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Abstract

Differentially Private (DP) data release is a promis-
ing technique to disseminate data without compro-
mising the privacy of data subjects. However the
majority of prior work has focused on scenarios
where a single party owns all the data. In this paper
we focus on the multi-party setting, where different
stakeholders own disjoint sets of attributes belong-
ing to the same group of data subjects. Within the
context of linear regression that allow all parties
to train models on the complete data without the
ability to infer private attributes or identities of in-
dividuals, we start with directly applying Gaussian
mechanism and show it has the small eigenvalue
problem. We further propose our novel method and
prove it asymptotically converges to the optimal
(non-private) solutions with increasing dataset size.
We substantiate the theoretical results through ex-
periments on both artificial and real-world datasets.

"POP1 INTRODUCTION

The machine learning community has greatly benefited from
open and public datasets (????). Unfortunately the privacy
concern of data release significantly limits the feasibility of
sharing many rich and useful datasets to the public, espe-
cially in privacy-sensitive domains like health care, finance,
and government etc. This restriction considerably slows
down the research in those areas as well as the general ma-
chine learning research given many of today’s algorithms are
data-hungry. Recently, legal and moral concerns on protect-
ing individual privacy become even greater. Most countries
have imposed strict regulations on the usage and release of
sensitive data, e.g. CCPA (?), HIPPA (?) and GDPR (?). The
tension between protecting privacy and promoting research
drives the community as well as many ML practitioners into
a dilemma.
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Figure 1: An illustration of how data is distributed in the
health care example. Clinics have the same set of patients,
but different attributes such as blood test results, CT images
and the degree of liver cancer.

ing direction to release datasets while protecting individual
privacy. DP provides a formal definition of privacy to regu-
late the trade-off between two conflicting goals: protecting
sensitive information and maintaining data utility. In a DP
data release mechanism, the shared dataset is a function of
the aggregate of all private samples and the DP guarantees
regulate how difficult for anyone to infer the attributes or
identity of any individual sample. With high probability, the
public data would be barely affected if any single sample
were replaced.

Despite the ongoing progress of DP data release, the ma-
jority of the prior work mainly focuses on the single-party
setting which assumes there is only one party that would
release datasets to the public. However in many real-world
scenarios, there exist multiple parties who own data relevant
to each other and want to collectively share the data as a
whole to the public. For example, in health care domain,
some patients may visit multiple clinics for specialized treat-
ments (Figure ??), and each clinic only has access to its own

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).


mailto:rw565@cornell.edu

attributes (e.g. blood test and CT images) collected from the
patients. For the same set of patients, attributes combined
from all clinics can be more useful to train models. In gen-
eral, the multi-party setting assumes multiple parties own
disjoint sets of attributes (features or labels) belonging to
the same group of data subjects (e.g. patients).

One straightforward approach to release data in a multi-party
setting is combining data from all parties in a centralized
place (e.g. one of the data owners or a third-party), and
then releasing it using a private single-party data release
approach. However, in a privacy-sensitive organization like
a clinic, sending data to another party is prohibited by policy.
An alternative approach is to let each party individually
release its own data to the public through adding sample-
wise Gaussian noise, and then ML practitioners can combine
the data together to train models. However the resulting
models trained on the data combined in this way would
show a significantly lower utility compared to the models
trained on non-private data (confirmed by experiments in
Section ??). To bridge this utility gap, we propose new
algorithms specifically designed for multi-party setting.

In summary, we study DP data release in multi-party set-
ting where parties share attributes of the same data subjects
publicly through a DP mechanism. It protects the privacy
of all data subjects and can be accessed by the public, in-
cluding any party involved. To this end, we propose the
following two differentially private algorithms, both based
on Gaussian DP Mechanism (?) within the context of lin-
ear regression. First, in De-biased Gaussian Mechanism for
Ordinary Least Squares (DGM-OLS), each party adds Gaus-
sian noise directly to its data. The learner with the public
data is able to remove a calculated bias from the Hessian ma-
trix. However, we show that bias removal brings the small
eigenvalue problem. Hence, we propose the second method
Random Mixing prior to Gaussian Mechanism for Ordinary
Least Squares (RMGM-OLS). A random Bernoulli projec-
tion matrix is shared to all parties, and each party uses it to
project its data along sample-wise dimension before adding
Gaussian noise. We prove that both algorithms are guaran-
teed to produce solutions that asymptotically converge to
the optimal solutions (i.e. non-private) as the dataset size
increases. Through extensive experiments on both synthetic
and real-world datasets, we show the latter method achieves
the theoretical claims and outperforms the first method that
naively adapts Gaussian mechanism.

"POP2 PRELIMINARY

A sequence {X,,} of random variables in R? is defined to
converge in probability towards the random variable X if
for all 8 > 0,

lim P[| X, — X| > 8] =0.
n—oo

The norm notation ||-|| denotes ¢? norm in our paper. We

denote this convergence as plim,, .. X,, = X.

Differential privacy (DP; (2?)) is a quantifiable and rigorous
privacy framework, which is formally defined as follows.

Definition 1 ((e, §)-differential privacy). A randomized
mechanism M : D — R with domain D and range R
satisfies (e, 0)-differential privacy if for any two adjacent
datasets D, D' € D, which differ at exactly one data point,
and for any subset of outputs S C R, it holds that

PM(D) € 8] < ¢ - PJM(D') € 8] + 6.

Gaussian mechanism (?) is a post-hoc mechanism to con-
vert a deterministic real-valued function f : D — R™ toa
randomized algorithm with differential privacy guarantee. It
relies on sensitivity of f, denoted by S, which is defined as
the maximum difference of output || f (D) — f(D")||. We de-
fine Gaussian mechanism for differential privacy as below.

Lemma 1 (Gaussian mechanism). For any deterministic
real-valued function f : D — R™ with sensitivity Sy, we
can define a randomized function by adding Gaussian noise

to f:
f*®(D) := f(D) + R,

where R is sampled from a multivariate normal distribution

N(O,SJ%O'Q'I>. When o > 7W’ [ is (e, 6)-
differentially private for 0 < e < land § > 0.

L . \/2log(1.25/6
To simplify notations, we define o, s := y.

