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ABSTRACT

We continue to develop the concept of studying the ε-optimal policy for Aver-
age Reward Markov Decision Processes (AMDP) by reducing it to Discounted
Markov Decision Processes (DMDP). Existing research often stipulates that the
discount factor must not fall below a certain threshold. Typically, this threshold is
close to one, and as is well-known, iterative methods used to find the optimal pol-
icy for DMDP become less effective as the discount factor approaches this value.

Our work distinguishes itself from existing studies by allowing for inaccuracies
in solving the empirical Bellman equation. Despite this, we have managed to
maintain the sample complexity that aligns with the latest results. We have suc-
ceeded in separating the contributions from the inaccuracy of approximating the
transition matrix and the residuals in solving the Bellman equation in the upper
estimate so that our findings enable us to determine the total complexity of the
epsilon-optimal policy analysis for DMDP across any method with a theoretical
foundation in iterative complexity.

1 INTRODUCTION

In recent times, the concept of Reinforcement Learning (RL) has demonstrated exceptional results
in various sequential learning and decision-making tasks. These empirical successes have spurred
extensive theoretical research into RL algorithms and their fundamental limitations. Typically, the
environment in Reinforcement Learning is modeled as a Markov Decision Process (MDP), where
the primary objective is to find a policy π that maximizes the expected cumulative reward. There
are various criteria for calculating the total reward, such as the finite horizon total reward and the
discounted infinite horizon, formally represented as Eπ[

∑T−1
t=0 rt] and Eπ [

∑∞
t=0 γ

trt], respectively.
Here, rt is the reward received at the t-th step (see 1.2 for a formal description).

Mathematically, the discount factor is required for the convergence of the series, which allows for
comparing the final rewards, and thereby the policies that have achieved them. From a physical
standpoint, this approach can be explained by the fact that the most significant steps are
the first ∼ 1

1−γ (where γ < 1). In many practical situations, when long-term policy effec-
tiveness is of interest, we can evaluate the policy in terms of the average accumulated reward:
limT→∞ Eπ

[
1
T

∑T−1
t=0 rt

]
.
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A fundamental theoretical problem in RL is the sample complexity for learning an approximately
optimal policy when access is available to what is called a generative model. This implies that we
can sample a step for any available state-action pair in the environment, thus interacting with the
environment as a ”gray box.”

As the topic of generative models has gained increasing interest, new approaches for finding an
ε-optimal policy for both DMDPs and AMDPs have emerged. In fact, the latter problem can be
reduced to the former, which is the central idea behind the approach of reducing AMDP to DMDP,
and in this work, we focus on the task of finding a near-optimal policy specifically for the discounted
case.

1.1 LITERATURE REVIEW

In Table 1, we provide a brief comparison with the main works we have referred to. Each of these
works proposed an algorithm for finding near-optimal policies for the discounted case.

One of the earliest results on approximating the optimal value function of a discounted MDP using
the value function of a DMDP, defined by a sampled with generative model (simulator) transition
probability matrix , was obtained in Gheshlaghi Azar et al. (2013). In this result, the authors ac-
counted for the fact that the empirical Bellman equation might not be solved exactly. Specifically,
they provided a bound on the norm of the difference between the optimal value function of the the-
oretical MDP and the value function obtained when solving the empirical Bellman equation using
some iterative method at a certain step, with the bound depending on the iteration number. However,
this bound was obtained only for two specific methods, namely value iteration and policy iteration,
making it not directly applicable to other methods.

Meanwhile, in a more recent result Zurek & Chen (2023), a state-of-the-art bound was derived,
where the authors managed to eliminate the prefactor 1

(1−γ)3 and replace it with H
(1−γ)2 , where

H ≤ 1
1−γ . However, their result assumes knowledge of this parameter H , which may be unknown

in practice. This limitation was addressed by the authors in Tuynman et al. (2024), where they
attempted to account for this shortcoming. In a similar approach, the article Wang et al. (2023a)
obtained a bound through an introduced characteristic of the environment called minorization time,
and their result asymptotically required fewer samples. However, the bound required uniform er-
godicity, which is not as general. Nonetheless, most of these works assume the ability to find an
exact solution to the Bellman equation. Utilizing some ideas from the mentioned works, we aim to
simultaneously address two factors: the inaccuracy of the empirical kernel relative to the theoretical
one, which is ∥P̂ − P∥∞ and the inaccuracy in solving the Bellman equation.

