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A Implementation Details1

A.1 Perturbation Guidance2

In the manuscript, we present a perturbation-guided approach to synthesize spurious samples to train3

the hierarchical contexts. Recall that for arbitrary k-th ID category, we use the spurious context to4

explicitly describe a corresponding spurious category, and a critical consideration is how to synthesize5

training samples spurious to that k-th ID category. Recently, generating adversarial data samples6

have been widely studied, including GAN networks [19, 14], diffusion models [22, 23], image7

attacks [17, 38], and feature-space sampling [7, 26]. For simplicity, we just take the tractable feature-8

space sampling as NPOS [26] to generate spurious candidates. In practice, we calculate the k-NN9

distance for each ID sample in the specific category, and generate spurious candidates by sampling10

from a multivariate Gaussian distribution around those samples with largest distances (basically away11

from the clustering center). Then, we leverage the perturbed descriptions of perceptual context to12

guide the further filtering for high-quality spurious syntheses.13

Given the perceptual context vp
k = [vpk,1; v

p
k,2; · · · ; v

p
k,m]) of k-th ID category, we randomly apply a14

perturbation u onto one arbitrary vpk,j to produce a perturbed description ẘp
k through text-encoder.15

Intuitively, there are two ways to perturb a context vp
k: erasing or replacing the specific visual16

character vpk,j . Consequently, we design three types of perturbation: (1) masking with a placeholder17

u = [MASK], (2) noise from a Gaussian distribution u = σ, and (3) swapping with another category18

u = vpk′,j′ . And the perturbed text-feature is produced by: ẘp
k = T ([vpk,1; · · · ;u; · · · ; v

p
k,m; CLSk]).19

We also conduct empirical experiments to verify the effectiveness of those perturbations.20
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Figure A1: Statistics of perturbations, including (a) similarities between original and perturbed
text-features, and (b) distribution of original text-feature, perturbed text-features, and image-features.

As shown in Fig. A1, all of the perturbed text-features ẘp
k slightly deviate from the original wp

k while21

keep the affinity (e.g., shares a 97% similarity against the original one.) Specifically, the noised ẘp
k22

leads to a greater deviation, since the noised visual character vpk,j := u is more unpredictable than23

the masked or swapped ones.24
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In addition, now that every perturbation can directly produce the description (i.e., text-feature) of25

an unknown spurious category, one may try to take the perturbed description as a substitute for the26

learned spurious contexts to execute OOD detection. That is, use the perturbed ẘp
k to replace the27

learned ws
k in Eq.(5) in the manuscript. And the results are shown in Tab. A1, where ImageNet-28

100 [18] is the ID dataset. Given a baseline model [37] learned with perceptual contexts only, simply29

using the perturbed descriptions (denoted as +Perturb-Desc.) brings slight improvements (e.g., 0.2%30

decrease on FPR95). The insignificant advantage is not due to the limited capacity of only one31

perturbed description for each ID category. Because ensembling [18] several perturbed descriptions32

for an ID category at once (denoted as +Perturb-Ensem.) dose not bring remarkable improvements.33

In contrast, our proposed CATEX can significantly enhance the OOD detection performance, which34

demonstrates it is still necessary to explicitly learn the spurious contexts for each ID category.35

Table A1: Comparison with directly using perturbed descriptions for OOD detection.
Method FPR95↓ AUROC↑

baseline [37] 13.07 97.42
+Perturb-Desc. 12.84 97.43

+Perturb-Ensem. 12.87 97.45

CATEX (Ours) 10.31 97.82

A.2 Cross-ID-Domain Generalization36

As indicated in the manuscript, the precise category boundary learned by our method shows robust37

OOD performance when the ID data is shifted. In fact, the shifted ID classification can be further38

boosted by our proposed integrated inference strategy (Eq.(5) in the manuscript), as shown in Tab. A2.39

It implies the regularization item γ successfully modulates the relative similarities between input40

images and learned perceptual descriptions for each category, leading to more precise boundaries.41

Table A2: Additionally improved ID accuracy on shifted datasets.

