
A Appendix

A.1 Commutativity

RED prunes a hashed neural network f̃ using two steps, a similarity-based pruning method (merge)
and a tensor decomposition in an uneven depthwise separable convolution. These two steps are
commutative. Let’s consider a layer l with hashed weights W̃ l. Output dimensions of W̃ l are merged
if and only if they are considered similar (either identical or within the ↵l% most similar. Let’s note i
and j the indices of two output dimensions that should be merged if merging was performed before
the tensor decomposition. Now if we perform the tensor decomposition first, we get two tensors Dl

and P l such that
W l

i = Dl
· P l

i (5)

W l
i are the weights corresponding to the ith output and · is the channel-wise product. As a direct

consequence kW l
i �W l

jk is among the ↵l% smallest distances if and only if kP l
i � P l

jk is also
among the ↵l% smallest distances as long as the Dl are normalized. Thus, the pruning factor from
merging is independent to the steps ordering. In the case of ↵ = 0 we have the same result for the
uneven depthwise separable convolution. This is simple to see as the ranks in the uneven depthwise
are computed per input and the merging is done by output.

A.2 Algorithm

The proposed RED method is summarized in algorithm 1. Although our method is sequential, the two
pruning steps can commute. The first step of RED is a data-free adaptive hashing step (Algorithm

Algorithm 1 RED method
Input: trained DNN f , hyper-parameters ↵ and ⌧
f̃ Hashing (f , ⌧) I Algorithm 2
f̄ Merging (f̃ , ↵) I Algorithm 3
f̄ Depthwise_Separation (f̄) I Algorithm 4
return f̄

2) which transforms the trained neural network f in a hashed version f̃ . As seen in Section 5.2, for
certain layers, the KDE may have very close extremas, that can be fused depending of layer-wise
hyperparameter ⌧ l (and global hyperparameter ⌧), which defines the minimum contrast between
two modes. However, note that setting ⌧ l = 0 still allows very efficient hashing. The second step

Algorithm 2 Hashing
Input: trained DNN f with weights (W l)l2J1;LK, hyper-parameters (⌧ l)l2J1;LK
Initialize f̃ = f
for l = 1 to L do
dl = KDE(W l)
extract (ml

k)k2K� and (M l
k)k2K+ from dl

(M l
k)k2K+ NMS

�
(M l

k)k2K+ , ⌧ l
�

for w 2W l do
find k such that w 2 [ml

k;m
l
k+1[

w̃ M l
k

end for
end for
return f̃

(Algorithm 3) consists in a similarity-based merging of neurons where the similarity is computed
as the euclidean distance between the weight values corresponding to each neurons. The process
also adequately updates the consecutive layers. For the sake of simplicity we consider a sequential
model without skip connections in this implementation. The layer-wise hyperparameter ↵l (and
global hyperparameter ↵) defines the proportion of non-identical neurons to remove after ranking

12

Algorithm 3 Merging Redundancies

Input: hashed DNN f̃ , hyper-parameters (↵l)l2J1;LK
Initialize f̄ = f̃ with (W̄ l)l2J1;LK (W̃ l)l2J1;LK
for l = 1 to L� 1 do
D matrix of l2 distances between all neurons
d ↵l percentile of D I d is the threshold distance
Di,j 1Di,j�d or i=j I D is a graph of neurons connected by similarity
M connected components from D
W̄ l

new = []
for comp 2M do
W̄ l

new.append
⇣

1
|comp|

P
j2comp W̄

l
[...,j]

⌘
I merge per connected component

end for
W̄ l
 W̄ l

new
W̄ l+1

new = [] I We still have to update the layer l + 1
for comp 2M do
W̄ l+1

new .append
⇣P

i2comp W̄
l+1
[i,...]

⌘

end for
W̄ l+1

 W̄ l+1
new

end for
return f̄

the pairwise distance between them. In particular, for ↵ = 0, we only merge identical neurons. The
final step, only relevant to CNNs, (Algorithm 4), checks if convolutional layers can be converted
in depthwise separable ones based on the criterion we introduced. Note that we didn’t describe the
situation where ranks are not all equal to 1 as this case only changes the depthwise implementation
and basis extraction.