Reference Sample Complexity Takes Into Account
Inaccuracy in

Solution

Gheshlaghi Azar et al. (2013) Õ
(

|S||A|
(1−γ)3ϵ2

)
✓

Wang et al. (2023a) Õ
(

|S||A|tminorize
(1−γ)2ϵ2

)
×

Zurek & Chen (2023) Õ
(

|S||A|H
(1−γ)2ϵ2

)
×

This paper Õ
(

|S||A|H
(1−γ)2ϵ2

)
✓

Table 1: Comparison of algorithms based on sample complexity.
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1.2 PROBLEM SETUP

A Markov Decision Process is defined by a set (S,A, P, r), where S is a finite set of states, A is a
finite set of actions, P : S ×A→ ∆(S) is the transition kernel, where ∆(S) denotes the probability
simplex over the state space, and r: S×A→ [0; 1] is the reward function. In this work, we only deal
with stationary strategies π: S → ∆(A). We introduce the transition probability matrix induced by
the policy π as Pπ , defined by the formula:

(Pπ)s,s′ =
∑
a∈A

π(a|s)P (s′|s, a) (1)

Similarly, the convolution of the policy with the reward function yields a reward induced by some
policy:

(rπ)s,s′ =
∑
a∈A

π(a|s)r(s, a) (2)

We denote the expectation for a given policy starting from state s0 as Eπ
s0 . If the subscript is

not specified, the component-wise expectation is implied, applied to the random variable. The
same is done for the variance - the variance for a specific starting state is denoted by Vπ

s (X) =

Eπ
s (X − Eπ

s (X))
2, and in vector form as Vπ: (Vπ[X])s = Vπ

s (X).
The discounted MDP is defined by the set (S,A, P, r, γ), where γ is the discount factor. Upon defin-
ing the DMDP, such an object as the value function for a certain policy V π : S → R is introduced,
which by definition is:

V π(s) = Eπ

[ ∞∑
t=0

γtrt

]
, (3)

rt = r(st, at) - the reward obtained at step t. A policy π∗ is called optimal if for all s ∈ S, π →
V π∗ ≥ V π . Extremely important for our analysis is the variance of the value function determined
by the same policy, i.e., Vπ[V π] = Pπ[V

π − PπV
π]2, which component-wise can be written as:

(Vπ[V π])s = (Pπ)s,s′ (V
π(s′)− (Pπ)s,s′′V

π(s′′))
2 (4)

Finally, for AMDP, in which the reward is defined as the average of the mathematical expectation,
the quantity ρπ(s) = limT→∞ Eπ

[
1
T

∑T−1
t=0 rt

]
is introduced. Similarly, the Bellman/Poisson

equation is introduced:
rπ − ρπ = (I − Pπ)h

π, (5)

where hπ(s) = C-limT→∞ Eπ
s

[∑T−1
t=0 (rπ(st)− απ)

]
- the so-called bias function (here the Cesàro

limit is implied). The solution of this equation is described by the pair (απ , hπ), απ ∈ R, hπ : S→
R. It is easy to see that this solution is not unique, and any pair from the set {(απ, hπ+ce) : c ∈ R},
where e(s) = 1 ∀s ∈ S, is also a solution. Analogously to the discounted case, the optimal policy
π∗ = argmaxπ α

π is introduced. Recalling the basic concepts, we can now introduce another
parameter H := ∥hπ∗∥span := maxs h

π∗
(s)−mins h

π∗
(s) - the span semi-norm of the optimal bias

function. Note that, unlike the solution of the Poisson equation for a certain policy, this parameter is
uniquely defined.

It is important to note that in existing results, sample complexity has been characterized using var-
ious parameters, such as the diameter of the MDP, the minorization time, the uniform mixing time
bound τunif, and the previously mentioned span H of the optimal bias. This work relies heavily on
the study in Zurek & Chen (2023), which analyzes sample complexity in terms of H .

The span H is particularly advantageous because it is always finite in weakly communicating MDPs
with finite state-action spaces. Unlike the diameter D or the uniform mixing time τunif, which can
each be arbitrarily larger than the other and can even be infinite under certain conditions, H remains
bounded. For instance, it has been shown that H ≤ D Bartlett & Tewari (2012) and H ≤ 8τunif
Wang et al. (2022), which provides useful insights into the relative magnitudes of these parameters.

Furthermore, sample complexity bounds that involve τunif necessitate the assumption that all sta-
tionary policies have finite mixing times. If this assumption is not met, τunif becomes infinite, as in
cases where any policy induces a periodic Markov chain. Similarly, while the diameter D can also
be infinite, the span H is always finite, ensuring a more robust and reliable parameter for analysis.
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2 MAIN RESULT

As previously mentioned, we are working with a generative model (simulator). Assuming access to
this generative model, we collect n independent samples

sis,a
i.i.d.∼ P (·|s, a), for i = 1, . . . , n (6)

for each pair (s, a) ∈ S ×A, which allows us to construct an empirical transition probability matrix
(tensor)

∀s′ ∈ S, P̂ (s′|s, a) = 1

n

n∑
i=1

1{sis,a = s′} , (7)

where 1{·} is the indicator function. Thus, P̂ (s′|s, a) calculates the empirical frequency of transi-
tions from (s, a) to s′. Therefore, the total number of samples equals n|S||A|, and we can introduce
an MDP defined by the set (S,A, P̂ , r, γ). For this MDP, the value function V̂ π determined by some
policy π is also defined.