Johnson-Lindenstrauss lemma (JL; (??)) is a technique to
compress a set of vectors S = {vy,--- ,v;} with dimension
d to a lower dimension space k < d. With a proper selection
k, it is able to approximately preserve the inner product be-
tween any two vectors in the set S with high probability. We
specifically introduce the Bernoulli version of JL. Lemma,
which is extended from Theorem 1.1 in ?.

Lemma 2 (JL Lemma for inner-product preserving
(Bernoulli)). Suppose S is an arbitrary set of | points in R?
and suppose s is an upper bound for the maximum ¢%-norm
forvectorsin S. Let B be a k x d random matrix, where B;;
are independent random variables taking value from 1 or
—1 with probability 1/2 respectively. With the probability

at least 1 — (I +1)% exp (—k (%2 — %)), Yu,v € S, we
have

-
% i< (Bu/\/E)SQ(Bv/\/E) - u;v 48




"POP3 NOTATION AND PROBLEM
SETUP

Notations. Denote D7, j =1,---,m, as data matrices
for m parties, where D7 e R" 4 and m > 2. They are
aligned by the same set of subjects but have different at-
tributes and they have the same number of samples. Define
D = [D',---,D™] € R™ (@D a5 the collection of all
datasets, where d = dy + - -+ + d,, — 1. We define d by
subtracting 1 from the total number of attributes because
one column is label which we need to treat separately. De-
fine dnayx = Max;e () d;, and D; as the i-th row of D, we
make the following assumption on data distribution:

Assumption 1. D;, ¢ = 1,--- ,n, are i.i.d sampled from
an underlying distribution P over R+,

Dataset release algorithm. A private multi-party data re-
lease algorithm needs to protect both inter-party and intra-
party communications. The general workflow of our pro-
posed algorithms is designed as the following:

1. Pre-generate random variable B. The pre-generated one
or more random variables will be shared among parties.

2. Privatize the dataset locally with the algorithm AP,
Each party applies the same privatizing algorithm APV
that takes the local dataset D7 € R™*% and the random
matrix B as the inputs and then outputs & (predefined)
“encrypted” samples (DPUb)J = APV(DI;B) €
Rlcxdj .

3. Release the dataset. All parties jointly release DPUP =
[(DP)! .. (DP)™] € RFX(441) (o the public.,

Note that we need to specially design random variable B and
the privatizing algorithm AP, which we will introduce in
the next section. In addition, the random variable B allows
the dependencies between the randomized output from all
parties, which can be utilized to guarantee the final utility.

Privacy constraint. Since the public will observe the re-
leased dataset DP", for each j € [m], (Dp“b)j should not
leak the information of the private dataset D’. Formally
we require Vj € [m], AP"'V(D7; B) is differentially private,
where two neighbouring datasets D’ and (Dj)/ differ at
one row (sample).

However the multi-party setting requires more than the
above guarantee because each party j° # 7 not only
observes D7 but also the shared random variable B.
Thus we need to further require that given B, each
party j cannot infer information about other private
datasets D. In terms of differential privacy, it is required
that condition on B for any possible sample value I,
AP'V(DI; B) is (g, d)-differentially private, i.e. for any
two neighbouring datasets D7 and (Dj )/ and B, we have

P (D%; B)|B) < ¢ - P (4 (7)1 B)| B) +6

Utility target. We aim to guarantee the performance of
arbitrary linear regression task (arbitrarily selected label
and features) on the joint released dataset [Dl, cee Dm].
Out of the notation simplicity, we assume the label in the
linear regression task is the last attribute, and the features
are the rest of the attributes. Under this assumption, the joint
private dataset D can be written as [X, Y], where X € R"*4
is the private feature matrix and Y € R™ is the private label
vector. Similarly the public dataset DPUP can be written as
[XPub yPub] where XPub ¢ REXd and YPuP € RF,

We define the loss function by the expected squared loss:
L(w; P) = Exyynp [(Wx —9)], (M

where the data point is sampled from the distribution P in 2?.
We make two more assumptions for the distribution P: the
standard normalization and the no perfect multicollinearity
assumption. The latter is common in the literature of linear
regression (??).

Assumption 2. The absolute values of all attributes | D;;|
are bounded by 1.

Assumption 3. E . .p [XXT] is positive definite.

Under ??, derived by setting Vy, L(w; P) = 0, the optimal
solution w* to the loss in ?? has the following explicit form:

—1
E(x,y)N'P [X : y] .

W = (Epey)nr [xx7])
The utility target (for the trained linear regression model) is
determined by our release algorithm (B, AP™). For a given
public dataset DP"P released by our algorithms, we define
our utility target as the existence of a training algorithm A
that achieves the asymptotic property for the trained model
weights w,, := A (DPUb) as the dataset size n — oo.
The asymptotic property is commonly studied in differential
privacy (???) and we restate it as follows: Ww,, converges
to w* in probability as the size of dataset n increases, i.e.
VB > 0, lim, o P[||W, — w*|| > 8] = 0. The random-
ness from the above property comes from data sampling
P, dataset release algorithm (B, AP™V), and the training
algorithm A™.

"POP4 METHODOLOGY

We now describe our data release algorithms which both sat-
isfy the differential privacy and yield asymptotically optimal
solutions to the linear regression task. We start with the first
algorithm De-biased Gaussian Mechanism for Ordinary
Least Squares (DGM-OLS), which directly applies Gaus-
sian mechanism when releasing the data and then de-biases
the Hessian matrix when training the model. However the
de-bias operator introduces the possible inverse of a matrix
with small eigenvalues, which severely hurts the perfor-
mance of the learned model. We therefore propose a novel



Algorithm 1 DGM-OLS
Dataset Release
1: Input: D = [D',--- ,D™] ,&,6.
2. forj=1,--- ,mdo 4
3:  The party j computes (D%M)’ := DJ + R7, where
R’ € R"*% is a random Gaussian matrix and elements
in R/ are i.i.d sampled from N (0, 4d .y - 035 .

4: end for )

5: Return: D™ —: [(Ddgm) e 7(Ddgm)m}'
Training Algorithm

1: Input: DM ¢ §

2: [Xdem ydgm] — pdem

3: Compute the de-biased Hessian matrix ﬁggm

% (ngm)T xdgm _ 4dmaxgg’6 T
e (i) () o)

5: Return: wdem,

dataset release algorithm rather than the directly application
to Gaussian mechanism — Random Mixing prior to Gaus-
sian Mechanism for Ordinary Least Squares (RMGM-OLS).
The model learned from the corresponding released public
dataset is also guaranteed to be asymptotically optimal, and,
more importantly, avoids the problem of small eigenvalues.

