.44 79.24 53.87 66.38 72.38 61.01 69.21 55.05 69.82 64.09 65.67

Blended 94.85 72.01 52.96 67.15 65.65 53.24 52.77 53.22 54.73 53.57 58.37
LD-Attack 95.91 94.93 56.82 79.54 58.32 93.75 50.83 61.99 82.56 58.99 70.86
BadLANE 95.70 94.72 71.49 94.62 94.69 93.70 94.34 94.70 94.06 92.93 91.69

PolyLaneNet
BadNets

91.13
89.01 52.60 52.86 52.80 52.75 52.87 52.91 52.87 52.75 52.81 52.80

Blended 89.13 53.00 53.14 53.09 53.08 53.07 53.08 53.12 53.11 53.13 53.09
LD-Attack 89.46 89.15 61.21 78.22 62.10 88.31 52.41 53.39 64.51 56.02 67.25
BadLANE 89.04 86.65 78.14 85.11 85.79 70.16 85.04 88.26 85.90 85.09 83.35

RESA
BadNets

96.77
96.62 95.69 52.95 80.52 85.75 56.92 61.85 64.79 94.27 89.79 75.84

Blended 96.65 91.66 52.95 80.26 70.29 53.46 52.98 53.22 69.94 58.55 64.81
LD-Attack 96.75 96.13 54.75 86.69 64.01 77.02 56.26 58.10 85.83 73.17 72.44
BadLANE 96.53 96.37 88.45 96.30 96.31 94.55 95.88 96.36 96.21 96.01 95.16

LaneATT and RESA architectures are particularly vulnerable to our
BadLANE attacks, with their backdoor models achieving an average
ASR nearly equivalent to the ACC. In comparison, the UFLD v2
and PolyLaneNet models exhibit a lower susceptibility to attacks,
displaying a gap of over 4% between their average ASR and ACC.

Different Attack Strategies.We then evaluate the performance
of different backdoor attacks using three other attack strategies
i.e., LDA, LSA, and LRA. For LSA, we select images that include
non-linear lanes for poisoning attacks; for LRA, we set the rotation
angle to 4.5◦. The average ASR results under various dynamic scene
factors of different backdoor attacks are shown in Tab. 2. We can
identify that our attacks are effective under all attack strategies
and significantly outperform traditional backdoor attack methods
(+61.16% in LDA, +0.45% in LSA, and +14.53% in LRA on average).
We also observe that LDA and LSA strategies are more easily exe-
cuted, possibly due to the simplicity of their targets or a significant
overlap in the backdoor model’s predictions between malicious
images and benign images. In contrast, the LOA and LRA strategies
present more challenging attacks but can still achieve a high ASR.
As illustrated in Fig. 3, the LOA and LRA strategies pose substan-
tial risks in autonomous driving scenarios, where deviations or
rotations in lane lines can significantly alter a vehicle’s driving
direction, potentially leading to accidents.

4.3 Attacks with Various Mud Trigger Patterns
In this part, we demonstrate the generalization of our BadLANE
attack on different mud trigger patterns. Models implanted with
this backdoor can be triggered not only by unstructured pixel sets
but also by various forms/shapes of unseen mud spots or pollution,
which facilitates the implementation of attacks in the physical
world. To ensure the diversity and randomness of the mud patterns,
we collect 10 images of mud patterns with different shapes from
the internet and the real world, as shown in Fig. 4 (more images
are shown in Supplementary Material). These patterns have distinct
sizes, degrees of dispersion, and viewing angles. We add these
mud patterns to benign images to obtain malicious images and test
the infected models in Sec. 4.2 by BadLANE attack. Visualization

Table 2: Average ASR (%) under various dynamic scene factors
with different attack strategies.

Strategy Attack LaneATT UFLD v2 PolyLaneNet RESA

LDA

BadNets 28.23 54.99 9.21 45.78
Blended 21.26 32.31 5.25 42.22
LD-Attack 39.73 41.01 34.40 46.78
BadLANE 96.87 91.44 93.24 96.82

LSA

BadNets 93.20 93.55 86.88 94.02
Blended 93.16 93.62 86.24 93.92
LD-Attack 93.24 93.84 87.30 94.51
BadLANE 93.32 94.62 86.98 94.72

LRA

BadNets 72.28 69.43 60.23 81,94
Blended 68.21 69.82 61.44 74.19
LD-Attack 77.41 78.82 66.07 83.56
BadLANE 91.13 92.51 67.44 94.84

Figure 4: Illustration of various forms/shapes ofmud triggers.

examples are shown in Fig. 3. Note that, all these mud triggers have
not been directly trained/seen during poisoning.

The results are shown in Fig. 5, we can find that these differ-
ent unseen mud patterns can effectively activate the backdoors
implanted by our BadLANE attack. In some cases, the ASR is even
higher than using unstructured pixel sets to attack (e.g., average
ASR under various environmental conditions with LOA strategy
in UFLD v2 +0.29% and in RESA +0.20%). This demonstrates the
superior generalization and practicality of our method and can be
effectively deployed in the physical world. Moreover, we can also
observe that average ASR under different environmental conditions
is generally higher than driving perspective changes across differ-
ent models and strategies, indicating that the changes in driving
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Figure 5: Average ASR (%) of diverse forms/shapes mud trig-
ger patterns under driving perspective changes (DPC) and
various environmental conditions (EC).

