
Supplementary Material for “Towards
Self-Interpretable Graph-Level Anomaly Detection”

Yixin Liu1, Kaize Ding2, Qinghua Lu3, Fuyi Li4,5, Leo Yu Zhang6, Shirui Pan6∗
1Monash University, 2Northwestern University, 3Data61, CSIRO,

4Northwest A&F University, 5The University of Adelaide, 6Griffith University
yixin.liu@monash.edu, kaize.ding@northwestern.edu, qinghua.lu@data61.csiro.au,

fuyi.li@nwsuaf.edu.cn, leo.zhang@griffith.edu.au, s.pan@griffth.edu.au

A Definitions of “Explainability” and “Interpretability”

Since explainable artificial intelligence is an emerging area of research, how to specifically dis-
criminate similar concepts “explainability” and “interpretability” is not yet completely standardized.
Following the recent survey paper [1], we distinguish them with definite principles rather than using
them interchangeably.

Specifically, we define the term “explainability” as a more general and high-level concept that includes
all learning scenarios, models, and strategies related to providing understandable knowledge for the
predictions. The major reason is that “explainable artificial intelligence” and “explainable machine
learning” are well-known concepts in the community. For instance, we denote the ability to explain
GNNs’ predictions as “explainability of GNNs”, and the related learning tasks include explainable
node classification, explainable graph classification, etc. Following this way, we denote our proposed
learning problem as “explainable graph-level anomaly detection (GLAD)”.

Differently, we denote “interpretability” as the ability of a model to intrinsically provide explanations
for itself. To well emphasis the characteristic of interpreting itself, we sometimes use the concept
“self-interpretability” interchangeably with the concept “interpretability”. For instance, the GNNs
that can jointly generate predictions and explanations are denoted as “interpretable GNNs” or “self-
interpretable GNNs”. Under such a definition, the models that provide post-hoc explanations for
trained GNNs are not interpretable. In this paper, we aim to propose a “self-interpretable GLAD
model” that is able to yield explanations for the anomaly detection results by itself.

B Related Work in Detail

Graph Neural Networks (GNNs). GNNs are the extension of the convolution-based neural networks
onto graph data [2, 3, 4, 5, 6, 7, 8, 9]. Early GNNs define graph convolution based on spectral
theory [8, 10]. Recently, the mainstream GNNs usually follow the paradigm of message passing
for spatial graph convolution, i.e., executing graph convolution by aggregating the information for
adjacent nodes [3, 4, 5, 6]. For instance, GCN [4] uses an average-based aggregation function for
message passing. GIN [3], differently, employs a summation-based aggregation function to ensure its
expressive ability. Apart from normal GNNs designed for simple graphs where each edge connects
exactly two nodes, some recent studies apply GNNs to hypergraphs, a generalization of graphs
where an edge can connect more than two nodes [11, 12, 13]. Among them, Hyper-Conv [12]
is a representative HGNN that applies a GCN-like aggregation function to the graph convolution
for hypergraphs. Thanks to their strong expressive power, GNNs are effective in various graph
learning tasks, such as node classification [4, 14, 15, 16], graph classification [3], and also graph
anomaly detection [17, 18]. Besides, GNNs can also be widely applied to diverse real-world learning

∗Corresponding Author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

scenarios, such as federated learning [19, 20], knowledge graph reasoning [21, 22, 23], adversarial
attack [24, 25], and molecule analysis [26, 27].

Explainability of GNNs. To make the predictions of GNNs transparent and understandable, a
line of studies proposes to uncover the explanation, i.e., the critical subgraphs and/or features that
highly correlate to the prediction, for GNN models [1, 28, 29, 30, 31, 32]. Existing methods can be
divided into two types: post-hoc GNN explainer and self-interpretable GNN [30, 32]. The post-hoc
GNN explainers use specialized models or strategies to explain the behavior of a trained GNN,
such as input perturbation [28, 29], surrogate model [31], and prediction decomposition [33]. For
instance, PGExplainer [29] uses an edge embedding-based neural module to modify the input graph,
and the learning objective is to optimize the cross-entropy between the original prediction and the
modified input. Differently, the self-interpretable GNNs can intrinsically provide explanations for the
predictions using the interpretable designs in GNN architectures [34, 30, 35]. GSAT [35] is one of
the self-interpretable GNNs that uses a parameterized attention module to pick the graph rationale
along with the training of the GNN backbone. Theoretically, the post-hoc explainers can be used to
explain the well-trained GLAD models; however, the post-hoc explainers can potentially provide
sub-optimal solutions since they are not directly learned with the detection models. On the other hand,
most self-interpretable GNNs are designed to explain the prediction of supervised tasks, especially
graph/node classification tasks. In this case, it is non-trivial to directly apply them to unsupervised
graph anomaly detection tasks, since their inherent supervised learning objective cannot work without
ground-truth labels.