"POP4.1 DE-BIASED GAUSSIAN MECHANISM
(DGM-OLS)

The De-biased Gaussian Mechanism for Ordinary Least
Squares (DGM-OLS) includes the dataset release algorithm
and the corresponding training algorithm. ?? shows the
overview and we will introduce them next.

Dataset release algorithm. FEach party directly applies
Gaussian mechanism to their own dataset D7 (j = 1,---m)
to satisfy the differential privacy. Consider two neighboring
data matrices D’ and (Dj )/ differing at exactly one row
with the row index ¢. Implied by ??, we can compute the
sensitivity of the data matrix D7:

_ Hpgf - (Dg)’H < 2\/d; < 2¢/da

Then each party independently adds a Gaussian noise R to
D7 . Entries in R are i.i.d sampled from Gaussian distribu-
tion NV(0, 4dmaxag’5).

-0

The dataset release algorithm meets the privacy constraints
in ??. No random matrix B is shared among different parties.

?? guarantees that (Ddgm)] is (g, d)-differentially private
w.rt. DJ forany 0 < ¢ < 1,6 > 0.

Training algorithm. Given the dataset released through
the above algorithm, there exists an asymptotic linear

regression solution. Denote the feature matrix and the
label vector of the private and public joint dataset as
[X,Y] = D and [X98™ Ydem] = D9e™ Further define
R:=[R',--- ,R™] € R™(d*+D) and split R into Rx and
Ry representing the additive noise to X and Y respectively.

Consider the ordinary least square solution for the public
data X98™ and Y98™ whose explicit form is:

(()(dgm)—r ngm) ()(dgm)—r ngm. (2)

*

Compared with our solution w =

(Ex,y)~p [xxT])fl Exy)~P [X-y], we can prove
that plim,,_, . L (X9%m™) " ydem — € [x-y] by the
concentration of bounded random variables and multivariate
normal distribution. Nevertheless, there is a gap between

% (ngm)T Xdem and E(x,y)~p [XXT]:

target

plim7l—>00
1 T

plim — (X%™m)  Xxdem

n—oo N

1
= plim — (X "X + X "Rx + R{ X + R Rx)

n—oo T
= Ex,y)~p [XXT] + 4dmax0'§76 -,

where the last equation again holds by the concen-
tration of bounded random variables and multivariate
normal distribution. To reduce the bias 4dmaxo§ s 1, we

can revise the solution computation in ?? to W™ defined as

1 S
(7 (ngm)T xdem _ 4dmax0'§5 . ]> (7 (ngm)T ngm) )
n ’ n

The first term is estimated for the inverse of the Hessian ma-
trix E(x 4)~p [xx "], which we denote as (H3™)~!. The
asymptotic optimality for the solution WM is implied by
the theorem below and the proof is in the Appendix.

Theorem 1. When 3 < c for some variable c that is depen-
dent of 0. 5, d, and ‘P, but is independent of n,

P ~dgm % N 2 n
[Iwiem — w |>ﬂ]<eXp< O<B T ))

max

Problem of small eigenvalues. The expectation of H9&™
is a positive definite matrix given ??, but the sample of
H dem jtself is not guaranteed. With a certain probability, it
has small eigenvalues that might lead to explosion when
computing its inverse. In our experiments (??), we find that
H dem suffers from the small eigenvalues even if n is as large
as 10°. As a result, the model utility is much more inferior
than what is guaranteed theoretically. This motivates us to
design the second algorithm.

"POP4.2 RANDOM MIXING PRIOR TO
GAUSSIAN MECHANISM (RMGM-OLS)

In previous method’s dataset release stage, when we directly
add the Gaussian additive noise R to the data, in order to



Algorithm 2 RMGM-OLS
Dataset Release

1: Input: D = [D',--- . D™] £,6,k.

2: The first party pre-generates a £ X n random matrix
B where all entries in B are i.i.d. sampled from the
distribution with probability 1/2 for 1 and 1/2 for —1.
Then first party sends the random matrix sample B to
all parties.

3:forj=1,--- ,mdo '

4:  The party j computes (D™&™)’ := BDJ /\/k+ R/,
where R/ is a k x d; random matrix and all elements
in R/ are i.i.d. sampled from the multivariate normal

distribution A/ (0, Adinaxo? 5) .

5: end for

6: Return: D"™&™ = [(D""g’")1 yoo ,(D'mg"‘)m].
Training Algorithm

1: Input: D™&™ ¢ §

2: [ergmvyrmgm] — [rmegm

3: Compute the ordinary least square solution

-1

(ergm)T ergm) (ergm)T Yy rmgm .

4: Return: w,"&m.

sormgm
W, =

guarantee DP, the norm of the noise needed has to be the
same order (in n) as the norm of the data matrix D. Both D
and R have norm in ©(y/n). Thus later in the training stage,
the additive noise R when compared to the data matrix X
would not diminish as n — oo and we have to subtract
4dimaxo? 5 - I from (Xdem) T Xdem {6 remove this additive
noise in order to obtain the optimal model weights. This
subtraction is the problematic part that brings training insta-
bility (small eigenvalues in the Hessian matrix).

Instead, we can avoid such subtraction in the training stage
by imposing a smaller noise in the data release stage. If
we can design the data release stage properly, so that the
addictive noise has relatively smaller order in n than D, in
the later training stage, the learner would no longer need the
problematic de-biasing step.

?? shows the full details of Random Mixing prior to Gaus-
sian Mechanism for Ordinary Least Squares (RMGM-OLS).
We now explain the design of data release and training algo-
rithm based on the above insights.

Dataset release algorithm. Suppose b is an n-
dimensional vector in {—1, 1}". For any two neighbouring

daasets D7 and (Dj )/ that are different at row index ¢, the
sensitivity of b" D7 is

[b" D7~ b7 (D7)

= HDi - <D{>/H < 2\/@ < 2\/ dmax~
Moreover, when B € {—1,1}¥*" BDJ /\/k has sensitiv-
ity 2v/dmax as well.