The task of finding an ε-optimal policy for AMDP reduces to the search for a ε̃-optimal policy for
DMDP. Our goal is to obtain an upper bound on ∥V ∗ − V πt∥∞, which is likely to hold depending
on the number of samples n. As previously noted, in order to find an ε-optimal policy for DMDP,
we face the necessity of solving the empirical Bellman equation, and for the case when the discount
factor is close to one, this is a separate problem. Various approaches have been considered for this
case, such as in Goyal & Grand-Clement (2023); Grand-Clément (2021), drawing analogies with
well-known iterative methods from convex optimization, as well as more heuristic methods, as in
Farahmand & Ghavamzadeh (2021), which can provide improved results, but for which a theoretical
result in the general case is currently lacking. Our result is inspired by an attempt to address this
subproblem that arises when trying to find an approximately optimal policy for AMDP, for which
we allow for some inaccuracy in the solution, depending on the iteration and the method itself, and
account for it in our bound.

Before proceeding to the main result, we present the most fundamental lemmas used in deriving the
bound, while the rest will be mentioned directly in the proof of our theorem. One of these lemmas
relies on Bernstein’s inequality, a concentration inequality from probability theory. It has been used
in several results, but for completeness, its proof can also be found below (see Appendix A.1).
Lemma 1 (Bernstein’s inequality). Let V be a value function that does not depend on the outcome
of sampling. Then for any policy π, with probability at least 1− δ, the following inequality holds:

|(Pπ − P̂π)V | ≤
√

β

n
Vπ[V ] +

2β∥V ∥∞
3n

1 , (8)

where β = 2 log( 2|S||A|
δ ). Briefly, we will also mention two main lemmas that we relied on to obtain

our result, which are well-known, so we will only reference them.
Lemma 2 ([Weissman et al. (2003), Lemma 13]). Let pz and p̂z be probability distributions over a
finite set of states S. Then with probability at least 1− δ, the following inequality holds:

∥pz − p̂z∥1 ≤

√
2|S| log

(
2
δ

)
n

(9)

Lemma 3 ([Singh & Yee (1994), Theorem]). Let V ∗ be the optimal value function of a discounted
MDP with discount factor γ, and Vt be a value function such that the inequality ∥V ∗ − Vt∥∞ ≤ ε
holds. Let πt be the greedy policy derived from Vt. Then the following bound holds:

∥V ∗ − V πt∥∞ ≤
2γε

1− γ
(10)

Finally, we are ready to present our algorithm and guarantees for it.
Theorem 1. The policy obtained by Algorithm 1 for the given DMDP is ε-optimal:

∥V ∗ − V πt∥∞ ≤ ε+
1

(1− γ)η
∥V̂ ∗

p − Vt∥∞, (11)
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Algorithm 1 Perturbed Model-Based Planning

Input: Parameter η ∈ (0, 1), sample size per state-action pair n ≥ 500H
(1−γ)2ε2η4 β, target accuracy

ε ∈

(
0, 1−η

1
5+(2−η)

√
|S|

500H

]
, discount factor γ

1: for each state-action pair (s, a) ∈ S ×A do
2: Collect n samples ss,a1 , . . . , ss,an from P (·|s, a)
3: Form the empirical transition kernel P̂ (s′|s, a) = 1

n

∑n
i=1 1{s

s,a
i = s′}, for all s′ ∈ S

4: end for
5: Set perturbation level ξ = (1−γ)εη

4

6: Form perturbed reward r̃ = r + Z where Z(s, a)
i.i.d.∼ Unif(0, ξ)

7: Initialize the starting point(s) in R|S| for running the iterative method
8: Compute a greedy policy πT from the point VT obtained at the T -th step
9: return πT

Here are a few points to note: First, our result imposes a limitation on the required precision. As the
number of states in the environment increases, the theoretical estimate remains valid for a smaller set
of values of ε. This is similar to the limitation that arose in Gheshlaghi Azar et al. (2013). Second,
it is interesting to note that in our derivation, we did not have to resort to the method of statistical
independence, which has been actively applied in recent results. Finally, it might seem that this
derivation introduces another hyperparameter of unclear nature, η. However, it is simply a certain
number used to estimate the denominator value (see Appendix A.2). It can be chosen based on the
desired precision in the search for a suboptimal policy.