Algorithm 4 Depthwise Separation
Input: merged DNN f̄ with weights (W̄ l)l2J1;LK
for f̄ l convolutional layer of shape w, h, nin, nout do

for i = 1 to nin do

ri rank

0

B@
W̄[1,1,i,1] . . . W̄[w,h,i,1]

...
. . .

...
W̄[1,1,i,nout] . . . W̄[w,h,i,nout]

1

CA

D[:,:,i,1] W̄[...,i,j] for j such that W[...,i,j] 6= 0
P[1,1,i,j] W̄[x,y,i,j]/D[x,y,i,j] such that D[x,y,i,j] 6= 0

end for
fd Depthwise conv layer of weight D
fp Pointwise conv layer of weight P
f̄ l
 fp � fd

end for
return f̄

A.3 Hyper-parameters Application Strategy

In addition to a trained neural network, our method takes two hyper-parameters ↵ and ⌧ as inputs.
The hyperparameter ⌧ defines the average value of the per layers ⌧ l contrast hyperparameters of the
adaptive hashing step. The modes within range ⌧ l of the total range of the distributions are collapsed
to the maximum value among them. The hyperparameter ↵ defines the average value of the per layers
↵l proportion of non-identical neurons to merge for each layer. For each of these hyper-parameters
we compare different strategies to allocate values to each individual (↵l) from ↵ and (⌧ l) from ⌧ .
For (↵l) we tested the following strategies:

13

Table 3: Comparison between different strategies for ↵l in terms of pruning factor for ResNet 56 on
CIFAR-10, with constant ⌧ = 0.

Strategy % removed parameters
linear descending 77.90
constant 78.69
linear ascending 80.35
block 84.52

value of τ

R
E

D
 p

ru
n
in

g
 f
a
c
to

r
τ const

τ block
τ linear (a)τ linear (d)

Figure 8: Evolution of the performance of RED in term of % removed parameters as a function of ⌧
for the four tested strategies. The constant strategy provides the best results.

• per block strategy: we group ↵l values per 1/3 of the network layers such that:
8
<

:

↵l = max{2↵� 1, 0} if l 2 J0;L/3J
↵l = ↵ if l 2 JL/3; 2L/3K
↵l = min{2↵, 1} if l 2K2L/3;LK

(6)

• constant strategy: 8l 2 J1;LK, ↵l

• linear ascending strategy: ↵l
8l 2 J1;LK, ↵l = ↵l/L

• linear descending strategy: 8l 2 J1;LK, ↵l = ↵(L� l)/L

Table 3 draws a comparison between these different strategies in term of pruning ratio, with ↵ set to
the minimal value that does not bring any accuracy loss. We found the linear descending strategy,
despite allowing to remove nearly 80% of the network parameters, to be the least performing one,
wollowed by the constant strategy. The linear ascending strategy is significantly better, validating
the general idea that shallower layers contain more redundant information. Following this idea, the
best performing strategy block allows to remove more than 4% extra parameters: hence, we keep this
per-block strategy in others experiments.

We evaluated the same strategies, block, constant, linear ascending and linear descending for
the hashing contrast hyperparameters (⌧ l). To evaluate each strategy for ⌧ we measure the % of
parameters removed with RED while keeping the accuracy constant: thus, the higher the pruning
factor (with equal accuracy), the better the method. The results are showcased on Figure 8 for values
of ⌧ ranging from 0 to 0.5. We see that the linear descending and linear ascending strategies are the
least performing, followed by the block strategy. The constant strategy is the best performing, thus
we keep this constant setting in our experiments.

A.4 Impact of Hashing

Following the study from Section 5.2, we want to empirically validate that hashing a DNN f doesn’t
change the predictions. To do so we compare the error between the hashed DNN f̃ and the baseline
model f to the difference between the top1 and top2 logits in the original prediction from f . This
is based on the fact that if the error is lower than the difference between the two logits with the
highest responses then the highest logit will remain unchanged. We already provided values for
ResNet 56 in the main paper. In Table 4, we provide values for more networks we benchmarked in
pruning. As Stated in the main paper, the modifications from hashing are significantly smaller than the
difference between the two highest logits of the baseline model. This is a beneficial consequence of
the over-confidence of modern DNNs. This empirical observation validates the accuracy preservation
after hashing and suggests that similar results could be achieved on other over-confident DNNs.