We now introduce the data release algorithm. Suppose all
parties are sharing a random matrix B € {—1,1}**",
where all elements in B are i.i.d. sampled from the dis-
tribution with probability 1/2 for 1 and 1/2 for —1. Then
we define the local computation for each party j:

(D™e™) .= BD7 Nk + RY,

where R7 is a k x d; random matrix and all elements in R’
are i.i.d. sampled from the multivariate normal distribution

N (0, 4dmaxc7§ 5) . Gaussian mechanism guarantees for any

fixed B € {1,—1}"*", (D™m)7 is (e, §)-differentially
private w.r.t. the dataset D7 for 0 < ¢ < 1,6 > 0.

Importantly, now the addictive noise R’ is relatively small
than BD7 /\/k. The order of || R’ || is ©(k) while the order

of HBDJ/\/EH ~ ||D7|| is ©(n) (by JL Lemma). If we set

k = o(n), the additive noise compared to the original data
matrix D will diminish as n — oco. This implies that the
standard ordinary least square solution to the public dataset
[Xmem Yrmem] would converge to the optimal solution w*
without special subtraction.

Training algorithm. Given the feature matrix X"™&™ and
the label vector Y"™8™ from the released dataset, we show
that the vanilla ordinary least square solution

wmem . <(ergm)T ergm>_1 (ergm)T y'rmem

is asymptotically optimal, i.e. plim,, , . W/ "™ = w*.

To prove the above asymptotic optimality, we show
plim,, . (X&) T X~ E( ) [xxT]
plim,, (ergm)T YmEM = E(xy)~p [x - y] respec-
tively, and together they prove the optimality.

Define R = [R',---,R™] € RF4+D) and
split R into Rx and Ry representing the additive
noises to BX/vk and BY/\k respectively. Because

and

plim,, , o %XTX = Exy)~pr [XXT}, it is sufficient to
show plim,,_, & (xrmem) T xrmem _ LXTX =0.Now

we decompose 1 (Xmem) T xmem _ 1T ¥ a5 pelow:

T T
1 BT B 1 B B 1
—(xT——x-x"x|+ - (x"T—Rx+Rix—x|+ —RiRx.
n k n M M n
z

k = o(n)

?? cvg. of gauss. dist.

We informally show how each term converges to 0 as n —
00:

LA (XTEEX - XTX). Ik — oo as n — oo, the
convergence is directly implied by ??.

2. 1 (XTB—\/;RX + R %X). Properties of normal dis-

o o T
tribution guarantees the approximation B—\/ERX ~

Ry, where Ry € R™? is a Gaussian matrix



. T
with A <0,4dmaxo§75>. Then H%XTB—\/ERXH ~
IAXTRy =0 ().
3. LRLRx.If k — oo as n — oo, || RY Rx|| will con-
verge to 4dmaxa§7 s-1. On the other hand, when k = o(n),

L 4dmaxo? 5 - I will converge to 0 as n — co.

Notice that the above convergence relies on the proper se-
lection of k. There exists a trade-off: larger k leads to better
convergence rate of the first term, but worse rate for the di-
minishing of additive noise — the third term. The following
theorem shows the exact asymptotic rate:

Theorem 2. When 3 < c for some variable c that is
dependent of d and P, but independent of o 5, n, we have

Pllwpe™ —w™|| > f] <

n

. kl[),z nﬂ 77,1/25 ~
exp ( ¢ <mm{ P oy dd s ) o

If we choose k = O <”11//22d1/2 >, then

dnlax0ec,s

P{[lwy"™ —w| > 5] <

ﬂl/Q,B ) 5
exp —WO(mm{l,ﬂ})—FO(l) .

max

ng
kddmaxo'g 5 ’

To achieve the optimal rate for f(3) with any fixed 3, the
nl/2q1/2

/2
dmaxo'a,é

2
In the theorem, £ is selected to balance kdig and

optimal & is chosen as O

Comparison with DGM-OLS. The near-zero eigenvalue
issue is solved since (X'™e™) " X™mem > 0 holds naturally
by its definition. Moreover, although the convergence rate
of n is sacrificed, the orders in d, dnax and o, s are much
improved. In ?? we show that the RMGM-OLS outperforms
DGM-OLS on both synthetic datasets even when n is as
large as 3 x 106.

"POPS EXPERIMENTAL EVALUATION
In this section, we evaluate DGM-OLS and RMGM-OLS
on both synthetic and real world datasets. Our experiments
on synthetic dataset are designed to verify the theoretical
asymptotic results in ?? by increasing the training set size
n. We further justify the algorithm performance on five real-
world datasets, four from UCI Machine Learning Reposi-
toryﬂ (?) and one from kaggle.

1https ://archive-beta.ics.uci.edu/ml/
datasets

"POP5.1 EXPERIMENT SET-UP

Algorithm set-up. We evaluate both DGM-OLS and
RMGM-OLS. For k in RMGM-OLS, we set k = Y™ in

£,8
synthetic dataset experiments and select the best k from

{10%,3x102,10%,3x 103, 10*} in real-world dataset exper-
iments. Because of the numerical instability of computing
Hessian inverse mentioned early, we add small A - I with
A = 107 to all Hessian matrices.

Baseline. In addition, we consider the following baselines
to help qualify the performance of proposed algorithms.

* OLS: The explicit solution for linear regression given train-
ing data (X,Y") and serves as the performance’s upper
bound for private algorithms, i.e. non-private solution.

e Biased Gaussian mechanism (BGM-OLS): The same
data release algorithm in DGM-OLS, but has a dif-
ferent training algorithm. Given a released dataset
(Xbem ybem) by Gaussian mechanism, BGM-OLS out-
puts the vanilla ordinary least square solution w2™ =

-1
((ngm) T ngm) (ngm)T Ybe™  In other words, it
is DGM-OLS without training debiasing.

Evaluation metric. In the experiments on synthetic
datasets, we estimate the probability of the £? distance be-
tween the model weights w,, from each algorithm or base-
line and the ground truth model weight w*:

P([[wn —w[ > 5).

We also evaluate the expectation of the £? distance between
weights for different algorithms:

E||Ww, —w7|.

If an algorithm is asymptotically optimal, we can see
both P (||w,, — w*|| > () and E ||W,, — w*|| converge to 0
when 7 increases.