Graph Anomaly Detection. The objective of graph anomaly detection is to identify anomalies that
deviate from the majority of samples in graph-structured data [36, 17, 37]. Most efforts mainly focus
on node-level anomaly detection, i.e., detecting the abnormal nodes from one or more graphs [17,
18, 38, 39]. In this paper, we mainly investigate graph-level anomaly detection (GLAD) that aims to
recognize anomalous graphs from a set of graphs [36, 40, 41, 42]. A few recent studies try to address
the GLAD problem with various advanced techniques. For example, OCGIN [36] combines the
objective of one-class classification and a GIN encoder into the first GLAD model. GLocalKD [40]
uses the knowledge distillation error between a random network and a trainable network to evaluate
the abnormality of graph samples. OCGTL [41] introduces a graph transformation learning-based
learning objective to identify the anomalous samples in a graph set. However, these methods can only
predict the scores to indicate the degree of abnormality of each sample, but cannot provide the behind
explanations, i.e., the substructure causes the abnormality. To boost the reliability and explainability
of GAD methods, in this paper, we propose a self-interpretable GAD framework to generate both
anomaly prediction and its explanation.

Learning by Information-Bottleneck (IB). IB is an information theory-based approach for rep-
resentation learning that trains the encoder by preserving the information that is relevant to label
prediction while minimizing the amount of superfluous information [43, 44, 45]. Formally, the
objective of IB principle is to maximize the mutual information (MI) between representation Z and
label Y , and minimize the MI between representation Z and original data X [45]. Some pioneering
efforts [46, 47] extend IB principle to multi-view learning scenarios, and some of them enable the
application of IB principle for unsupervised learning [46]. Recent efforts also attempt to apply IB
principle to graph learning tasks [48, 35, 49, 50, 51, 52, 53, 54]. One feasible idea is to borrow the
representation-based IB principle for graph representation learning [50, 53]; another line of work
regards a vital bottleneck subgraph G(s) rather than the representation Z as the bottleneck and tries
to maximize the MI between G(s) and label Y while minimizing the MI between G(s) and original
graph G [48, 51, 52].

Explainable anomaly detection. Anomaly detection is an essential machine learning task that
aims to detect unusual or rare patterns or instances within a dataset [55, 56]. In order to improve
the trustworthiness and comprehensibility of anomaly detection systems, a brunch of research
termed explainable anomaly detection focuses on generating valid explanations for the results given
by anomaly detection models [57, 58, 59]. For example, to provide explanations for one-class
image anomaly detection models, FCDD [57] uses a fully convolutional module to generate pixel-
level explanation. ATON [58] utilizes an attention-guided triplet deviation mechanism to provide
explanations for any black-box outlier detector on tabular data. Cho et al. [59] introduce an auxiliary
prototypical classifier to learn explanations of anomaly detection models for medical images. Despite
their success, these techniques cannot be directly applied to graph-structured data.

2

C Formulations of GNN and HGNN

In this section, we provide detailed definitions of message passing-based graph neural network (GNN)
and hypergraph neural network (HGNN). Given a simple graph G, the target of a GNN is to learn the
node-level representation following the message passing scheme:

h(l+1)
v = UPDATE

(
h(l)
v ,AGGREGATE

({
h(l)
u : ∀u ∈ N (v;A)

}))
, (A.1)

where h(l)
v is the latent representation vector for node v ∈ V at the l-th layer (with h

(0)
v = xv = X[v]),

N (v;A) is the neighboring node set of v obtained from A, AGGREGATE(·) is is the function that
aggregates messages from neighboring nodes, and UPDATE(·) is the function that updates the node
representation. With similar notations, we can formulate a HGNN as:

h
(l+1)
v∗ = UPDATE

(
h
(l)
v∗ ,AGGREGATE

({
h
(l)
u∗ : ∀u∗ ∈ N (v∗;M∗)

}))
, (A.2)

where N (v∗;M∗) is the neighboring node set of v∗ ∈ V∗ obtained from incidence matrix M∗.