14

Table 4: Comparison between the modification induced by hashing (second column) and the confi-
dence of the baseline model (third column), i.e. the difference between the highest and second highest
logits.

model E[|f(x)� f̃(x)|] E[|top1(f(x))� top2(f(x))|]
ResNet 20 2.90 9.56
ResNet 56 0.75 10.43
ResNet 110 1.48 11.18
ResNet 164 2.69 11.28
Wide ResNet 28-10 1.24 10.95
Wide ResNet 40-4 0.63 10.88

dropout parameter p

p
ru

n
in

g
 r

a
ti
o

merging relaxed RED

Figure 9: Graphs of the pruning factor resulting from the steps of RED as functions of the dropout
parameter p. RED appears to be robust to dropout.

A.5 Robustness to Dropout

Despite initialization methods used to avoid redundancies within the layers weights, other training
or regularization methods exists with the purpose of exploiting available weights, thus potentially
reducing redundancies, such as Dropout (Srivastava et al., 2014). Dropout is a vastly used deep
learning technique that aims at avoiding overfitting by preventing co-adaptation between neurons.
In practice, this is done by randomly dropping neurons at train time with a probability p. In order
to evaluate the robustness of RED to different values of p (modulating the intensity of the dropout),
we retrained a ResNet-56 on CIFAR-10 with different values for p on the last layer and then applied
RED on these trained networks. Figure 9 shows the % removed parameters (average and standard
deviation over 10 experiments) for each step of RED as a function of the dropout parameter p. First,
surprisingly, we observe that Dropout causes an important rise of the average performance for the
merging with ↵ = 0 (blue curve), with a significant variance. This is likely due to the fact the
Dropout affects the last layers where most redundancies are found as seen in Figure 5 of the main
paper. However, this effect is mitigated by the merging relaxation before completely vanishing after
the uneven depthwise separation step. Furthermore we empirically observe that the ranks ri still
converge to 1 in presence of Dropout. Based on these observations we can assess that, overall, the
proposed method RED appears to be very robust to dropout.

A.6 Expected Pruning Factor

The pruning factor can be estimated from the number of unique neurons per layer and the hyper-
parameter ↵. Let’s consider a convolutional layer l with shape w ⇥ h⇥ nin ⇥ nout and an input ↵ for
the merging step and the corresponding ↵l

2 [0; 1[which indicates the proportion of unique neurons
that shall be merged. Then, the pruned weight tensor will have a shape w⇥h⇥nin⇥b�l(1�↵l)noute,

15

Table 5: Percentage of FLOPs removed for different models on Cifar10.
% removed FLOPS

Hashing 7 7 7 3 3 3
Merge (↵ = 0) 3 7 3 3 3 3

Merge (↵ = ↵⇤) 7 3 3 7 3 3
Depthwise Separation 7 7 7 7 7 3

ResNet 20 0 17.33 17.33 27.13 42.90 63.00
ResNet 56 0 60.22 60.22 58.57 77.61 81.72
ResNet 110 0 75.10 75.10 63.01 84.45 87.98
ResNet 164 0 76.89 76.89 63.26 86.90 91.43

Wide ResNet 16-8 0 30.78 30.78 20.07 39.20 52.04
Wide ResNet 22-2 0 51.34 51.34 13.50 63.82 65.09
Wide ResNet 28-2 0 50.87 50.87 11.16 60.91 64.10
Wide ResNet 28-4 0 41.72 41.72 21.07 51.56 55.99
Wide ResNet 28-8 0 33.28 33.28 19.80 41.62 53.17

Wide ResNet 28-10 0 47.39 47.39 25.54 58.69 59.78
Wide ResNet 40-4 0 49.51 49.51 43.41 61.99 70.09

Table 6: Runtime gain as a percentage of the removed inference time for different Cifar10 models on
different hardware.