For the experiments on real world datasets, we evaluate
learned models w,, by the mean squared loss on the test set.

"POPS.2 EVALUATION ON SYNTHETIC
DATASETS

Data generation. We define the feature dimension d =
10. Each weight value of the ground truth linear model w* is
independently sampled from uniform distribution between
—1/d and 1/d. A single data point (x, y) is sampled as the
following: each feature value in x is independently sam-
pled from a uniform distribution between —1 and 1; label
y is computed as (w*)—r x. Two assumptions for the data
distribution P, ?? and ??, can be verified. Moreover, we
set 6 parties in total, 5 of which have 2 attributes and the
remaining one has 1 attribute.
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Figure 2: P [||w,, — w*|| > (] and E [||W,, — w*||] as dataset size n increases for different algorithms when ¢ = 1.0,0.3,0.5.
For all pairs of (g, §) except two most extreme cases (0.3,0.1) and (0.1,0.1), RMGM-OLS shows asymptotic tendencies
plim,,_, o P[||Ww/"e™ — w*|| > 8] = 0. DGM-OLS does not show such tendencies even when training set size n is as large

as 3 x 106.
102 RMGM-OLS . RMGM-OLS
= pgM-oLs | =1 DGM-OLS
3 1 3
| I 101
< <
<i 100 <E
o 100
1071
1073 1072 1071 10° 107! 10° 10t

Minimum Absolute Eigenvalues of I:In
(@) Synthetic Dataset

Minimum Absolute Eigenvalues of I:In

(b) Insurance Dataset

Figure 3: Scatter plots of /5 distance versus minimum absolute eigenvalue of Hessian matrix. The left figure is for the
synthetic dataset when n = 10% and € = 1.0. The right figure is for the Insurance dataset when ¢ = 1.0. Each point
is processed by a different random seed for DGM-OLS and RMGM-OLS. Both figures show that the Hessian matrix in
DGM-OLS is more likely to have small eigenvalues, which further lead to large distance ||W,, — w*||2.

Results. We vary the training set size n € {10% 3 x
10%,10%,3 x 10°,10%,3 x 10°} and privacy budget
e € {1,0.3,0.1} with fixed § = 107°. We estimate
the P[|w, —w*|| > 5] and E|w, — w*| for differ-
ent algorithms with 1000 random seeds. ?? shows how
P[llw, — w*|| > 0] and E||w,, — w*|| of each algorithm
change when training set size n increases.

Regarding two baselines, P [||w,, — w*|| > 3] of OLS so-
lutions, without any private constraint, are close to the
ground truth w* under all 5 with probability 0. Nonethe-
less, P [||w,, — w*|| > ] of BGM-OLS keeps mostly un-
changed as n increases. Especially, P [||w,, — w*|| > 0.1]

stays at 1 for all n. Such results are expected in BGM-OLS’s
convergence: plim,,_, % (ngm)T Xbem — E [XXT] +
4dmaxog’ s - 1, which introduces a non-diminishing bias
4dmaxafﬁ5 - 1.

Next, we compare DGM-OLS and RMGM-OLS. RMGM-
OLS outperforms DGM-OLS at both the convergence of
probability P [||w,, — w*|| > f] (the first three figures in
??) and the expected distance E [||w,, — w*||] (the last fig-
ure in ??). RMGM-OLS shows the asymptotic tendencies
in all values of 8 when € = 1.0. Although DGM-OLS has
better rate at n than RMGM-OLS theoretically, n = 3 x 106
is not large enough to show the asymptotic tendencies for



DGM-OLS.

DGM-OLS is even much worse than BGM-OLS, which is
almost random guess. It is caused by the small eigenvalue
issue discussed in ??. To illustrate it, Figure ?? (a) shows
the scatter plot, where the x-axis is minimum eigenvalues of
the Hessian matrix H,, and y-axis is the distance between
our solutions and the optimal solution ||Ww,, — w*||. Each
point is processed by a different random seed for DGM-
OLS and BGM-OLS when n = 10° and ¢ = 1.0. ||W,, —
w*|| and the minimum absolute eigenvalues of H,, have a
strong positive correlation. With a certain probability, the
minimum eigenvalue of DGM-OLS is smaller than 1072
and corresponding ||w,, — w*|| is larger than 10.

Overall RMGM-OLS has the best empirical performance
across various settings of € and n on the synthetic data, as
its asymptotically optimality is verified and it consistently
outperforms two other private algorithms when n is large
enough. Though DGM-OLS seems to have stronger theoret-
ical guarantee in the aspect of rate in n, its poor empirical
performance comes from two aspects: 1. small eigenval-
ues occur due to the design of the training algorithm; 2.
extremely large n is necessary to show the asymptotic opti-
mality due to the worse rates of d, dax and o 5.

"POPS5.3 EVALUATION ON REAL WORLD
DATASETS

Dataset. We experiment with five datasets:

* Insurance (?): predicting the insurance premium from
features including age, bmi, expenses, etc.

* Bike (?): predicting the count of rental bikes from features
such as season, holiday, etc.

* Superconductor (?): predicting critical temperature from
chemical features.

e GPU (?7?): predicting Running time for multiplying two
2048 x 2048. matrices using a GPU OpenCL SGEMM
kernel with varying parameters.

* Music Song (?): predicting the release year of a song from
audio features.

We split the original dataset into train and test by the ratio
4 : 1. The number of training data n, the number of features
d and the number of parties are listed in Table ??. The
attributes are evenly distributed among parties. All features
and labels are normalized into [0, 1].

Results. For each dataset, we evaluate OLS and three
differentially private algorithms by the mean squared loss
on the test split. Table ?? shows the results for ¢ €
{0.1,0.3,1.0} and § = 10~°. We can check that the loss of
DGM-OLS is usually much larger than others and RMGM-
OLS achieves the lowest losses for most cases (12 out of
15). Moreover, ?? (b) shows that DGM-OLS has the small
eigenvalue problem as well in the real world dataset ex-

periments. These results are consistent with the results on
synthetic dataset. We therefore recommend RMGM-OLS as
a practical solution to privately release the dataset and build
the linear regression models.