In GNNs, a pooling operation POOL(·) can be applied to obtain a graph-level representation vector
with hG = POOL

(
{h(L)

v : ∀v ∈ V}
)

by summarizing the representations of all nodes at the final
layer L. A similar pooling layer can be used to obtain hypergraph-level representation h∗

G.

D MSIB Loss Computation

Starting from Eq. (2), we can first rewrite the objective of the first graph view G1 as a loss function
into:

L1 = I(G1;G1(s)|G2)− 1

β1
I(G2;G1(s)), (A.3)

which we aim to minimize during model training. Similar to Eq. (A.3), the corresponding loss
function for the second graph view G2 can be written by:

L2 = I(G2;G2(s)|G1)− 1

β2
I(G1;G2(s)), (A.4)

where β2 is the trade-off parameter for L2. Then, by computing the average of L1 and L2, we have a
joint loss function to optimize both G1(s) and G2(s):

Ljoint =
I(G1;G1(s)|G2) + I(G2;G2(s)|G1)

2
−

1
β1
I(G2;G1(s)) + 1

β2
I(G1;G2(s))

2
. (A.5)

For term I(G1;G1(s)|G2), we can derive its upper bound by:

Iθ
(
G1;G1(s)|G2

)
= EG1,G2∼p(G1,G2)EG(s)∼pθ(G1(s)|G1)

log pθ
(
G1(s) = G(s)|G1 = G1

)
pθ

(
G1(s) = G(s)|G2 = G2

)


= EG1,G2∼p(G1,G2)EG(s)∼pθ(G1(s)|G1)

log pθ
(
G1(s) = G(s)|G1 = G1

)
pψ

(
G2(s) = G(s)|G2 = G2

) pψ
(
G2(s) = G(s)|G2 = G2

)
pθ

(
G1(s) = G(s)|G2 = G2

)


= DKL

(
pθ(G

1(s)|G1)∥pψ(G2(s)|G2
)
)−DKL

(
pθ(G

2(s)|G1)||pψ(G2(s)|G2)
)

≤ DKL

(
pθ(G

1(s)|G1)∥pψ(G2(s)|G2)
)
.

(A.6)

3

where DKL(·) is the Kullback–Leibler (KL) divergence. Analogously, we can acquire the upper
bound of I(G2;G2(s)|G1) as DKL

(
pθ(G

2(s)|G2)∥pψ(G1(s)|G1)
)
. In this way, the first term in

Eq. (A.5) can be upperbound by:

I(G1;G1(s)|G2) + I(G2;G2(s)|G1)

2
≤ DSKL

(
pθ(G

1(s)|G1)∥pψ(G2(s)|G2)
)
, (A.7)

where DSKL

(
pθ(G

1(s)|G1)∥pψ(G2(s)|G2)
)

= 1
2DKL

(
pθ(G

1(s)|G1)∥pψ(G2(s)|G2)
)

+
1
2DKL

(
pθ(G

2(s)|G2)∥pψ(G1(s)|G1)
)
.

Then, according to the chain rule of mutual information, i.e., I(xy; z) = I(y; z) + I(x; z|y), we can
reform the term I(G2;G1(s)) by:

I(G1(s);G2) = I(G1(s);G2(s)G2)− I(G1(s);G2(s)|G2)

(H)
= I(G1(s);G2(s)G2)

= I(G1(s);G2(s)) + I(G1(s);G2|G2(s))

≥ I(G1(s);G2(s)),

(A.8)

where (H) indicates the hypothesis that G2(s) is sufficient for G1, i.e., I(G1(s);G2(s)|G1) = 0.
Symmetrically, we can also have I(G2(s);G1) ≥ I(G1(s);G2(s)). In this case, the second term in
Eq. (A.5) has the lower bound with:

1
β1
I(G2;G1(s)) + 1

β2
I(G1;G2(s))

2
≥ (β1 + β2)

2β1β2
I(G1(s);G2(s)). (A.9)

By jointly considering Eq. (A.7) and Eq. (A.9), the joint loss function (Eq. (A.5)) can be bounded by:

Ljoint ≤ DSKL

(
pθ(G

1(s)|G1)∥pψ(G2(s)|G2)
)
− (β1 + β2)

2β1β2
I(G1(s);G2(s)). (A.10)

Finally, by multiplying both terms with β = 2β1β2

(β1+β2)
and re-parametrizing the objective, we have a

tractable loss function for MSIB framework:

LMSIB = −I(G1(s);G2(s)) + βDSKL

(
pθ(G

1(s)|G1)∥pψ(G2(s)|G2)
)
. (A.11)

E Methodology Discussion

E.1 Algorithm

The overall algorithm of SIGNET is summarized in Algo. 1.

E.2 Discussion of SIGNET v.s. GSAT

In this paragraph, we discuss the connections and differences between SIGNET and the representative
self-interpretable GNNs, GSAT.

Connections between SIGNET and GSAT:

• Theoretical foundation. Both GSAT and SIGNET are based on the well-known information
theory criteria, the information bottleneck, serving as their theoretical foundation for their
explanation target.

• Explanation goal. As an explainable method for graphs, they have a common objective of
identifying the key subgraph within the input graph sample that holds the highest relevance
to the final prediction.

4

Algorithm 1: The overall algorithm of SIGNET
Input: Training Set Gtr; Test Set Gte.
Parameters :Number of epoch E.
Output: Anomaly Score Set S; Explanation Subgraph Set G(es).
/* Training */

1 Initialize model parameters
2 for e = 1, 2, · · · , E do
3 B1, · · · ,Bnb

← Randomly split Gtr into batches
4 for B = B1, · · · ,Bnb

do
5 for Gi ∈ B do
6 G∗

i ← Obtain the dual hypergraph of Gi by DHT
7 pi,p

∗
i ← Calculate probability vectors by neural extractor

8 G
(s)
i , G

∗(s)
i ← Extract bottleneck subgraphs by Eq. (4)

9 h
(s)
i ,h

∗(s)
i ← Calculate graph-level representations by GNN/HGNN encoders

10 end
11 L ← Calculate Info-NCE loss by Eq. (5)
12 Update model parameters via gradient descent w.r.t. L
13 end
14 end

/* Inference */
15 for Gi ∈ Gte do
16 G∗

i ← Obtain the dual hypergraph of Gi by DHT
17 pi,p

∗
i ← Calculate probability vectors by neural extractor

18 G
(s)
i , G

∗(s)
i ← Extract bottleneck subgraphs by Eq. (4)

19 h
(s)
i ,h

∗(s)
i ← Calculate graph-level representations by GNN/HGNN encoders

20 si = −I(h(s)
i ,h

∗(s)
i)← Calculate the anomaly score of Gi by Info-NCE MI estimator

21 G
(es)
i ← Extract explanation subgraph according to pi and p∗

i using top-k/threshold strategy
22 end
23 S,G(es) ← Collect all the anomaly scores si and explanations G(es)

i into sets

• Architecture. Both GSAT and SIGNET adopt learnable neural networks to parameterize
the graph data and make the explanation differentiable, which is a common design among
explainable GNNs. However, GSAT only conducts the relaxation at the edge level, while
SIGNET can provide explanation scores at both node and edge levels.

Differences between SIGNET and GSAT:

• Targeted tasks. GSAT focuses on a supervised graph-level classification task where cate-
gorical labels are available for training the self-interpretation module. On the other hand,
SIGNET targets unsupervised graph-level anomaly detection, a more challenging task with
unavailable labels during training.

• Theoretical framework. GSAT is designed based on the original information bottleneck
framework with subgraph bottleneck, tailored to its targeted supervised setting. In contrast,
SIGNET is based on the multi-view subgraph information bottleneck (MSIB) framework
derived in this paper, specifically designed for unsupervised anomaly detection tasks.