Method
Target Datasets

ImageNet-A ImageNet-R ImageNet-Sketch

CATEX 50.87 76.67 48.59
+IntegInfer. 50.98 76.72 48.65

However, our method only takes the secondary place on ImageNet-Sketch [29] on both ID classifi-42

cation (inferior to NPOS [26]) and OOD detection (inferior to MCM [18]). It is mainly because of43

the huge domain gap between vanilla ImageNet-1K [4] and shifted ImageNet-Sketch. As shown in44

Fig. A2, compared to the shifted ImageNet-A [10] and ImageNet-R [13], images from ImageNet-45

Sketch only preserve objects’ shape and main texture, while the color information is totally vanished.46

We leave the generalization to heavily-shifted ID datasets as future work.47

Figure A2: Left to right: examples from ImageNet, ImageNet-A, ImageNet-R, and ImageNet-Sketch.

A.3 Cross-ID-Task Generalization48

To verify the efficacy of our proposed framework, we conduct a category-extended experiment in49

Sec.4.1 and Tab.3. Here more implementation details are provided for reproducibility.50
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Given two models independently trained on the separated ImageNet-100 (I) and ImageNet-100 (II),51

how to test them on the union ImageNet-200 (I ∪ II) with our CATEX is simple. In the vision-52

language prompt-tuning framework, the image-encoder I and text-encoder T are frozen, and we only53

learn the perceptual and spurious contexts (i.e., vp and vs). And the l2-normalized text-feature can54

be pre-extracted with the 100 category names in each subset, taking the perceptual descriptions for55

example, which are denoted as {wp
I,k = T (vp

I,k; CLSI,k)}100k=1 and {wp
II,k = T (vp

II,k; CLSII,k)}100k=1.56

During inference, one may concatenate the 200 text-features together as {wp
k}200k=1. Given an input57

image I , the l2-normalized image-feature is extracted by x = I(I), and the perceptual image-text58

similarities are computed as sp = [⟨wp
1,x⟩, ⟨w

p
2,x⟩, · · · , ⟨w

p
200,x⟩] ≜ [sp1, s

p
2, · · · , s

p
200]. Similarly,59

the spurious similarities become ss = [ss1, s
s
2, · · · , ss200]. Then we can leverage the measurement60

defined in Eq.(5) for both ID classification and OOD detection.61

As for the competitors, (e.g., VOS [7] and NPOS [26]), two image-encoders are trained separately62

(denoted as II and III). And for each input image I , there are two corresponding image-features:63

xI = II(I) and xII = III(I). Consequently, there also two sets of image-text similarity vector: sI =64

[⟨w1,xI⟩, ⟨w2,xI⟩, · · · , ⟨w200,xI⟩] = {⟨wk,xI⟩}200k=1 and sII = {⟨wk,xII⟩}200k=1 (the superscript65
p is hidden for simplicity). For compatibility, we choose the one for ID classification and OOD66

detection according to its highest image-text similarity. s =
{
sI max(sI) > max(sII)

sII otherwise
. Now, the67

performance of our method and other rivals are evaluated under the same measurements.68

Note that since we only take one image encoder throughout, the inference time is fixed (because the69

text-features can be pre-extracted). In contrast, applying other methods brings multiple time cost70

(e.g., twice slower than ours in this case). When the training subsets extend intensely (e.g., from71

ImageNet-1K to ImageNet-21K in our manuscript), our method still keeps a fast speed (e.g., 100FPS72

on V100) during inference, which can even enable real-time applications in practice.73

A.4 Error Bars74

To verify the robustness, we repeat the training of our method and the rivals on ImageNet-100 [18]75

with CLIP-B/16 for 3 times, and the results are shown in Tab. A3. Our CATEX consistently76

outperforms the rivals on OOD detection by a significant margin.77

Table A3: Error Bars on ImageNet-100 after 3 runs
Method ACC↑ FPR95↓ AUROC↑
MSP [8] 94.77 (±0.05) 41.90 (±0.61) 93.38 (±0.05)

Energy [16] 94.77 (±0.05) 31.89 (±0.50) 94.53 (±0.18)
VOS [7] 94.75 (±0.07) 24.48 (±0.71) 96.04 (±0.36)

NPOS [26] 94.34 (±0.12) 17.32 (±0.87) 96.46 (±0.13)
CATEX 94.11 (±0.03) 10.97 (±0.79) 97.75 (±0.07)

A.5 Software and Hardware78

We use Python 3.7.13 and PyTorch 1.8.1, and 2 NVIDIA V100-32G GPUs.79

B Experiments on CIFAR Benchmarks80

To further verify the robustness of our method, we conduct additional experiments on CIFAR-1081

and CIFAR-100 datasets, and evaluate the OOD detection performance on SCOOD [34] benchmark.82

We train our CATEX for 20 epochs, and the other settings are the same as Sec.4 in the manuscript.83

The results are shown in Tab. A4 and Tab. A5, where “Surr.” means the extra TinyImages80M [27]84

is adopted for surrogate OOD training set. Accordingly, our CATEX consistently ourperforms the85

competitors as well, and even surpasses those who adopts the extra OOD training data. It implies the86

pre-trained knowledge for large-scale CLIP [20] model leveraged by our method is capable enough87

to detect the OOD samples in the open-world. The efficacy of our CATEX is further demonstrated.88
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Table A4: Performance on CIFAR-10.