3 EXPERIMENT

3.1 SETUP

To begin with, let’s clarify the environment we are working with. It is a square grid of size 21 ×
21. Every cell can be represented as a tuple (x, y), where x, y ∈ 0, 20, with the first number
corresponding to the row and the second to the column. Thus, the terminal state is (20, 20). Also,
there 4 actions are available: move down, up, right, and left, respectively (see Figure 1). However,
this environment is not deterministic – when choosing an action, say, to move right, there is a
probability of 0.2 of ending up in the adjacent upper cell or the same probability of ending up in the
adjacent lower cell. Finally, the reward function is this:

r(s, a) =


1 if s = (20, 19) and a =→
1 if s = (19, 20) and a =↓
0 otherwise

The reason why it is advisable to consider this example lies in the large number of states and the
presence of stochasticity, which may require many samples for each state-action pair to accurately
approximate the environment with an empirical kernel.

In this experiment, we aim to observe how the error, i.e., the norm of the difference between the
optimal value function of our MDP and the value function induced by some policy obtained from
the empirical Bellman equation, behaves depending on the number of samples n. For this purpose,
we developed a custom module for solving the Markov Decision Process. It includes methods
for creating a random tabular environment, solving the optimality equation using various iterative
methods (some of which are not included in the experiment), and sampling to obtain the empirical
kernel.

It was not mentioned earlier, but it should be understood that even in the case where there is no
discrepancy between the theoretical and empirical transition kernels, some error will persist. This is
due to the need to add some perturbation to the reward ξ ∼ Uniform(0, ζ) to obtain a unique policy
Li et al. (2020). We note that, firstly, the amplitude of the perturbation is scaled by the factor 1− γ,
and secondly, by the error ε that we aim to achieve.
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Figure 1: The environment

3.2 SEARCH OF H

In the theoretical estimate, the parameter H is present, and it can be found in several ways. For this
parameter, as well as for other parameters such as tmix, tminorize, etc., which were used in previous
works, theoretical estimates have been obtained. However, to verify our result, we would like to find
the exact value of this parameter, and this can be done.

Firstly, we note that the following is only valid for the case of uniform ergodicity. This problem can
be formulated as a linear programming task - we want to find a policy that maximizes

ρπ = lim
H→∞

1

H
Eπ

[
H−1∑
t=0

r(st, at)

]
=

∑
(s,a)∈S×A

r(s, a)π(a|s)νπ(s) (12)

The last inequality holds due to uniform ergodicity. Here, νπ(s) is the stationary distribution of the
Markov process, which can be expressed as

νπ(s
′) =

∑
(s,a)∈S×A

p(s|s′, a)π(a|s)νπ(s) , (13)

and corresponds to its probability vector νπ = (νπ(s))s∈S . From the theory of stochastic processes,
it is known that the probability vector corresponding to the stationary distribution can be determined
as the eigenvector of the transposed stochastic matrix that defines the Markov chain. Given the
formula for Pπ , the formula for νπ(s′) becomes evident.
Returning to the search for the optimal policy, we introduce the distribution of actions over states
µ(s, a) = νπ(s)π(a|s), then we can rewrite the policy search problem in AMDP as an LP problem
with the sense of policy value estimation by distribution µ:

max
µ∈∆S×A

ρ(µ) = ∑
(s,a)∈S×A

r(s, a)µ(s, a) :
∑
b∈A

µ(s′, b) =
∑

(s,a)∈S×A

p(s′|s, a)µ(s, a), s′ ∈ S

 ,

(14)
where ∆S×A = {µ : µ(s, a) ≥ 0,

∑
(s,a)∈S×A µ(s, a) = 1}.

Knowing the distribution µ, we can recover the optimal policy πµ(a|s) = µ(s,a)∑
b∈A µ(s,b) . This problem

can be rewritten in matrix form:
max

µ∈∆S×A
⟨r, µ⟩ (15)

s.t. (Î − P )µ = 0 (16)
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The identity matrix Î has a non-standard format: it is a rectangular matrix of size |S| × |S||A|, with
only the elements corresponding to the pair (s, a), a ∈ A, equal to one on each row s ∈ S, while
the other elements of this row are zero, i.e., there are exactly |A| ones in each row of Î . The matrix
P of size |S| × |S||A| has the distribution P (·|s, a) in each column (s, a) ∈ S ×A.
In general, after this, it would be necessary to find the stationary distribution of the Markov process,
determine ρπ , and substitute this value into the Poisson equation to finally find the bias function and,
accordingly, its span semi-norm. However, we would like to directly find this bias function. For this
LP problem, the dual problem is directly constructed, under the condition that µ ≥ 0, which makes
sense in evaluating the value of the optimal policy through the h-function:

min
ρ∈R,h∈RS

ρ (17)

s.t. r − ρ1− (Î − P )h ≤ 0 (18)
Thus, the Bellman optimality equation

h(s) = max
a∈A

[r(s, a)− ρ∗ +
∑
s′∈S

p(s′|s, a)h(s′)] , (19)

is obtained from the constraints of the form ÎTh ≥ r − ρ1+ PTh. We will use this approach as it
helps directly find both the reward induced by the optimal policy and the parameter H .