• Learning objectives. GSAT is trained using cross-entropy loss, a commonly used classifica-
tion loss. In contrast, SIGNET is optimized using an Info-NCE loss, aiming to maximize the
mutual information between each graph and its rational subgraph.

• Graph view for learning. GSAT only considers the original view for graph learning, while
SIGNET takes both the original and DHT views into account for self-interpretable graph
learning.

5

(a) BM-MT

(b) BM-MN

(c) BM-MS

Figure 1: Examples of three synthetic datasets, where subgraphs in blue are the ground-truth
explanations.

E.3 Complexity analysis

Within this paragraph, we denote the average numbers of nodes and edges as n and m respectively,
and denote the number of graphs and batch size as N and B respectively. At each training iteration, we
first conduct DHT to obtain the dual hypergraph, which requiresO(N(m+n)). Then, the GNN-based
extractor that calculates probability consumesO(NL1md1+NL1nd

2
1+Nnd1df) complexity, where

L1 and d1 are the layer number and latent dimension of the extractor, respectively. The bottleneck
subgraph extraction for two views requiresO(N(m+n)) in total. For the GNN and HGNN encoders,
their time complexities are O(NL2md2 + NL2nd

2
2 + Nnd2df) and O(NL2nd2 + NL2md22 +

Nnd2df∗) respectively, where L2 and d2 denote their layer number and latent dimension. Finally,
the Info-NCE loss requires O(NBd2) complexity. To simplify the overall complexity, we denote the
larger terms within L1 and L2 as L, and the larger terms between d1 and d2 as d. After ignoring the
smaller terms, the overall complexity of SIGNET is O(NLd2(m+ n) +Nnd(df + df∗) +NBd).

F Supplement of Experimental Setup

F.1 Datasets

We consider 16 benchmark datasets in total. The statistic of the datasets is provided in Table 1. In this
paper, we take “PROTEINS-F”, “IMDB-B”, and “REDDIT-B” as the abbreviations of “PROTEIN-
full”, “IMDB-BINARY”, and “REDDIT-BINARY”, respectively. For our synthetic datasets, we
provide some examples in Fig. 1.

6

Table 1: Statistics of datasets.
Dataset # Graphs (Train/Test) # Nodes (avg.) # Edges (avg.)

BM-MT 500/200 14.3 44.5
BM-MN 500/200 18.4 56.7
BM-MS 500/200 14.0 42.8
MNIST-0 1000/500 69.4 572.2
MNIST-1 1000/500 57.9 419.6
MUTAG 1742/295 30.1 60.9

PROTEINS-F 360/223 39.1 72.8
ENZYMES 400/120 32.6 62.1
AIDS 1280/400 15.7 16.2
DHFR 368/152 42.4 44.5
BZR 69/81 35.8 38.4
COX2 81/94 41.2 43.5
DD 390/236 284.3 715.7
NCI1 1646/822 29.8 32.3
IMDB-B 400/200 19.8 96.5
REDDIT-B 800/400 429.6 497.8

F.2 Hyper-parameters

We select the key hyper-parameters of SIGNET through a group-level grid search. Specifically, the
hyper-parameters for each benchmark dataset are demonstrated in Table 2. Note that for the dataset
without ground-truth explanations, we would not tune the hyper-parameters for the subgraph extractor
but use the default ones. The grid search is carried out on the following search space:

• Number of epochs E: {10, 50, 100, 200, 500, 800, 1000}

• Learning rate lr: {1e-2, 1e-3, 1e-4}

• Layer number of encoders Lenc: {2,3,4,5}

• Hidden dimension of encoders Denc: {16,32,64,128}

• Model type of subgraph extractor EXT : {MLP,GIN}

• Layer number of subgraph extractor Lext: {2,3,4,5}

• Hidden dimension of subgraph extractor Dext: {4,8,16,32}

To ensure robust and reliable results, we also conducted a comprehensive grid search to obtain the
best hyperparameter configurations for the baselines. Specifically, for deep GLAD methods (i.e.,
OCGIN, GLocalKD, and OCGTL), we performed grid searches on both general hyperparameters
(e.g., layer number and hidden dimensions) and model-specific hyperparameters (e.g., the number
of transformations in OCGTL). Similarly, for post-hoc explainers, we conducted grid searches on
their post-hoc training iterations and learning rates. As for shallow GLAD methods, we focused on
searching for key hyperparameters such as the training iterations of detectors and kernel-specific
parameters.