Method Surr. ID-ACC ↑ FPR95↓ AUROC↑

MCM [18] % 90.79 23.14 94.68

ODIN [15] % 95.36 52.00 82.00
Energy [16] % 95.36 50.03 83.83

OE [12] " 94.90 50.53 88.93
UDG [34] " 94.71 36.22 93.78
CATEX % 95.57 21.17 95.33

Table A5: Performance on CIFAR-100.

Method Surr. ID-ACC ↑ FPR95↓ AUROC↑

MCM [18] % 66.91 71.93 79.39

ODIN [15] % 81.84 81.89 77.98
Energy [16] % 81.84 83.66 79.31

OE [12] " 81.31 80.06 78.46
UDG [34] " 80.89 75.45 79.63
CATEX % 81.99 67.95 84.04

89

C Combination with Post-hoc Enhancements90

Recently, post-hoc OOD detection methods that enhance the single-vision-modal networks (e.g.,91

ResNet [9] and ViT [6]) have been widely studied [3, 24, 25, 39, 5]. In this section, we make a step92

towards combining vision-language models with previous post-hoc enhancements for better OOD93

performance. The results are shown in Tab. A6, where ReAct [24] achieves a remarkable improvement.94

It indicates that pruning the extreme feature values according to the unified distributional statistics95

may be more suitable for VLMs to reduce the overconfidence on OOD samples. We hope this can96

bring new insights to the community.97

Table A6: Combination with post-hoc methods.

Cmobine
ImageNet-100 ImageNet-1K

FPR95↓ AUROC↑ FPR95↓ AUROC↑
None 10.31 97.82 29.66 93.48

ReAct [24] 10.06 97.82 27.56 93.77
BATS [39] 10.16 97.84 29.37 93.59
ASH [5] 10.19 97.81 29.14 93.27

D Additional Analysis98

Performance improvement. To further evaluate the improvement brought by our method (e.g.,99

8% decrease of FPR95 against NPOS), we conduct a comparative experiment on ImageNet-1K. To100

provide a unified analysis across two models, we take a third-party ResNet-50 model [32] (pre-trained101

on ImageNet-1K classification only) to produce the Maximum SoftMax Probability for each OOD102

sample that is correctly detected by our CATEX while wrongly viewed as ID samples by NPOS.103

According to Fig. A3, our method consistently improves the OOD detection on each interval, where104

the high-probability OOD (generally hard samples) detection is significantly enhanced. It indicates105

that properly leveraging the prior knowledge from pre-trained VLMs can alleviate the OOD problem106

when the fine-tuned visual features are indistinguishable, which is consistent with our motivation.107
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Figure A3: Corrected OOD detections compaired with NPOS. The softmax probability predictions
on those OOD samples are produced by another pre-trained ResNet-50 [32] classifier.

Failure cases. As our method still gets 29% FPR95 on ImageNet-1K, we provide some failure cases108

in Fig. A4, which can be summarized into three kinds:109
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• Noisy label, where the ID objects (e.g., dam) also exists in some OOD images from the test110

set. And the dataset composition may need a further examination.111

• Similar texture, shared by some OOD samples (e.g., flower) against ID images (e.g., starfish),112

and the pre-trained encoders of CLIP are unable to distinguish their features. Applying113

image-level spurious OOD syntheses (e.g., image attacks [17, 38]) may reduce the texture-114

bias.115

• Same background (e.g., sky) that seizes a large proportion of the image may lead to similar116

feature representations. Adopting image-level automatic masking techniques [1, 35] to117

synthesize spurious OOD samples may alleviate such problem.118

Similar failure cases are also observed in recent SOTA methods, which reveal the unsolved challenges119

of OOD detection and suggest the potential directions for future works.120

OOD Sample

ID Category

Noisy Label

dam

Similar Texture

starfish flagpole

Same Background

Figure A4: Failed OOD detections of our CATEX

E Datasets and Baselines121

For reproducibility, we present the details of datasets and baselines as follows.122