Table 3: Ablation studies on the amorphous trigger and meta-
learning. Results show the average ASR (%) under driving
perspective changes (DPC) and environment (EC) changes.

Method LaneATT UFLD v2 PolyLaneNet RESA

DPC EC DPC EC DPC EC DPC EC

BadLANE 92.54 93.07 89.84 94.01 81.17 86.07 94.39 96.11

(w/o) Meta 92.31 83.12 91.39 84.95 84.31 75.58 94.11 90.66

(w/o) Meta & Amo 71.25 79.33 72.02 69.84 70.87 70.47 73.63 80.99

perspective pose more challenges for attacking with our method,
yet still perform better than traditional attack methods.

4.4 Ablation Studies
We here ablate some factors that may influence the attacking ability
of our BadLANE attack. All experiments are conducted using the
LOA strategy with 60 offset pixels, unless otherwise specified.

Amorphous Trigger and Meta-Learning.We conduct abla-
tion studies to understand the contributions of amorphous triggers
and the meta-learning framework. Specifically, we employ differ-
ent schemes to poison the dataset for training backdoored models:
(1) BadLANE , using our attack approach; (2) (w/o) Meta, without
utilizing meta-learning framework; (3) (w/o) Meta & Amo, without
using meta-learning framework and amorphous pattern for trigger
design. In contrast, we utilize a 30 × 30 pixels patch composed
of brown-colored pixels with the fixed position as the trigger. As
shown in Tab. 3, we can draw several observations: ❶ Using Amo
shows a significant improvement in average ASR under driving
perspective changes (DPC), indicating that the amorphous pattern
for trigger design technique enhances the attack’s robustness to
perspective changes. ❷ Using Meta exhibits a notable increase in
average ASR under different environmental conditions (EC), sug-
gesting that meta-learning improves the attack’s robustness to
environmental conditions. The findings corroborate our hypothesis
that the amalgamation of both techniques yields optimal perfor-
mance in dynamic scenarios, underscoring the significance of each
component in the orchestration of the attack.

Attack Parameters. For LOA and LRA attack strategies, we
can flexibly choose the offset magnitude and rotation angle to
achieve different levels of attack. To evaluate the impact of attack
parameters on attack effectiveness, we select different offset pixels
and rotation angles for these strategies. As shown in Fig. 6, we can
observe that BadLANE attacks exhibit strong attack effectiveness for
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Figure 6: Results on LOA and LRAusing different parameters.

Table 4: Ablation studies on the poisoning rates.

Poisoning Rate LaneATT UFLD v2 PolyLaneNet RESA

ACC ASR ACC ASR ACC ASR ACC ASR

1% 95.26 74.13 95.98 84.69 89.93 66.82 96.72 88.20

3% 95.10 86.27 95.90 88.57 88.19 76.37 96.70 92.86

5% 95.14 92.22 95.71 90.46 89.68 80.84 96.66 93.64

10% 95.01 92.78 95.70 91.69 89.04 83.35 96.53 95.16

15% 95.17 93.21 95.48 91.48 89.12 83.46 96.59 95.24

20% 94.94 93.45 94.53 91.81 88.15 83.73 95.96 94.88

various settings of attack parameters, allowing for highly flexible
specification of attack schemes. Visualizations are shown in Fig. 3
(more images are shown in Supplementary Material). Furthermore,
we observe that for the LOA strategy, change in the number of
offset pixels have a negligible impact on the attack effectiveness. In
contrast, for the LRA strategy, an increase in the absolute value of
the rotation angle leads to a weakening of the attack effect. We also
find that the LRA strategy performs poorly on the PolyLaNet model.
We speculate that this may be because the rotated lane lines require
more complex polynomials for representation, making them more
challenging to regress.

Poisoning Rates. We evaluate the effectiveness of BadLANE
attack under different poisoning rates. For four LD models, we gen-
erate poisoned datasets and train backdoor models with poisoning
rates of 1%, 3%, 5%, 10%, 15%, and 20%. As shown in Tab. 4, even at a
low poisoning rate (e.g., 1%), our BadLANE can achieve a high ASR.
Additionally, as the poisoning rate increases, the ASR continues to
rise slowly, while the ACC gradually decreases.

5 PHYSICAL WORLD ATTACKS
This section conducts experiments in the physical-world scenarios
using a real-world Jetbot Vehicle [14], which is an open-sourced
and commonly adopted robot based on the NVIDIA Jetson Nano
chipset in the controlled lab experiment.