F.3 Metrics for explanation performance evaluation

We tackle the explanation problem by framing it as a binary classification task for nodes and edges.
We designate nodes and edges inside the explanation subgraph as positive instances and the rest as
negative. The importance weights generated by the explanation methods serve as prediction scores.
An effective explanation method should assign higher weights to nodes and edges within the ground
truth subgraphs compared to those outside. To quantitatively evaluate the performance, we use the
AUC as the metric for this binary classification problem. A higher AUC indicates better performance
in providing meaningful explanations.

7

Table 2: Details of the hyper-parameters tuned by grid search.
Dataset E lr Lenc Denc EXT Lext Dext

BM-MT 1000 1e-2 5 16 GNN 2 16
BM-MN 500 1e-2 5 16 GNN 3 8
BM-MS 200 1e-2 5 16 GNN 2 32
MNIST-0 50 1e-2 2 16 MLP 2 16
MNIST-1 50 1e-2 2 16 MLP 2 16
MUTAG 50 1e-2 5 16 GNN 5 4

PROTEINS-F 800 1e-3 5 16 GNN 5 8
ENZYMES 1000 1e-3 5 128 GNN 5 8
AIDS 1000 1e-4 5 16 GNN 5 8
DHFR 1000 1e-4 5 128 GNN 5 8
BZR 1000 1e-4 5 128 GNN 5 8
COX2 1000 1e-4 5 64 GNN 5 8
DD 100 1e-4 5 128 GNN 5 8
NCI1 1000 1e-4 5 128 GNN 5 8
IMDB-B 10 1e-4 5 64 GNN 5 8
REDDIT-B 1000 1e-4 5 128 GNN 5 8

F.4 Implementation of GLAD methods with post-hoc explainers

Given a GLAD model and post-hoc explainer, at first, we train the GLAD model independently on
the training set. After sufficient training, the GLAD model is able to map each input graph into a
scalar, i.e., its anomaly score. To address the uncertainty of the anomaly score boundaries, we apply
a linear scaling function to map the scores into the [0,1] range and then use a sigmoid function to
convert each score into a probability for binary classification. Subsequently, we integrate the post-hoc
explainer with the probabilized output of the GLAD model and optimize the explainer accordingly.

F.5 Computing infrastructures

We implement the proposed SIGNET with PyTorch 1.12.0 [60] and PyTorch Geometric (PyG)
2.3.0 [61]. The experiments are conducted on a Linux server with an Intel Xeon E-2288G CPU and
two Quadro RTX 6000 GPUs.

G Further Supplementary of Qualitative Experiments

More visualization of explanation results by SIGNET are given in Fig. 2. In specific, we visualize
the node-level and edge-level probabilities on four datasets, i.e., BM-MT, BM-MN, BM-MS, and
MUTAG. For each dataset, the top row includes 5 normal examples, and the bottom row includes 5
anomalous examples. For MUTAG dataset, the normal examples do not have a specific rationale,
while the rationales for anomalies are -NO2 or -NH2.

8

(a) BM-MT

(b) BM-MN

(c) BM-MS

(d) MUTAG

Figure 2: Visualization of explanation results w.r.t. node and edge probabilities. For each dataset, the
top row includes 5 normal examples, and the bottom row includes 5 anomalous examples.

9

References
[1] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A

taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[2] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A compre-
hensive survey on graph neural networks. IEEE transactions on neural networks and learning systems,
32(1):4–24, 2020.

[3] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
In International Conference on Learning Representations, 2019.

[4] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

[5] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, volume 30, 2017.

[6] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018.

[7] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep graph learning: A survey.
ACM SIGKDD Explorations Newsletter, 24(2):61–77, 2022.

[8] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in neural information processing systems, volume 29,
2016.

[9] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. Graph neural networks for graphs
with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022.

[10] Joan Bruna Estrach, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and deep
locally connected networks on graphs. In 2nd international conference on learning representations, ICLR,
2014.

[11] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 3558–3565, 2019.

[12] Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention. Pattern
Recognition, 110:107637, 2021.