"POP6 RELATED WORK

Differentially private dataset release. Many recent
lease algorithms. However, those algorithms either only
serve for data release from a single-party (??), or focus on
the feature dimension reduction or empirical improvement
(???), which is orthogonal to the study of asymptotical opti-
mality w.r.t. dataset size. In ? and ?, the random Gaussian
projection matrices in their method contribute to the dif-
ferential privacy guarantee, hence the sharing of projection
matrix would violate the privacy guarantee between par-
ties. Nevertheless, without sharing this projection matrix,
the utility cannot be guaranteed anymore. In ? and ?, they
train a differentially private GAN. However, it is not obvi-
ous to rigorously privately share data information during
their training when each party holds different attributes but
same instances. ? proposes a random mixing method and
also analyzes the linear model. However, the way they mix
only works for realizable linear data. It is not able to be
extended to the general linear regression and the asymptotic
optimality guarantee. ? and ? focus on the feature dimension
reduction, which is orthogonal to the study of asymptotical
optimality w.r.t. dataset size.

Asymptotically optimal differentially private convex op-
timization. A large amount of work study differentially
private optimization for convex problems (???) or particu-
larly for linear regression (???). They mainly differ from
our work in the sense that their goal is to release the final
model while ours is to release the dataset.

Linear regression in vertical federated learning. Lin-
ear regression is a fundamental machine learning task.
??? studying linear regression over vertically partitioned
datasets based on secure multi-party computation. How-
ever, cryptographic protocols such as Homomorphic En-
cryption (??) and garbled circuits (??) lead to heavy over-
head on computation and communication. From this aspect,
DP-based techniques are more practical.

"POP7 CONCLUSION

We propose and analyze two differentially private algo-
rithms under multi-party setting for linear regression, and
theoretically both of them are asymptotically optimal with
increasing dataset size. Empirically, RMGM-OLS has the
best performance on both synthetic datasets and real-world
datasets, while extremely large training set size n is nec-



| | Method
Dataset Statistics

‘ OLS ‘ e=1.0 e=03 e=0.1
DGM RMGM BGM | DGM RMGM BGM | DGM RMGM BGM
Insurance n=1070,d=9, m=5 0.008 | 0.7015 0.0791 0.0805 | 0.7550 0.0782 0.0850 | 0.7263 0.0793  0.0832
Bike n=13903, d=13, m=5 | 0.017 | 0.8105 0.0581 0.0691 | 0.9080 0.0711 0.0703 | 0.8792 0.0700 0.0707
Superconductor | n = 17010, d =81, m =10 | 0.009 | 0.9794 0.0659 0.0670 | 1.0075 0.0707 0.0704 | 0.9220 0.0699 0.0704
GPU n=193280, d=14, m =5 | 0.007 | 0.6953 0.0137 0.0158 | 0.7843 0.0160 0.0160 | 0.7822 0.0165 0.0160

Music Song n = 412276, d =90, m =10 | 0.011 | 1.0167 0.0202 0.7194 | 1.6462 0.1039 0.7479 | 1.5583 0.5654 0.7508

Table 1: Mean squared losses on real world datasets. RMGM-OLS achieves the lowest losses in most settings (12 out of 15).

essary for DGM-OLS. We hope our work can bring more
attention to the need for multi-party data release algorithms
and we believe that ML practitioners would benefit from
such effort in the era of privacy.

Future work. We focus on linear regression only, and one
future direction is to extend our algorithm to classification,
e.g. logistic regression, while achieving the same asymptotic
optimality. In addition, we assume different parties own the
same set of data subjects. Another future direction is to
relax this assumption: the set of subjects owned by different
parties might be slightly different.
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"POPA PROOFS OF USEFUL LEMMAS

Lemma 1 (Gaussian mechanism). For any deterministic real-valued function f : D — R with sensitivity S¢, we can
define a randomized function by adding Gaussian noise to f:

f®(D) = f(D)+ N (0,570%-1),
where N (0 ( o1 ) is a multivariate normal distribution with mean 0 and co-variance matrix 5?02 multiplying a

\/2 log(le/(1.255))) fdp is

Lemma 2 (JL Lemma for inner-product preserving (Bernoulli)). Suppose S be an arbitrary set of | points in R* and
suppose s is an upper bound for the maximum L2-norm for vectors in S. Let B be a k x d random matrix, where B;;
are independent random variables, which take value 1 and value —1 with probability 1/2. With the probability at least

1—(I+1)%exp (—k (B—z - ﬁ)),

-
CRAE (BUNE)S (Bv1VE) <BY i
Lemma3. [ Vzel0,1], —log(l—2z)—2> %

2. Vo e [0,1], x —log (1 + z) > £,

3. Ve >1,x—log(l+z)> 3.

m X m identity matrix 1. When o > (e, 9)-differentially private.

2 s

2

Proof. Define fi(z) := —log(1 —z) —x— % fi(z) =

— > 0. Thus f;(z) increases on [0, 1] and f1(z) > f1(0) = 0.

Define fo(z) :=z —log (1 + ) — %2. fi(x) = 2(i+z)) f2(x) increases on [0, 1] and f2(x) > f2(0) = 0.

Define f3(z) := x —log (1 + ) — §. f3(z) = 4%“1‘;;) > 0. f3(z) increases on [0, 1] and f3(z) > f(1) > 0. O

Lemma 4. Denote H, = 1XTX, C, = LXTY, H = E(xy)op [xx"] and C = E(x y)~p [x - y]. Assume || Epub —
2 Apub _ A 2lCH " +5
H,|| < B,|CR*™ — Cp|| < B with prob 1 — f(3). We have that when § < =—H—1=,

Pxy~D.ri .o [IWE? —W*|| < B] > 1—h(B),

N -1 4
where WPt — (P} o, i |[C|[HY |2 + 2] H~ | and h(8) = F(8/20) + & exp (— bz ) +dexp (5 )-

Proof. Hoeffding inequality and union bound together imply that with prob. 1 — d? exp ( ST ) dexp ( np? )
1, — H|| < 8,[1Cn = C|| < 5.

Thus with prob 1 — g(d), —H| < B,||CP — | < B, where g(8) = f(3/2) + d? exp( ) + dexp ( 52)

We further have
s <C=Cull+IC < Cll+ 8

“ —1 ~ —1 “ ~ —1
S l(ame) ) < ) () |||H-1|-||Hf;“b—H|s(||H-1+||(H:;“b) —H‘lll)-llH‘lll-ﬁ,which

1 —12 —1)2
b -1 H B H B
implies that when § < 2|\H STE=T] ||( HPu ) —H Y < 1”—H *Hl\l-ﬁ <l 2” .