3.3 RESULTS

Finally, we can proceed to the discussion of the results (see Figure 2). First and foremost, it is worth
noting that due to the factor 1

1−γ , the initial error differs by an order of magnitude for γ = 0.95 and
γ = 0.999. The same applies to the plateau reached by the residual. For example, in the first case,
only n = 102 samples are sufficient for each pair (s, a) ∈ S×A, while in the second case, n = 103

is still insufficient to achieve the desired error.

(a) γ = 0.95

(b) γ = 0.999

Figure 2: Experiment set for different number of samples
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An interesting point here is the convergence behavior towards the optimum (which we will discuss
further in the next section). For the case where the discount factor is close to one, the convergence
plot looks like a staircase. Although our environment requires relatively few iterations to converge
to the solution, for some so-called hard cases, this can be a problem, as an insufficient number of
steps may not effectively reduce the initial norm of the value function differences.

For comparison, let’s see what inaccuracy is achieved in the limiting case when the number of
samples for each state-action pair tends to infinity (see Figure 3). For this, instead of the empirical
kernel, we simply substitute the theoretical one. The graphs obtained for intermediate values of the
number of samples can be found in Appendix B.

We also assumed in the proof of Algorithm 1 that γ ≥ 1 − 1
H . In our setup, H reached a value of

5.12. However, there is no explicit limitation on H , so the value of this hyperparameter can reach
values such that 1

H ≪ 1, which means the obtained result will only be valid for DMDPs with a
discount factor close to one. Since the Bellman operator is a contraction with the coefficient γ, the
estimate ∥V ∗−Vt∥∞ ≤ γt∥V ∗−V0∥∞ holds, which means that to ensure the required accuracy, it
may potentially take T ∼ 1

1−γ iterations of Value Iteration (VI). Thus, convergence to the solution
of the Bellman equation using the standard iterative method becomes slow, so even with a large
number of iterations, the residual in the solution can be significant, and it should be considered in
the estimate of ∥V ∗ − V πt∥∞.

(a) γ = 0.95 (b) γ = 0.999

Figure 3: Case of infinite number of samples

Therefore, it seems reasonable to apply other methods for finding the optimal value function. The
main ones are mentioned in Grand-Clément (2021). For instance, for Accelerated Value Iteration
(AVI), it is shown that the iterative complexity of the algorithm is T ∼ 1√

1−γ
. Moreover, one of

them, Safe-Accelerated Value Iteration (S-AVI), has consistently shown improved results. However,
to some extent, it can be considered heuristic, as there is no estimate proving that it is more efficient
than conventional VI.

4 CONCLUSION

In this work, we have advanced the study of ε-optimal policies for Average Reward Markov Decision
Processes (AMDP) by reducing them to Discounted Markov Decision Processes (DMDP). Unlike
existing research, which often requires the discount factor to be close to one, our approach allows
for inaccuracies in solving the empirical Bellman equation. Despite this allowance, we have main-
tained sample complexity that aligns with the latest results. By separating the contributions from the
inaccuracy of approximating the transition matrix and the residuals in solving the Bellman equation,
we have enabled a more accurate determination of the total complexity of ε-optimal policy analysis
for DMDP across various iterative methods with theoretical foundations in iterative complexity.

Additionally, we conducted experiments using different iterative methods for solving the Bellman
equation, revealing that the error can remain nearly constant relative to the initial approximation for

8
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several steps. This insight is crucial, particularly when a large number of steps are required, as it
highlights the importance of accounting for residuals in solving the equation. In future work, we
aim to generalize our estimates further by expanding the range of permissible values for desired
accuracy in finding near-optimal policies.
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A PROOFS

A.1 PROOF OF LEMMA 1

Proof. First, we estimate the quantity P(|(p̂z − pz) · V | > ε), V ∈ R|S|, z ∈ (S×A)

P ((p̂z − pz) · V > ε) = P

(
n∑

i=1

[∑
s′

(Xs′

i − ps
′

z )V
s′

]
> nε

)
(20)

where Xs′

i denotes a Bernoulli indicator random variable that takes the value 1 if the i-th sample for
the state-action pair z transitions to state s′, and 0 otherwise.

σ2
i = E[

∑
s′

(Xs′

i −ps
′

z )V
s′ ]2 = E[

∑
s′

(Xs′

i −ps
′

z )
2(V s′)2]+E[

∑
s′ ̸=s′′

(Xs′

i −ps
′

z )(X
s′′

i −ps
′′

z )V s′V s′′ ]

(21)
E[
∑
s′

(Xs′

i − ps
′

z )
2(V s′)2] =

∑
s′

(V s′)2ps
′

z (1− ps
′

z ) (22)

E[
∑
s′ ̸=s′′

(Xs′

i − ps
′

z )(X
s′′

i − ps
′′

z )V s′V s′′ ] = −
∑
s′ ̸=s′′

V s′V s′′ps
′

z p
s′′

z (23)

σ2

(
n∑

i=1

[∑
s′

(Xs′

i − ps
′

z )V
s′

])
= nσ2

i = n

∑
s′

(V s′)2ps
′

z −

(∑
s′

V s′ps
′

z

)2
 := nσ2(V )(z),

(24)

where σ2
i denotes the variance of a single term.