[13] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha Talukdar.
Hypergcn: A new method for training graph convolutional networks on hypergraphs. Advances in neural
information processing systems, 32, 2019.

[14] Xin Zheng, Miao Zhang, Chunyang Chen, Qin Zhang, Chuan Zhou, and Shirui Pan. Auto-heg: Automated
graph neural network on heterophilic graphs. In Proceedings of the ACM Web Conference 2023, page
611–620, 2023.

[15] Yizhen Zheng, He Zhang, Vincent Lee, Yu Zheng, Xiao Wang, and Shirui Pan. Finding the missing-half:
Graph complementary learning for homophily-prone and heterophily-prone graphs. In ICML, 2023.

[16] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui Pan.
Structure-free graph condensation: From large-scale graphs to condensed graph-free data. In Advances in
Neural Information Processing Systems, 2023.

[17] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed networks.
In Proceedings of the 2019 SIAM International Conference on Data Mining, pages 594–602. SIAM, 2019.

[18] Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly detection on
attributed networks via contrastive self-supervised learning. IEEE transactions on neural networks and
learning systems, 33(6):2378–2392, 2021.

[19] Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and Jing Jiang. Federated learning from pre-
trained models: A contrastive learning approach. In Advances in Neural Information Processing Systems,
volume 35, pages 19332–19344, 2022.

[20] Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, and Chengqi Zhang. Federated learning
on non-iid graphs via structural knowledge sharing. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pages 9953–9961, 2023.

10

[21] Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Chatrule: Mining
logical rules with large language models for knowledge graph reasoning. arXiv preprint arXiv:2309.01538,
2023.

[22] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large language
models and knowledge graphs: A roadmap. arXiv preprint arxiv:2306.08302, 2023.

[23] Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and
interpretable large language model reasoning. arXiv preprint arxiv:2310.01061, 2023.

[24] He Zhang, Bang Wu, Shuo Wang, Xiangwen Yang, Minhui Xue, Shirui Pan, and Xingliang Yuan. Demys-
tifying uneven vulnerability of link stealing attacks against graph neural networks. In ICML, volume 202,
pages 41737–41752. PMLR, 2023.

[25] He Zhang, Xingliang Yuan, Chuan Zhou, and Shirui Pan. Projective ranking-based GNN evasion attacks.
IEEE Trans. Knowl. Data Eng., 35(8):8402–8416, 2023.

[26] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. In Advances in Neural Information Processing Systems, volume 33, pages
5812–5823, 2020.

[27] Yizhen Zheng, Huan Yee Koh, Jiaxin Ju, Anh TN Nguyen, Lauren T May, Geoffrey I Webb, and Shirui Pan.
Large language models for scientific synthesis, inference and explanation. arXiv preprint arXiv:2310.07984,
2023.

[28] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating
explanations for graph neural networks. Advances in neural information processing systems, 32, 2019.

[29] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. Advances in neural information processing systems,
33:19620–19631, 2020.

[30] Enyan Dai and Suhang Wang. Towards self-explainable graph neural network. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, pages 302–311, 2021.

[31] Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph neural
networks. Advances in neural information processing systems, 33:12225–12235, 2020.

[32] He Zhang, Bang Wu, Xingliang Yuan, Shirui Pan, Hanghang Tong, and Jian Pei. Trustworthy graph neural
networks: Aspects, methods and trends. arXiv preprint arXiv:2205.07424, 2022.

[33] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T Schütt, Klaus-Robert Müller,
and Grégoire Montavon. Higher-order explanations of graph neural networks via relevant walks. IEEE
transactions on pattern analysis and machine intelligence, 44(11):7581–7596, 2021.

[34] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant rationales
for graph neural networks. In International Conference on Learning Representations, 2022.

[35] Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic attention
mechanism. In International Conference on Machine Learning, pages 15524–15543. PMLR, 2022.

[36] Lingxiao Zhao and Leman Akoglu. On using classification datasets to evaluate graph outlier detection:
Peculiar observations and new insights. Big Data, 2021.

[37] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong, and Leman Akoglu.
A comprehensive survey on graph anomaly detection with deep learning. IEEE Transactions on Knowledge
and Data Engineering, 2021.