Vehicle setup. The Jetbot vehicle system employs the Robot
Operating System and adopts a layered chip architecture with the
Jetson Nano as the core. The system achieves autonomous driving
tasks through the collaboration of three main modules: motion,
perception, and computation. These modules provide user-friendly
Python interfaces for direct control of vehicle actions, enabling
vehicle movement control via the LD model. Specifically, the cam-
era in the perception module captures front road images, which
are transmitted to the LD model in the computation module for
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Figure 7: Illustration ofBadLANE attack in physical-world. (c)
and (d) exhibit two distinct forms of triggers; (e) and (f) show
different driving perspectives and lighting environments.

prediction. Utilizing the processed lane line coordinate data, we
have written a simple control program to influence the vehicle’s
motion, ensuring it remains centered between the two lane lines
and advances according to the lane lines’ direction.

Evaluation methodology. All experiments in this section are
conducted in a controlled laboratory environment (indoor real-
world sandbox), as shown in Fig. 7 (a). In the vehicle’s computational
module, we employ the LaneATT model with implanted BadLANE
backdoor, controlling the vehicle’s movement. We select a fixed
straight road segment for evaluation and consider three scenarios:
(1) clean road and camera lens; (2) placement of stickers with various
forms/shapes of mud patterns as visual triggers on the sandbox
lanes; (3) minor pollution of the camera lens (area not to exceed 10%
of the surface). As illustrated in Fig. 7 (b), (c) and (d). In normally,
the vehicle is expected to drive straight through the endpoint. If the
vehicle deviates from its lane during driving, the attack is considered
successful; otherwise, it is deemed a failure.

Experimental settings. The vehicle’s speed is set at 1 km/h.
Five different mud pattern stickers (210mm × 297 mm) are used
as visual triggers, randomly placed at any position on the road
segment. Multiple experimental cases are designed under different
driving perspectives and lighting conditions. Specifically, during
indoors daytime conditions (approximately 100 lux illuminance),
two different driving perspectives are considered: case 1: horizontal-
view (the camera is positioned parallel to the ground surface) and
case 2: downward-view at a 30◦ angle. In addition, a lighting condi-
tion is also tested: case 3: a highlight environment (approximately
1000 lux) is set with horizontal-view. Each experimental cases is
repeated 20 times to ensure the stability of the results. A total of
180 test cases are conducted for the three scenarios.

Results and analyses. The illustration of three experimental
cases can befound in Fig. 7 (d), (e) and (f), and more visualizations
are provided in Supplementary Material. In the clean road scene, the

Table 5: Defense results (%) of neuron pruning.

Num 0 25 50 75 100 125 150 175 200

ACC 95.48 92.19 90.59 90.36 79.29 30.10 8.10 6.00 0

ASR 94.45 93.39 92.49 92.30 83.86 62.44 32.99 31.03 6.98

attack success rates (ASRs) for case 1, case 2, and case 3 are 5%,
5%, and 10%, respectively. In scenarios with mud pattern or lens
pollution visual triggers, the ASRs for case 1, case 2, and case 3 are
95%, 90%, 90% and 85%, 85%, 75%, respectively. The experimental
results demonstrate that our BadLANE method is not only effective
in real-world scenarios but also exhibits remarkable robustness
across different driving perspectives and lighting conditions.

6 COUNTERMEASURES
To evaluate the performance of BadLANE method against backdoor
defenses, we consider and assess various types of popular defense
methods. Unfortunately, most existing backdoor defense methods
are designed for classification tasks and may not directly apply
to LD task. Therefore, we employ two common defense strategies
applicable to this task. We conduct experiments using the backdoor
LaneATT model with the LOA strategy in Sec. 4.2.

❶ Fine-Tuning. We set the learning rate to 0.0001 and finetune
the backdoor model on the clean dataset. After 25 and 50 epochs,
the ASR decreased by 3.45% and 7.41% respectively, indicating that
fine-tuning has some mitigating effect on our attack, but cannot
eliminate it. ❷ Pruning.We select the last convolutional layer in
the model backbone for pruning, with a total of 512 neurons. We
start from 0 with a step size of 25. As shown in Tab. 5, we observe
that pruning a small number of neurons does not affect the back-
door while pruning more neurons causes the model’s performance
on clean samples to degrade faster. This indicates that pruning is
somewhat ineffective against our attack.

To sum up, our results indicate that pruning fails to detect our
attack, whereas fine-tuning provides certain protection effects.

7 CONCLUSION
In this paper, we propose a backdoor attack BadLANE for LD, which
is robust to changes in physical-world dynamic scene factors. Bad-
LANE employs an amorphous pattern for trigger design, which can
be activated by various forms/shapes of mud spots. Additionally, a
meta-learning framework is introduced to generate meta-triggers
that integrate diverse environmental information through sampling
benign images. Through our evaluation, BadLANE demonstrates
outstanding effectiveness and robustness in both digital and physi-
cal domains, significantly outperforming other baselines.

Limitations. Despite promising results, several directions war-
rant further exploration. ❶ The backdoor injected by BadLANE
may be mitigated to some extent after fine-tuning. Our future work
aims to enhance the stability and robustness of our injected back-
door against fine-tuning defenses. ❷ Meta-triggers have relatively
obvious patterns. Our goal is to further improve the stealthiness
during poisoning. Ethical Statement. In this paper, we propose
BadLANE to reveal a severe threat in the scenario of LD in the real
world that is trained using third-party datasets. To mitigate the
attack, we propose preliminary countermeasures for mitigation.
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