device batch size ResNet 20 ResNet 56 ResNet 110 ResNet 164
RTX 3090 (GPU) 256 62% 75% 85% 89%
Intel m3 (CPU) 32 87% 88% 88% 89%

where b·e is the rounding operation and �l is the proportion of unique neurons. The pruning ratio
rlmerge at the end of this step is

rlmerge = �l(1� ↵l) (7)

After the merging step we apply our depthwise separation technique to further compress the network,
with the resulting pruning ratio rlRED :

8
<

:
rlRED =

wh+rlmergenout

whnout
if 8i 2 J1;ninK, ri = 1

rlRED =
wh+rlmergenout

whnout

Pnin
i=1 ri
nin

(8)

where the ri are the ranks of the matrix obtained from the per input channel flattened weights,
concatenated along the output channel.

A.7 FLOPs and Inference-time

In Section 5.3 we evaluated RED using the standard metric of proportion of removed parameters.
Another classic metric is the proportion of removed FLOPs which we provide here in Table 5. We
observe that the results are similar to the values from Table 1. This is a consequence of the proposed
pruning protocol which removes parameters in a structured way and removes more parameters on
large convolutions (deep layers) as can be seen in Figure 5. Another important cause is the pruning of
3⇥ 3 convolutional layers which represent a large proportion of both parameters and FLOPs. Note
that FLOPs removal are already provided for ImageNet in Table 2.
Another intuitive metric for pruning evaluation would be to compare runtime on CPU/GPU. However
this metric presents many flaws, among which dependencies on the batch size, hardware and use
of inference engines. Nonetheless we report the runtime gains over different hardware in Table 6.
We measured the proportion of reduced computation time (i.e. the higher the better). We observe
that on very small CPU (e.g. Intel m3) many operations are slowing the inference down, thus
networks compression vastly impacts inference speed, although on ResNet 164 some operations
remain bottleneck as the speed-up doesn’t grow much with the pruning ratio. On the other hand, for
large GPU (e.g. RTX 3090) we observe that the inference time reduction if strongly correlated to the
pruning ratio and FLOPs removal. Overall RED enables a very effective speed-up of DNN inference
from 60% to 90% while preserving the accuracy.

16

Table 7: Ablation results in terms of memory footprint reduction (ratio between zipped base and
processed models).

Model zipped model memory ratio
hashing ↵ = 0 ↵ = ↵⇤ RED

ResNet 20 12.36 12.86 12.95 21.69
ResNet 56 23.29 25.71 27.76 41.34
ResNet 110 35.74 38.45 43.04 58.33
ResNet 164 25.40 25.40 52.92 66.84

Wide ResNet 16-8 17.05 21.95 21.95 41.26
Wide ResNet 22-2 12.07 12.93 12.98 30.17
Wide ResNet 28-2 12.00 12.67 12.91 28.50
Wide ResNet 28-4 15.15 17.88 17.88 33.11
Wide ResNet 28-8 18.90 25.93 25.93 50.76

Wide ResNet 28-10 20.32 29.34 29.34 47.00
Wide ResNet 40-4 17.62 26.24 26.24 47.63

A.8 Memory footprint Reduction

In this work we focus on pruning, nonetheless we also studied the consequence on the memory
footprint of DNNs. To measure this impact we consider the ratio of the size of the processed
networked zipped over the size of the original network also zipped. The empirical results are listed
in Table 7. We observe that the hashing step alone has large influence on the memory footprint
dividing it by 12 on already small networks (e.g. ResNet 20 and Wide ResNet 28-2) and up to 35 on
larger networks (e.g. ResNet 110). The memory footprint is further reduced by pruning and tensor
decomposition. Reaching 20 times reduction on ResNet 20 and up to 67 times on ResNet 164. Note
that the zipping process aplies Huffman coding which depends on the distribution of the values to
zip. For instance less values closer to a uniform distribution will less compressed that a larger list
with a more peaky distribution. This is the case for some networks as their pruned version are not
significantly smaller on disk once zipped compared to their hashed version.