[38] Xuexiong Luo, Jia Wu, Amin Beheshti, Jian Yang, Xiankun Zhang, Yuan Wang, and Shan Xue. Comga:
Community-aware attributed graph anomaly detection. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pages 657–665, 2022.

[39] Kaize Ding, Jundong Li, and Huan Liu. Interactive anomaly detection on attributed networks. In
Proceedings of the twelfth ACM international conference on web search and data mining, pages 357–365,
2019.

[40] Rongrong Ma, Guansong Pang, Ling Chen, and Anton van den Hengel. Deep graph-level anomaly
detection by glocal knowledge distillation. In Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining, pages 704–714, 2022.

11

[41] Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. Raising the bar in graph-level anomaly
detection. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI-22, pages 2196–2203, 7 2022.

[42] Xuexiong Luo, Jia Wu, Jian Yang, Shan Xue, Hao Peng, Chuan Zhou, Hongyang Chen, Zhao Li, and
Quan Z Sheng. Deep graph level anomaly detection with contrastive learning. Scientific Reports,
12(1):19867, 2022.

[43] N TISHBY. The information bottleneck method. In Proceedings of the 37-thAnnual Allerton Conference
on Communication, 2000, 2000.

[44] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015 ieee
information theory workshop (itw), pages 1–5. IEEE, 2015.

[45] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. In International Conference on Learning Representations, 2017.

[46] Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust represen-
tations via multi-view information bottleneck. In International Conference on Learning Representations,
2020.

[47] Chang Xu, Dacheng Tao, and Chao Xu. Large-margin multi-view information bottleneck. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 36(8):1559–1572, 2014.

[48] Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Graph information bottleneck
for subgraph recognition. In International Conference on Learning Representations, 2021.

[49] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve graph
contrastive learning. Advances in Neural Information Processing Systems, 34:15920–15933, 2021.

[50] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-aware
graph contrastive learning. Advances in Neural Information Processing Systems, 34:30414–30425, 2021.

[51] Junchi Yu, Jie Cao, and Ran He. Improving subgraph recognition with variational graph information
bottleneck. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 19396–19405, 2022.

[52] Chunyu Wei, Jian Liang, Di Liu, and Fei Wang. Contrastive graph structure learning via information
bottleneck for recommendation. Advances in Neural Information Processing Systems, 35:20407–20420,
2022.

[53] Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. Advances in Neural
Information Processing Systems, 33:20437–20448, 2020.

[54] Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Cheng Ji, and S Yu Philip. Graph structure
learning with variational information bottleneck. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 4165–4174, 2022.

[55] Suseela T Sarasamma, Qiuming A Zhu, and Julie Huff. Hierarchical kohonenen net for anomaly detection
in network security. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(2):302–
312, 2005.

[56] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for anomaly
detection: A review. ACM computing surveys (CSUR), 54(2):1–38, 2021.

[57] Philipp Liznerski, Lukas Ruff, Robert A Vandermeulen, Billy Joe Franks, Marius Kloft, and Klaus Robert
Muller. Explainable deep one-class classification. In International Conference on Learning Representations,
2021.

[58] Hongzuo Xu, Yijie Wang, Songlei Jian, Zhenyu Huang, Yongjun Wang, Ning Liu, and Fei Li. Beyond
outlier detection: Outlier interpretation by attention-guided triplet deviation network. In Proceedings of
the Web Conference 2021, pages 1328–1339, 2021.

[59] Wonwoo Cho, Jeonghoon Park, and Jaegul Choo. Training auxiliary prototypical classifiers for explainable
anomaly detection in medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 2624–2633, 2023.

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems, 32:8026–8037, 2019.

[61] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

12

	Definitions of ``Explainability'' and ``Interpretability''
	Related Work in Detail
	Formulations of GNN and HGNN
	MSIB Loss Computation
	Methodology Discussion
	Algorithm
	Discussion of SIGNET v.s. GSAT
	Complexity analysis

	Supplement of Experimental Setup
	Datasets
	Hyper-parameters
	Metrics for explanation performance evaluation
	Implementation of GLAD methods with post-hoc explainers
	Computing infrastructures

	Further Supplementary of Qualitative Experiments