¢« When 8 < 2HH T

. -1 . ~ . -1 A
|(fpe) G — HC) < OB - (FR) — H7N 4 I H Y- G - €

L% -

ol +8) - 2 g

2CHIH? + 518"
<! i s
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(2CH 12 +501H )

Letb := T and replace 3 by b~!3, we have that when 3 < w
PX,YND7R1,R2 [Hwn - W*” < B] >1- h(ﬁ)’
2 2
where h(8) = g(8/b) = f(3/26) + d* exp (g ) + dexp (~ 25 )- 0

Lemma 5. Ifr is a random variable sampled from standard normal distribution, we have following concentration bound:

Pllrl<p] >1- 2 exp (—62>
T V2B 2

Proof. It’s shown in page 2 in ?. O

Lemma 6. If r1,r2 are two independent random variables sampled from standard normal distribution, r1r9 can be

written as <52, where c1, c3 are independent two random variables sampled from chi-squared with degree 1. Moreover,

n b .
Y i1 T1nT2,n can be written as
chi-squared with degree n.

(5) ()

V2 V2 rit+re r1—ro
¥ NG

are two independent standard normal random variables as well. ¢; := % and ¢g 1= % complete the proof for the

first part.

STl =5 2o (e — ca) = 5 (D00 q €1 — Doiq €2,4). C1,1m = Dopy €1, and €2 1. == ;- C2; finish the
proof. U

C1,1:n —C2,1: . .
o, where ¢ 1.p, C2,1:n, are independent two random variables sampled from

Proof. rire = . Because r1, o are two independent standard normal random variables,

"POPB PROOFS IN SECTION 4

We restate the assumptions and theorems for the completeness.
Assumption 1. D;, i = 1,--- ,n, are i.i.d sampled from an underlying distribution P over R4+,
Assumption 2. The absolute values of all attributes are bounded by 1.

Assumption 3. E ) p [XXT] is positive definite.

Theorem 1. When 3 < c for some variable c that depends on o, s, d and ‘P, but independent of n,

P[||wdm™ — w*|| > 8] <1—exp (—O (6204nd4> + O(l)) .
€,0

)

Proof of ??. Denote (max;e(m) d;) by dmax. Denote R € R™*? is a random matrix s.t. R; ; ~ N (O, 4dmaxaf’5). We
split R into Rx and Ry representing the addictive noise to X and Y.
1 T(Y + Ry)

—1
X
wiem — (n(x +Rx) (X +Rx)+(\— 4dmaxa§7é)l> (X + RX)n )

1. Foranyi € [d] L—— [RXRx], , is sampled from chi-square distribution with degree n. From the cdf of chi-square

> 4dpaxo?, i
distribution, we have following concentration:

g s
>1- -n- | —— - 1+ ——
) 5] - < b (4dmax0§,& e Admax0? 5
—exp|-—mn-|—log|1- b — b .
4dmaxag7§ 4dmaxag,5

P

1,1

1
[R}RX} — 4dpax0? 5
o :




C1,1:n—C2,1:n
2

Moreover, for i # j, ?? implies that ﬁ [R}T(RX]Z,J. can be written as , where ¢1 1., €2,1:n, are
max 5,5 I,

independent two random variables sampled from chi-squared with degree n. Thus

4

>P [Cle — n| <

C1,1:n — C2.1:n

2n

B
4dmax0§,5

n
Jetim —nl < B]

4dmaxag, s

1
]

,J

4dmaXO'E75

np3
>1-—2P —n|>—"
R S

g B
>1-2 - | —7—1 14—
o P ( " <4dmaxag,5 o8 N 4dmaxag)5

—2exp|—n-|—-log|1l-— b - B
4dmax0'g’5 4dmax0€’§
Union bound implies that

1 B B1
P||2RLRx — ddmaxo?s 1| <Bi| >1—d® exp [ —n- [ 2 —log 14— 1
[t o] <] 2o (o (g e 0+ il
B B
—d?. —n-| =1 1— —
eXp( " ( Og( 4ddar0?y | Addimaxo?

- doesd®d}2 2 -
2. P [H%H < 52} 21- G\/;Tnﬁz exp (— 8d2d1/iia§,5)’ implied by 2?.
X'R doesd*?d}2 2
3. P [HTY < ﬁzz} >1 %Wexp( ﬁ) implied by ??.
doe,sd2dy 5 53
+ [H H = 54} 21— e exp (—ﬁ) implied by ??.

5. Similarto 1,

n

Bs Bs
<fs| >21—2dexp | —n- | s —log (14 75—
ﬁ5:| B exp< ! <4d1/2dmaxgg,6 % ' 4d1/2drnaxag75
Bs Ps
_ Qdexp (TL . < IOg (1 - 4d1/2dmax03,6 B 4d1/2dmax0§’5

One can simplify —log (1 — 2) — z and z — log (1 4+ z) by ??. Set 81 = %6, Bo = 46 B3 = By = 4[3, B = %[3. The
above concentrations together imply that when 5 < 8ddmaxa§ 5 [[HP™® — H,|| < B, ||CP> — C,, || < B with prob at least

1 — f(B8), where f(3) = exp (f min {O (n dzdf72> +0(1 )})

max"” g

: ot . 2[CIIE " I+5
With the application of ??: when 8 < =—"——

PX,)’ND,Rl,Rz [HVAV” - W*” < 5] >1- h(5)7

where h(3) is:

2

1. when 5 < 16bdduax0? 5, h(8) = exp (O (n- g ) + 01 );

max%e,§

2. when 8 > 16bdd]mxc76 5 h(B) =exp (—O (n dzdﬁiz) + O(l)) ;

2
max0Z 5



where b — ICllH IP+s1H )

1 is a distribution dependent constant. In the other word, when [ <
—1
min {16bddmax0§’5a 72”0””2 I+ },

A~ * 62 A
PX y~D,Ry, Ry [[Wn — W' < 8] > 1 —exp <—O (” ap o1 | T,

max" ,0

O

Theorem 2. When 3 < c for some variable c that depends on d and P, but independent of n and o.s,
. 2 n nl/2 ~ nd)t/?

