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1 PSEUDO CODE OF BADLANE

Algorithm 1 BadLANE Algorithm

Input: Clean training datasetD, teacher model 𝑓 , meta-generator
𝐺𝝋 , mask generator 𝐺𝑚 , a set of mud patterns M, a set of
environmental conditions 𝑬 , poisoning rate 𝑝 , meta-trigger
ratio 𝑝′, number of iterations 𝑁 , attack strategy 𝑠 .

Output: Poisoning training dataset D′.
1: Initialize meta-task set T , get brown-colored set C fromM
2: for image 𝒙 in D do
3: Select a square in 𝒙 randomly, get𝑚𝑎𝑠𝑘 from 𝐺𝑚

4: Get amorphous pattern 𝒕 with𝑚𝑎𝑠𝑘 and pixel value in C
5: Add environmental conditions with equal possibility

𝒕𝒆 = 𝒕 add 𝑒𝑖 , s.t., 𝑒𝑖 ∈ 𝑬
6: Add meta-task (𝒙, 𝒕𝒆) to T
7: end for
8: Initialize and Pretrain 𝐺𝝋

9: for iteration in 𝑁 do
10: Sample a batch of data (𝒙, 𝒕𝒆) from T
11: for inner iteration in 𝜔 do
12: Generate meta-triggers 𝒕𝒎 = 𝐺𝝋 (𝒙 )
13: Calculate loss

L = ∥ 𝑓 (𝒙 + 𝒕𝒎) − 𝑓 (𝒙 + 𝒕𝒆)∥22 − 𝜆∥ 𝑓 (𝒙 + 𝒕𝒎) − 𝑓 (𝒙)∥22
14: Inner loop optimize 𝐺𝝋 with Adam optimizer
15: end for
16: Outer loop optimize 𝐺𝝋

17: end for
18: Sample a subset D𝑝𝑜𝑖𝑠 from D according to poisoning rate 𝑝
19: for (𝒙 , 𝒚) in D𝑝𝑜𝑖𝑠 do
20: Add meta-triggers 𝒕𝒎 = 𝐺𝝋 (𝒙) to 𝒙 with 𝑝′ else add 𝒕𝒆
21: Modify lane labels 𝒚 according to strategy 𝑠
22: end for
23: Replace D𝑝𝑜𝑖𝑠 in D to get D′
24: return D′

2 EVALUATION ON CULANE DATASET
Here, we conduct experiments on the CULane dataset [2] to validate
the generality and effectiveness of our BadLANE method across
different datasets.

Dataset Description. CULane is one of the largest publicly
available lane detection datasets and is also one of the most complex.
All images have a resolution of 1640×590 pixels, and all test images
are categorized into nine classes, including normal, crowd, etc.

Evaluation Metrics. Different from the Tusimple dataset, the
official evaluation metric for CULane does not include accuracy.
Instead, the 𝐹1 score is commonly used as the evaluation metric.
Each lane is considered as a line with a width of 30 pixels. The
Intersection over Union (IoU) is calculated between the predicted

Figure 1: Visual examples on CULane dataset.

and true values. Predicted lanes with an IoU greater than a threshold
(0.5) are considered as true positives. The 𝐹1 score is defined as:

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 , (1)

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 , 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃
𝑇𝑃+𝐹𝑁 . TP, FP, and FN repre-

sent true positives, false positives, and false negatives, respectively.
For backdoor attack evaluation, we still use the 𝐹1 metric to mea-
sure the performance of the backdoor model on clean samples. For
the effectiveness evaluation of backdoor attacks, the recall rate
represents the ratio of the number of correctly predicted lane lines
by the model to the total number of ground truth lane lines. This
is similar to our defined attack success rate (𝐴𝑆𝑅), but differs from
Tusimple dataset, where the evaluation metric can calculate the
percentage of correctly predicted lane points within each lane line,
while the recall rate only indicates whether the entire lane line is
correctly predicted or not. Therefore, we calculate the recall rate in
the poisoned label file to approximate the 𝐴𝑆𝑅.

Evaluation Methodology. We choose the LaneATT model and
adopt the LOA strategy with the offset pixels setting to 60. We
compare the performance of BadLANE method with other back-
door attack baselines under eight typical dynamic scene factors,
i.e.different driving perspective changes and common environmen-
tal conditions.

Results and Analysis. As shown in Tab. 1, we can observe
similar tendencies as on the Tusimple dataset. Traditional backdoor
attack methods perform poorly in the face of dynamic scene factors,
while our method adapts well to these dynamic scenes, maintaining
a high 𝐴𝑆𝑅. The visual examples can be found in Fig. 1.

3 MORE DETAILS OF EXPERIMENT MODEL
Here, we provide a comprehensive overview of four representative
model architectures from various categories used in our evaluation.
For all experiments, we uniformly employ ResNet34 [1] as the
backbone for these models.
• LaneATT [4] is an anchor-based method, its core idea is to
utilize anchor-based attention mechanism to aggregate global
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Table 1: Results (%) of different backdoor attack methods under various dynamic scene factors on CULane dataset.