A.9 Scalability of the Hashing Algorithm

For a given layer l, the complexity of the proposed hashing is O(|W l
||S|) where |W l

| denotes the
number of weights and |S| the sampling size (used for the evaluation of the kde and corresponds to
! in equation 1). As stated in the main paper hashing can be accelerated (e.g. up to 50 times faster
on a ResNet 50) by processing the layers in parallel. Furthermore, for very large layers (e.g. layers
with over |W l

| = 106 parameters) we can simply take a fraction (e.g. 5.104 values in W l) of the
weights randomly to get identical density estimators much faster. Following the example, we would
go 106

5.104 = 20 times faster, due to the linear complexity. As such, we were able to process ResNet
101 and 152 with 99.9% compression and accuracy drop, in about 2 and 4.5 hours respectively.

A.10 Choice of Bandwidth for Hashing

In the main paper, we computed the bandwidth parameter for the hashing step as the median difference
of the (sorted) weight value set for each layer. The reasons behind this choice are two-fold. First,
the bandwidth should depend on the range of the weight values which vary depending on the layer’s
depth and size. Second, it should be robust to outliers in the weight distribution. In order to validate
this intuition, we consider the mean and median (as well as multiples of these values) as natural
candidates for an adaptive value for the bandwidth. We report different set-ups in Table 8: the median
provided the best trade-offs between accuracy preservation and compression rate, likely due to its
robustness to outlier weight values.

A.11 Robustness to Initialisation of RED

In order to assess the robustness of RED to different weight initialization schemes, we considered a
ResNet-56 model on Cifar10. This model was initialized using either Xavier initialization Glorot &
Bengio (2010) and He initialization He et al. (2015), using a similar training protocols apart from

17

Table 8: Hashing performance on ResNet 56 on Cifar10 for different strategies for setting �l. The
compression is measured as the percentage of removed distinct weight values.

base model median
10 median 10⇥median mean

10 mean 10⇥mean
accuracy 93.46 93.46 93.41 92.95 93.46 93.40 93.02

compression 0% 94.0% 99.0% 99.3% 92.8% 97.6% 99.0%

the initialization scheme. Our results are reported in Table 9 which empirically demonstrate the
robustness of the proposed method to the initialisation scheme.

Table 9: Comparison of the influence of the initialisation scheme on the proposed method for a
ResNet 56 trained on Cifar10.

original acc hashed acc hashed and pruned acc hashing ratio pruning ratio
Xavier [1] 93.64 93.52 93.52 99.0% 84.47%

He [2] 93.46 93.41 93.41 99.0% 84.52%

A.12 Pruning Smaller Backbones

In this section, we consider a more challenging architecture for pruning, i.e. a smaller popular
backbone on ImageNet, MobileNet v2 Sandler et al. (2018) with width multiplier 0.35. In particular,
RED was able to remove 19.1% parameters with no accuracy drop (i.e. using ⌧ = 0) on this challeng-
ing setup. Overall, RED achieves 20% to 30% pruning ratio by varying the contrast hyperparameter
⌧ .

Table 10: RED performance on a MobileNet V2 backbone (width multiplier 0.35) on ImageNet. We
report the accuracy as well as the pruning ratio for different values of ⌧ .

original model ⌧=0% ⌧=10% ⌧=20% ⌧=30%
accuracy 60.3 60.3 56.9 46.7 45.0

compression 0% 19.1% 20.9% 29.4%. 30.0%

18

	Introduction
	Related Work
	Introducing Redundancies via Adaptive Weights Hashing
	Exploiting Redundancies in DNNs
	Experiments
	Experimental setup
	Hashing empirically induces vector and tensor-level redundancies
	Ablation study
	Comparison with state-of-the-art approaches

	Conclusion
	Appendix
	Commutativity
	Algorithm
	Hyper-parameters Application Strategy
	Impact of Hashing
	Robustness to Dropout
	Expected Pruning Factor
	FLOPs and Inference-time
	Memory footprint Reduction
	Scalability of the Hashing Algorithm
	Choice of Bandwidth for Hashing
	Robustness to Initialisation of RED
	Pruning Smaller Backbones