Applying Bernstein’s inequality and bounding |(pz − p̂z)V | ≤ 2∥V ∥∞, we obtain:

P (|(p̂z − pz) · V | ≤ ε) ≥ 1− 2 exp

(
− nε2

2σ2(V )(z) + 4
3ε∥V ∥∞

)
≥ 1− δ

⇒ ε ≥ 2∥V ∥∞
3n

ln
2

δ
+

√(
2∥V ∥∞

3n
ln

2

δ

)2

+
2σ2(V )(z)

n
ln

2

δ
(25)

It is sufficient to take ε ≥ 4∥V ∥∞
3n ln 2

δ+σ(V )(z)

√
2 ln 2

δ

n . Now, everywhere in our reasoning, replace
δ with δ

|S||A| , use the union bound, and recalling the expression for Vπ[V ], we obtain the required
assertion.

A.2 PROOF OF THEOREM 1

Proof. First, we need to group the terms so that each of them contains objects of the same nature.

V ∗ − V πt = V ∗ − V̂ π∗

p + V̂ π∗

p − V̂ ∗
p + V̂ ∗

p − V̂ πt
p + V̂ πt

p − V πt ≤

≤ ∥V ∗ − V̂ π∗
∥∞ + ∥V̂ ∗

p − V̂ πt
p ∥∞ + ∥V̂ πt − V πt∥∞ +

ζ

1− γ
(26)

Thus, the value functions in the first and third terms correspond to the same policy, and in the second
term, they correspond to the same transition kernel.

Let us handle each of the three terms separately, starting with the most challenging one, namely
∥V̂ πt − V πt∥∞. This term is of the greatest interest because our goal is to try to reduce the degree
of the prefactor 1

1−γ , which would yield an improved result. Therefore, the approach to evaluating

10
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this term will differ from that in Gheshlaghi Azar et al. (2013). But first, let’s perform the basic
transformation:

V̂ πt − V πt = (I − γPπt)
−1(I − γPπt)V̂

πt − (I − γPπt)
−1rπt =

= (I − γPπt)
−1(I − γPπt)V̂

πt − (I − γPπt)
−1(I − γP̂πt)V̂

πt =

= (I − γPπt
)−1(P̂πt

− Pπt
)V ∗ (27)

Let’s represent V̂ πt as V ∗ + (V̂ πt − V ∗), and then perform trivial inequalities:

∥V̂ πt −V πt∥∞
(28.1)

≤ γ∥(I − γPπt)
−1(Pπt − P̂πt)V

∗∥∞ +
γ

1− γ
∥(Pπt

− P̂πt
)(V ∗− V̂ πt)∥∞

(28.2)

≤

≤ γ∥(I − γPπt)
−1(Pπt − P̂πt)V

∗∥∞ +
γ

1− γ
∥Pπt

− P̂πt
∥∞∥V ∗ − V̂ πt∥∞

(28.3)

≤

≤ γ∥(I−γPπt
)−1(Pπt

−P̂πt
)V ∗∥∞+

γ

1− γ
∥Pπt

−P̂πt
∥∞(∥V ∗−V πt∥∞+∥V πt−V̂ πt∥∞) , (28)

where in (28.1) and (28.3) the triangle inequality was applied, and in (28.2) the property of the norm
was used. Now, moving all terms with V̂ πt − V πt to the right side, we obtain:

∥V̂ πt − V πt∥∞ ≤
γ

1− γ
1−γ ∥Pπt

− P̂πt
∥∞

(
∥(I − γPπt

)−1(Pπt
− P̂πt

)V ∗∥∞+

+
1

1− γ
∥Pπt − P̂πt∥∞∥V ∗ − V πt∥∞

)
(29)

Using Lemma 1 for the first term, we then obtain that with probability at least 1 − δ, the following
inequality holds:

|(Pπt − P̂πt)V
∗| ≤

√
β1

n

√
Vπt [V ∗] +

2β1∥V ∗∥∞
3n

1 , (30)

where β1 = 2 log( |S||A|
δ ). Then, using the property that ∀π → ∥(I − γPπ)

−1∥∞ ≤ 1
1−γ , we

immediately arrive at the inequality:

∥(I − γPπt
)−1|(Pπt

− P̂πt
)V ∗|∥∞ ≤

√
β1

n
∥(I − γPπt

)−1
√

Vπt [V ∗]∥∞ +
2β1

3n(1− γ)2
(31)