Plwimem —w*|| > ] < exp (—O (mln{%, kdﬁ?ygﬁ}) +O(1)). If we take k' = O (d(i]/gaas)’

. . nl/2 ) ~
P llwem — | > ] < exp (27— -0 min (1,8)) + O()).

maxTe,5

Proof of ??.

1 BB BT B e B™B B BT
wmem — (Z (X7 X+X"“=Rx+Ri—=X+RiR )) ( (XT Y+Ry—=Y + X" —=Ry +RiR >)
(n( k VET RS T n k Vi VE T

Define M := ﬁB. Then we can make the analysis one by one.

83 g3

64d 96d\/3) ) ’

1. JL-lemma applied by Bernoulli random variables implies that with probability 1 — (d +2)2 exp ( —k (
Lo, LT
X' M MY —--X"Y| <p.
n n

- %)),forany uwe {XTlie[d}u{y}).

(Mu)" Mo up< ul} < (Mu)" Mv

n n

Proof. ?? implies that with prob 1 — (d + 2) exp (k (ﬁ2

+48.
This further implies that

1 1
“X"MTMY — XTYH < 4Vdg.
n n

1 = 4/d}3 helps finish the proof. O

JL-lemma applied by Bernoulli random variables implies that with probability 1 — (d + 2)? exp (k (—% - %) ),

1 1
HXTMTMX — XTXH < Bo.
n n

. 2kddmaxo? x
3. With prob. 1 — 2kdy/ mﬂ305>‘5 exp (—nskddﬁS — ), )RXnRX H < Bs.
——

Proof. To simplify the proof, let’s assume R is a standard gaussian matrix. Because P (|(Rx);;|) < 3) > 1 —
\/227,8 exp (—?/2) shown in ?2,

kd
P (15 Rx| < kdf) > P (x| < VEGB) = 1= =S exp (~6/2).

RLRx kd n
P[22 < > 1 2kd, | —=—0) .
(H n 5 53) - 2mn B3 P ( 2kd63)

Plug-in the variance of Rx leads to the targeted inequality.

It’s equivalent that
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4. With prob. 1 2(md +2kd> exp( Vin 405,(;@)

RIBY X"BTR
||, [T
RLBY ((Rx),) b - - BY
Proof. Denote ¢ := ~Th and further c; := NCEEE where (R,) ; is the ith column for Rx and b = =

Plle < ] = / P (lci| < A]b] P[bdb

> max/ P[lci| < B|b] P[b]db
a>0 |b|<a-1

zmax/ P{lci| < BI[b] = a - 1] P[b]db
a>0 |b|<a-1

> maxP[lei| < flbl = a1 P[] < a-1]

> 1 4040'575 vV max 52 2% 4a203,6dmax
max — ———— €X —— — ex -n.- —-
= a>0 V278 P 8a20§75dmax P 2

1 B B
= T0e 56V dmaxn ) ew (_\/ﬁ. 4@%,5) f)’ = 2Vndimax0e,s

Then
P[||c||<6]>1—iP[c'||> 6]>1— ! d®/* + 2kd ~exp(—\/ﬁ-ﬁ).

T = T Val T N 40 5/ ddmax
Similarly,

X"B'R 1
A S Wd5/4+2’“d o (v =)

Union bound gives the conclusion.

. _ I 5/2 2 . _ . L
5. With prob. 1 — 2 (md + 2kd ) eXp( Vn 40515@‘1“/32)()

T
|EX] < s
nvk
which is implied similar to 4.
. 2kd /2 dmaxo? RLYR
6. With prob. 1 — 2k(d + 1)1/ 2020720 o (—ngkdmgiaxg;&), ) xRy H < Be.

Proof. To simplify the proof, let’s assume R x and Ry is a standard gaussian matrix first. Because P (|(Rx);;|) < 8) >
1-— \/2275 exp (—62/2) shown in ??,

P (IBX Ry | < kVdB) > P (|| Bx]| < VkdB, | By < v/kB) > 1 - %(2\/%1)6@(—5/2%

RTR kvd
P <HXnY < 56> >1—2k(d+ 1)\/%6)@ <_21<:/gﬂ6> .

Plug-in the variance of Rx and Ry leads to the targeted inequality. O

It’s equivalent that




Define ATTen = (XTARAX $ XT AL R F REEX HIRRY). B = 5 G
T A A
L(XTAAY L RLAY + X ARy + RERy ), G = 1XTY.

The above analysis implies that, with prob.

62 53 ﬁz 63
1—(d+2)%exp (k <Mld - 96d1\/ﬁ)) —(d+2)%exp (k (64372 ; 9623>>

| 2kddyyax0? Ié; 1 B4
Oy | eSS exp )= d®/* + 2kd | - exp <—\/ﬁ . )
m™nfs 8kddmaxog75 W06,654\/m 40 5/ ddmax

1 5/2 2 Bs 2kd!2dimax0? 5 Be
%d? | -exp | v —5 ) —ok(di1) | e exTes P .
d®/? + exp | —v/n T (d+1) p— exp n8kd1/2dmax03’5

T0e,5 835V Ndmax maix

we have

| HME™ — H, || < Bo + B3 + 285, | BIM&™ — By || < B1 + 284 + Be.
Letfo =22, 8= 1,85 = £ and B = B1 = Bs = 5. We will have || HE*> — H,,|| < B,[|C2*> — C,,|| < B, with prob.
1-f(B8), V8 < 4+/d (implies 8, < v/d and 85 < d), where

k52 k32
f(B) = (d+2)?exp (— 76§d> + (d+2)%exp <—43§.32>

[12kddpaxo? B 2 - B
Okdy | 12Ted — + d°/* 4 2kd | - ( n- >
+ /3 xp ( n48kddmaxog’5 ) 70w 58Vl P Vi 160¢ sV ddmax
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ﬂas,&ﬂ Vv ndmax

?? implies that for 8 < nrlin{8b\/cill7 W}, we have

Plllwn —w*[| < 8] = 1—h(B),

where h(3) is:
. k32 6 B .
o (-oin{o (57)-0 (v, ) o (2 ) }+o0)

. /
where O(1) includes log terms of n, d, dmax, k, 5. If we take k = O (d(f}‘;)l : ),
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