Model Attack F1 ASR ASR (Driving Perspective Changes) ASR (Environmental Conditions) ASR
Vanilla Infected Origin Position Shape Viewpoint Size Sunlight Shadow Rain Snow Average

LaneATT
BadNets

75.63
75.17 67.41 5.29 50.62 63.41 45.81 51.40 13.16 49.66 38.87 42.85

Blended 74.75 66.01 4.57 61.74 52.26 5.80 3.94 44.58 10.62 7.17 28.52
LD-Attack 75.53 68.81 10.74 47.99 14.42 41.98 3.82 4.86 40.89 13.95 27.49
BadLANE 74.98 67.19 64.84 67.26 67.25 65.78 63.79 64.04 65.46 62.89 65.39
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Figure 2: Ablation studies on different trigger size. Legend
means the number of brown-colored pixels in that area.

information, and the strong prior characteristic of the anchor
can effectively address the issue of disregarding visual clues. Its
image input size is 640 × 360.
• UFLD v2 (Ultra Fast Lane Detection v2) [3] represents a lane
detection method based on row-wise classification, treating the
lane detection process as a sequentially ordered classification
problem using global features, and it exhibits extremely fast speed.
Its image input size is 800 × 320.
• PolyLaneNet [5] is a parameterized curve-based method, aiming
to accurately represent the shape and position of lane lines by
learning polynomial coefficients. It has the advantage of being
lightweight, making it convenient for deployment. Its image
input size is 640 × 360.
• RESA (Recurrent Feature-Shift Aggregator) [6] is a segmenta-
tion based method, which introduces the RESA module to enrich
the lane features after initial feature extraction by a conventional
CNN. This enables the capture of strong shape priors of lanes
and spatial relationships between pixels in rows and columns. Its
image input size is 640 × 368, and it first crops off a portion of
the image that is not part of the road area.

4 ABLATION STUDIES ON TRIGGER SIZE
The size of the triggers is a critical factor in determiningwhether the
backdoor can be activated. Although our BadLANE method permits
the use of various forms/shapes of mud spots or pollution on the
road or lens for activation, our goal is to explore the boundaries
of its triggering capability. Intuitively, when triggers contain a
sufficient number of brown-colored pixels, the backdoor can be
activated, thus there should be a minimum triggering threshold.
To investigate this, we conduct experiments using the backdoor
LaneATT model with the LOA strategy in Sec 4.2 (employing 900
points within a 100 × 100 square for meta-tasks generation and

backdoor implantation). We explore the𝐴𝑆𝑅 situation for activating
the backdoor with different trigger sizes.

For each trigger size within the square region, we consider the
number of brown-colored pixels comprising 1%-10% of the area.
The results are shown in Fig. 2. We can identify that the ASR tends
to increase with the size of the trigger. Simultaneously, we note
that when the trigger size reaches 40, with a coverage area of 6%
(i.e., there are 96 brown pixels within a 40 × 40 area), the ASR can
exceed 90%. This demonstrates that our attack is powerful and can
successfully mislead the model into making incorrect predictions
with fewer than 100 poisoned pixels.

5 MORE VISUALIZATION
More visualization images of different models under various attack
strategies are shown in Fig. 3. More visualization of different models
in the physical-world are shown in Fig. 4. Ten complete mud pattern
triggers used in our experiment are shown in Fig. 5.

6 PSEUDO CODE OF AMORPHOUS MASK
GENERATION

Algorithm 2 Amorphous Mask Generation in Given Area
Input: Width of the area𝑤 , Height of the area ℎ
Output: Randomly generated mask area 𝐺𝑚

1: 𝐺𝑚 ← Initialize an ℎ ×𝑤 matrix filled with 1 (indicating no
holes)
{Create initial structure with random rectangles}

2: 𝑚𝑎𝑥_𝑡𝑟𝑖𝑒𝑠 ← Calculate based on𝑤 and ℎ to ensure coverage
3: for 𝑖 = 1 to𝑚𝑎𝑥_𝑡𝑟𝑖𝑒𝑠 do
4: (𝑟𝑒𝑐𝑡_𝑤, 𝑟𝑒𝑐𝑡_ℎ) ← RandomDimensionsLessThan(𝑤/2, ℎ/2)

5: (𝑟𝑒𝑐𝑡_𝑥, 𝑟𝑒𝑐𝑡_𝑦) ← RandomPositionWithin(𝑤 , ℎ, 𝑟𝑒𝑐𝑡_𝑤 ,
𝑟𝑒𝑐𝑡_ℎ)

6: CarveRectangle(𝐺𝑚 , 𝑟𝑒𝑐𝑡_𝑥 , 𝑟𝑒𝑐𝑡_𝑦, 𝑟𝑒𝑐𝑡_𝑤 , 𝑟𝑒𝑐𝑡_ℎ)
7: end for
{Apply random brush strokes for texture}

8: 𝑏𝑟𝑢𝑠ℎ𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← GenerateBrushPatternBasedOn(𝑤 , ℎ)
9: 𝐺𝑚 ← ApplyPattern(𝐺𝑚 , 𝑏𝑟𝑢𝑠ℎ𝑃𝑎𝑡𝑡𝑒𝑟𝑛)
{Enhance mask randomness with flips and rotations}

10: for 𝑓 𝑙𝑖𝑝𝑇𝑦𝑝𝑒 in [HorizontalFlip, VerticalFlip] do
11: 𝐺𝑚 ← ApplyRandomFlip(𝐺𝑚 , 𝑓 𝑙𝑖𝑝𝑇𝑦𝑝𝑒)
12: end for

{Ensure varied texture by applying brush pattern again if
needed}

13: 𝐺𝑚 ← OptionallyRefineTexture(𝐺𝑚 , 𝑏𝑟𝑢𝑠ℎ𝑃𝑎𝑡𝑡𝑒𝑟𝑛)
14: return 𝐺𝑚
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Figure 3: Visualization of different attack strategies and models.

(a) Groundtruth (b) LaneATT (d) PolyLaneNet(c) UFLD v2 (e) RESA
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Figure 4: Visual examples of different attack strategies and models in physical-world.

Figure 5: Illustration of various forms/shapes ofmud triggers.
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