ImageNet-100 (I). Following MCM [18], we take the randomly-sampled 100 classes from ImageNet-123

1K [4] as the ImageNet-100 (I) subset, which contains the following categories: n03877845, n03000684,124

n03110669, n03710721, n02825657, n02113186, n01817953, n04239074, n02002556, n04356056, n03187595, n03355925, n03125729,125

n02058221, n01580077, n03016953, n02843684, n04371430, n01944390, n03887697, n04037443, n02493793, n01518878, n03840681,126

n04179913, n01871265, n03866082, n03180011, n01910747, n03388549, n03908714, n01855032, n02134084, n03400231, n04483307,127

n03721384, n02033041, n01775062, n02808304, n13052670, n01601694, n04136333, n03272562, n03895866, n03995372, n06785654,128

n02111889, n03447721, n03666591, n04376876, n03929855, n02128757, n02326432, n07614500, n01695060, n02484975, n02105412,129

n04090263, n03127925, n04550184, n04606251, n02488702, n03404251, n03633091, n02091635, n03457902, n02233338, n02483362,130

n04461696, n02871525, n01689811, n01498041, n02107312, n01632458, n03394916, n04147183, n04418357, n03218198, n01917289,131

n02102318, n02088364, n09835506, n02095570, n03982430, n04041544, n04562935, n03933933, n01843065, n02128925, n02480495,132

n03425413, n03935335, n02971356, n02124075, n07714571, n03133878, n02097130, n02113799, n09399592, n03594945.133

ImageNet-100 (II). Disjoint from ImageNet-100 (I), ImageNet-100 (II) contains another 100 classes134

randomly sampled from ImageNet-1K: n02096177, n03769881, n01629819, n04033995, n04357314, n02101388, n02328150,135

n03729826, n02655020, n01985128, n02109525, n07715103, n02099429, n04517823, n02088632, n03207743, n03657121, n02948072,136

n02106662, n01631663, n09229709, n03793489, n03776460, n07860988, n02129604, n03483316, n02107574, n07716358, n04208210,137

n02107908, n04372370, n02119022, n12144580, n01693334, n04548280, n03785016, n03535780, n03599486, n02859443, n04335435,138

n02110341, n03902125, n04146614, n01774750, n03314780, n03045698, n01697457, n02869837, n02276258, n04081281, n03956157,139

n02487347, n04311174, n02094114, n04409515, n03028079, n03384352, n04532106, n02087394, n04612504, n02100583, n11939491,140

n02107142, n01669191, n12998815, n04522168, n02894605, n03529860, n10148035, n01677366, n03775071, n03208938, n04238763,141

n02363005, n02804414, n02106382, n03950228, n02128385, n02028035, n04099969, n02481823, n01729322, n02939185, n02483708,142

n04162706, n03857828, n02093647, n02927161, n03160309, n02840245, n03920288, n07871810, n04404412, n03947888, n04509417,143

n02086910, n02256656, n02412080, n02410509, n03584829.144
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ImageNet-21K. The ImageNet-21K dataset on which we conduct the category-extended experiment145

is the official winter 2021 released version 1. For pre-processing, we follow Ridnik et al [21] to clean146

invalid classes, allocating 50 images per class for validation, and crop-resizing all the images to 224147

resolution. Training settings are the same as Sec.4 in our manuscript.148

OOD datasets. Following the literature [30, 26, 31, 18], we mainly consider subsets of149

iNaturalist [28], SUN [33], Places [36], and Texture [2] as the OOD datasets, which contains150

35640 images in total.151

Baselines. To evaluate the baselines on our experiment settings, we re-implement the most represen-152

tative and relevant methods, including MSP [11, 8], Energy [16], VOS [7], and NPOS [26]. For a153

fair comparison, we train all the baselines with NPOS’s codebase 2, and only fine-tune the last two154

transformer blocks of image encoder [26].155

• For MSP and Energy, we train a single model with standard cross-entropy loss function for156

ID classification only, and infer with respective OOD metrics.157

• For VOS, we take the likelihood-based sampling strategy to generate spurious OOD synthe-158

ses, and train the model with uncertainty regularization as suggested [7].159

• For NPOS, we take the non-parametric distance-based sampling strategy to generate spurious160

OOD syntheses, and train the model with open-set ERM as suggested [26].161
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