It is also necessary to use the variance property√
Vπt [V ∗] ≤

√
Vπt [V ∗ − V πt ] +

√
Vπt [V πt ] ≤ ∥V ∗ − V πt∥∞ +

√
Vπt [V πt ] (32)

(that the square root of the variance of a sum is less than or equal to the sum of the square roots of
the variances), which will help us to progress towards the estimate for
∥(I − γPπt

)−1|(Pπt
− P̂πt

)V ∗|∥∞:

∥(I − γPπt
)−1|(Pπt

− P̂πt
)V ∗|∥∞ ≤

√
β1

n
∥(I − γPπt

)−1
√

Vπt [V πt ]∥∞+

+

√
β1

(1− γ)2n
∥V ∗ − V πt∥∞ +

2β1

3n(1− γ)2
(33)

The inequality for the variance was used to arrive at the known construction
∥(I − γPπ)

−1
√
Vπ[V π]∥∞. Now we can consistently apply [Zurek & Chen (2023), Lemma 6],

[Zurek & Chen (2023), Lemma 7], [Zurek & Chen (2023), Lemma 8]:

∥(I − γPπt
)−1
√
Vπt [V πt ]∥∞ ≤

1

γ

√
2

(1− γ)

√√√√∥∥∥∥∥Vπt [

∞∑
t=0

γtRt]

∥∥∥∥∥
∞

≤

11
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≤ 1

γ

√
2

(1− γ)

√√√√∥∥∥Vπt [
∑H−1

t=0 γtRt + γHV πt(SH)]
∥∥∥
∞

1− γ2H
≤

≤ 1

γ

√
5

2H(1− γ)2

√√√√∥∥∥∥∥Vπt [

H−1∑
t=0

γtRt + γHV πt(SH)]

∥∥∥∥∥
∞

(34)

Since πt is not the optimal policy here, [Zurek & Chen (2023), Lemma 9] cannot be directly applied,
but we can do something similar:∥∥∥∥∥Vπt

[
H−1∑
t=0

γtRt + γHV πt(SH)

]∥∥∥∥∥
∞

≤ 3Eπt

∣∣∣∣∣
H−1∑
t=0

γtRt

∣∣∣∣∣
2

+ 3Eπt
∣∣γH(V πt − V ∗)

∣∣2 +
+ 3Eπt

∣∣∣∣γH

(
V ∗ − 1

1− γ
ρ∗
)∣∣∣∣2 ≤ 6H2 + 3∥V ∗ − V πt∥2∞. (35)

In this derivation, we used two properties. The first is that the variance V(X) ≤ E(X2) for some
random variable, and the second is that (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2.

Finally, using the fact that
√
a+ b ≤

√
a+
√
b, we obtain an estimate for

∥(I − γPπ)
−1
√
Vπ[V π]∥∞:

∥(I − γPπt
)−1
√
Vπt [V πt ]∥∞ ≤

1

γ

√
15H

(1− γ)2
+

1

γ

√
15

2H(1− γ)2
∥V ∗ − V πt∥∞ (36)

Denoting γ
1−γ ∥Pπt

− P̂πt
∥∞ by x, we obtain the final estimate for ∥V̂ πt − V πt∥∞:

∥V̂ πt − V πt∥∞ ≤
1

1− x

[
γ

(√
β1

n
∥(I − γPπt

)−1
√

Vπt [V πt ]∥∞ +

√
β1

(1− γ)2n
∥V ∗ − V πt∥∞+

+
2β1

3n(1− γ)2

)
+ x∥V ∗ − V πt∥∞

]
≤ 1

1− x

(√
15Hβ1

(1− γ)2n
+

√
15β1

2Hn(1− γ)2
∥V ∗ − V πt∥∞+

+

√
β1

(1− γ)2n
∥V ∗ − V πt∥∞ +

2β1

3n(1− γ)2
+ x∥V ∗ − V πt∥∞

)
(37)

Using the fact that β1 ≤ β = 2 log(
2|S||A| log( e

1−γ )

δ ), we obtain the final estimate for ∥V ∗− V̂ πt∥∞:

∥V ∗ − V πt∥∞ ≤
∥V ∗ − V̂ π∗∥∞ + ∥V̂ ∗

p − Vt∥∞ + ζ
1−γ + 1

1−x

[
2β

3n(1−γ)2 +
√

15Hβ
(1−γ)2n

]
1− 1

1−x

(
x+

√
15β

2Hn(1−γ)2 +
√

β
(1−γ)2n

) (38)

Let us explain how we moved from ∥V̂ ∗
p − V̂ πt

p ∥∞ to ∥V̂ ∗
p − Vt∥∞. We applied Lemma 3, taking

ε = ∥V̂ ∗
p − Vt∥∞, so that the inequality in the condition holds trivially. Thus, we obtain:

∥V̂ ∗
p − V̂ πt

p ∥∞ ≤
2γ

1− γ
∥V̂ ∗

p − Vt∥∞ ≤
2

1− γ
∥V̂ ∗

p − Vt∥∞ (39)

Let’s handle the term ∥V ∗ − V π∗∥∞ - since π∗ does not depend on the sampling result, we can
directly use the result from [Li et al. (2020), Lemma 1]:

∥V ∗ − V π∗
∥∞ ≤ 4γ

√
β

n

∥∥∥(I − γPπ∗)−1
√

Vπ∗ [V ∗]
∥∥∥
∞

+ γ
β

(1− γ)n
∥V ∗∥∞ , (40)

12
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where n ≥ 16e2

1−γ β. We then perform the same steps as in the previous estimate and obtain:

∥V ∗ − V π∗
∥∞ +

ζ

1− γ
≤ 4γ

√
β

n

√
10

(1− γ)2
H + γ

β

(1− γ)2n
(41)

Let n ≥ 500H
(1−γ)2ε2 β, then we get the following estimate:

∥V ∗ − V πt∥∞ ≤

(√
160
500 + 1

500

)
ε+ 1

1−γ ∥V̂
∗
p − Vt∥∞ + ζ

1−γ + ε
1−x

(
2

1500 +
√

15
500

)
1− 1

1−x

(
x+ ε

5

) (42)

Now apply Lemma 2, which gives us:

∥Pπt − P̂πt∥∞ ≤
√
|S|β
n
⇒ x ≤

√
|S|β

(1− γ)2n
≤ ε

√
|S|

500H
:= Cε (43)

where we used the condition on n. Recall that at least 2 conditions apply to x:

1− x ≥ 1− Cε ≥ η

1−
ε
5 + x

1− x
≥ η

 =⇒
ε ≤ 1− η

C

ε ≤ 1− η
1
5 + (2− η)C

 =⇒ ε ≤ 1− η
1
5 + (2− η)C

, (44)

where η ∈ (0; 1). In total, the upper bound for ∥V ∗ − V πt∥∞ takes the form:

∥V ∗ − V πt∥∞ ≤

(√
160
500 + 1

500

)
ε+ 1

1−γ ∥V̂
∗
p − Vt∥∞ + ζ

1−γ + ε
η

(
2

1500 +
√

15
500

)
η

(45)

Let n ≥ 500H
(1−γ)2ε2η4 β:

∥V ∗ − V πt∥∞ ≤
3ε

4
+

ζ

(1− γ)η
+

1

(1− γ)η
∥V̂ ∗

p − Vt∥∞ (46)

Finally, we can take ζ = (1−γ)ηε
4 , which gives:

∀η ∈ (0; 1) ∀ε ∈

0;
1− η

1
5 + (2− η)

√
|S|

500H

 : ∥V ∗ − V πt∥∞ ≤ ε+
1

(1− γ)η
∥V̂ ∗

p − Vt∥∞

provided n ≥ 500H
(1−γ)2ε2η4 β

B EXPERIMENT

We examined the convergence to a solution using three iterative methods: the standard value itera-
tion, the accelerated value iteration, and the momentum-based method.

For clarity, we will demonstrate the functionality from Algorithm 1 for each method and specify the
hyperparameters used for them.

13
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Algorithm 2 Accelerated Value Iteration

input: α = 1
1+γ , β =

1−
√

1−γ2

γ

1: Initialize v0 = 0, v1 = T (v0)
2: for t ∈ {1, 2, ..., T − 1} do
3: ht = vt + β · (vt − vt−1)
4: vt+1 = ht − α(ht − T (ht))
5: end for

Algorithm 3 Safe Accelerated Value Iteration

input: α = 2

1+
√

1−γ2
, β = (

√
1+γ−

√
1−γ√

1+γ+
√
1−γ

)2, λ = 1+γ
2

1: Initialize v0 = 0, v1 = T (v0)
2: for t ∈ {1, 2, ..., T − 1} do
3: Set {

ht = vt + γ · (vt − vt−1)

vt+1/2 ← ht − α(ht − T (ht))

4: if ∥vt+1/2 − T (vt+1/2)∥∞ ≤ λt+1∥v0 − T (v0)∥∞ then
5: Set vt+1 = vt+1/2

6: else
7: Set vt+1 = T (vt)
8: end if
9: end for

Algorithm 4 Value Iteration

input:
1: Initialize V0 = 0 where 0
2: for t ∈ {0, 1, ..., T − 1} do
3: Vt+1 = T (Vt)
4: end for

14
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(a) γ = 0.95

(b) γ = 0.999

Figure 4: Experiment for some more values of number of samples

(a) γ = 0.95

(b) γ = 0.999

Figure 5: Experiment for some more values of number of samples
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