Part

Appendix

Table of Contents

IA_Useful Lemmas| 13
|A.1 Lipschitz Continuity of w(@)[ . . . .. ... ................ ... 13

[A2" Lipschitz Continuity of Vw - .......................... 14
[A3 Smoothness of J(O)] . . . . . o v v v 16

[B_Non-asymptotic Analysis under the i.i.d. Setfing| 18
IB.1 " ‘Tracking Error Analysis under the 1.1.d. Setting| . . . . . . .. ... ... .... 18
IB.2" Proof under the 1.i.d. Setting| . . . . . ... ... ... ... ... ... 22
IB.3 Choice of Step-sizes| . . . . . . . . . ... 25

|C  Non-asymptotic Analysis under the Markovian Setting| 26
|C.1 Tracking Error Analysis under the Markovian Setting|. . . . . . ... ... ... 26
|C.2  Proof under the Markovian Setting] . . . . .. ... ... ... ... ... .. 32
IC.3 Choiceof Step-sizes| . . . . . . . . . ... 35

D ) 35
ID.I_GarnetProblem| . . . . ... ... 35
ID.2° Spiral Counter Example] . . . . . .. ... ... ... ... ... .. .. ..., 36

We first introduce some notations. In the following proofs, ||a|| denotes the ¢5 norm if a is a vector;
and || A|| denotes the operator norm if A is a matrix.

In Appendix we prove the Lipschitz continuity of some important functions, including w(0), Vw(9)
and the gradient V.J () of objective function. In Appendix Bl we present the non-asymptotic analysis
for the i.i.d. setting. In Appendix [C] we present the non-asymptotic analysis for the Markovian
setting. In appendix [D] we present some numerical experiments.

A Useful Lemmas

A.1 Lipschitz Continuity of w(f)
In this section, we show that w(6) is Lipschitz in 6.
Lemma 1. Forany 6,0 € RN, we have that
lw(8) — w (0| < Loll6 — 6", 2D

CiD,
where Ly = s (14 79)C2 + (rmax + (14 7)C0)D ) + 257 (rmas + (147)C).

Proof. Recall that
w(0) = E,m [¢0(S)0(S) ] Epms [p(S, A)ds, a,5(0) o (S)]
= Ay "Eum [p(S, A)ds a5 (0) 0 (5)], (22)

hence we can show the conclusion by showing that A, " and E =, [p(S, A)ds, 4.5 (0)de(S)] are both
Lipschitz and bounded.

From Assumption 2] we know that

[Ag Ml < (23)

1
A
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‘We also show that
145" = A5
= |45 A Ayt — Ayt Ag G|
= | A5 (Ag — Ag) Ay
204D,

<
AD

16— 6", 24)

which is from the fact that |49 — Ag|| = [|Eum [00(S)da(S)T] — Epum [do (S)der (S)T]]| <
20, D, 6 0'].

By Assumption and the boundedness of the reward function, it can be shown that for any § € RY
and any (s,a,s’) € § x A x 8,
|0s,a,5 (0)] = [1(s,a,8") +7Vy(s") = Vo(s)| < Tmax + (1 +7)C. (25)
We then show that J5 , ¢ (0) is Lipschitz, i.e., for any 6,6’ € RY and any (s,a,s’) € § x A x 8,
|6s,a,s’ (9) - 6s,a,s’(9/)|
= [YWVa(s") = Va(s) =1V (s') = Var ()]
< (y+ 100 -0 (26)
Hence, the function ||E,,~, [p(S, A)ds, 4,5 (8)pe(S)]|| is Lipschitz:
[Epums [p(S, A)ds.a,5 (6)do(S)] — Bum [p(S, A)ds, a5 (6) o ()]
= [Bum [p(S, A)ds.a.5(0)$0(S)] = Epum [p(S, A)ds.a.50(0")do (S)]
+ Eum [p(S, A)ds,a,5/(0")06(S)] — Eume [p(S, A)ds,a,s: (0)dor (S)]|
< By [p(S, A)ds.a.5(0)do(S)] = Eum [p(S, A)ds a5 (0") e (S)]
+ By [0(S, A)ds,a,5:(6")d6(S)] — Bum [p(S, A)bs,a.5(6")dar ()]
< By [p(S, A)[65,4,5/(0) = 05.4,5 (0")][| 06 ()]
+Eum (5, A)lds.a.5:(0)[|66(S) — dar ()]

(a)
< (1 +7)C300 = 0] + (rmax + (1 +7)Cy)Dy |10 — 6|
= ((1+C; + (rmax + (1 +7)Cy)Dy) 16 — 0|, 27)

where () is from (26) and the fact that E,,~, [p(S, A)] = 1. Also ||E,=, [p(S, A)ds, 4,5 (8)pe(S)]|l
can be upper bounded as follows:

[y [p(S; A)ds, 4,50 (0)da (S)]]| < Cop(rmax + (1 +7)C). (28)
Combining (23), (24), (28) and (27), we show that w(-) is Lipschitz in 6:
leo(8) — w(®)]]
1 2 20{% /
< | 3 (@ OE+ s + (142)C) Do) + — = (rmax + (L+7)C) | 16— ¢/
éLWHH_e,Ha (29)
where L, = - ((1 +9)C2 + (Fmax + (1 + V)CU)DU) + 20;3  (Fma + (14 7)Cl). O

A.2 Lipschitz Continuity of Vw(6)

In this section, we show that Vw(#) is Lipschitz.
Lemma 2. Forany 0,0' € RY, it follows that

IVw(0) = Vw(@)[l < Do |16 — ¢, (30)
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where

CyL, +2D? + D,C, 8C2D?
Dw = << ] )\21) ¢) + ;3 C(z)(’l"max + C’U + 'YC'U)

4C,D,
;)2 (0425(1 +’Y> +Dv(rmax+ (1+’7)CU>)

L 3CoDu(1479) + Lu(rmax + (1 4+7)C0)
Ao '

+

€29

Proof. Recall the definition of w(f) = A, 'E,= [p(S, A)ds, 4,5 (0)pe(S)], hence we have
Vew(0) = =451 (VA9 Ay "B [p(S, A)s,a,5(0) 0 (S)]

+ Ay "By [V (S, A)ds, 4,5 (0)¢0 (9)), (32)
where the tensor V Ay can be equivalently viewed as an operator: RY — RVN*N je VAy(w) =
V(Agw) for any w € RV,

We show that the operator norm of V Ay is bounded as follows:

IVAg|| = sup [[VAg(w)

flwll=1

= sup [[V(4gw)]

flwll=1

= sup ||[VE,[¢6(S)pa(S) w]]|

lwl=1

= sup By [(é9(S) Tw)Ve(S)] + Eumi [66(S) (Vo (S) "w) ]|

—20,D,. (33)

The Lipschitz continuous of V Ay can be shown as follows:
IVAg — V Ay

Sup IV(Agw) = V(Agw)

wl=1

sup [[Eyme [Vo(S)(06(S) " w) + (Vo(S) "w)de(S) " — Voo (S)(¢er(S) " w)

lw]=1
— (Vo (S) "w) e (S) ]|
< sup (CyLy +2D% + D,Cy)|10 — 0| ||w]|

Juwll=1

= (Cy4L, +2D% + D,Cy)|0 — 0. (34)
Then we conclude that the operator norm of —A,'(VAy) is upper bounded by ZC"’ Dy and is
Lipschitz with constant (C“’L”Hﬁ?JrD” o) 4 4Cf2D3 It can be further seen that — A, (VAg)AG_ !
is upper bounded by 20"’ Dy and Lipschitz with constant (C¢L'“+2%5+D”C¢) + SCE’%D?’.
Recall that we have shown in (28) that

[Eums [0(S, A)ds a5 (0)¢0(S)] — Eumo [(S, A)ds a5 (0)der (S)]]
< (1 47)CF + (rmax + (1+ v) ) o) 16 =01 (35)

and it is upper bounded by Cy(rmax + (1 + 7)Cv). Hence we have that

—Ay (VA@)A_IE =, [p(S, A)ds 4,5/ (0)pe(S)] can be upper bounded by (rmax + (1 +
2
)Cv) D , and it is Lipschitz with constant ((C¢L”+2ﬁz+D’”C¢) + 80 D > Cop(Tmax + Cy +

v

~Cy) + 2C¢D“ ((1 +7)C2 + (rmax + (1 + W)CU)DU) =Ny
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For the second term of @), we also show it is Lipschitz as follows. First
note that Vs o s (0)de(s) = Visas(0)pa(s)’ + 0sa,5(0)Ve(s), hence we know
By [V (S, A)ds,a,5(8)$e(S)] can be upper bounded by CF(1 + ) + Dy (rmax + (1 +7)Ch),
and is Lipschitz with constant 3C3D,(1 + ) + Ly(Tmax + (1 + 7)C,). Finally we con-
clude that the second term in 32) A, 'E,;~ [Vp(S, A)ds 4,5/ (6)de(S)] is Lipschitz with constant

2P (CB(1+9) 4 Do+ (14+7)C,) ) + 2PN st 1)) & g

Hence Vw(#) is Lipschitz with constant L 4 + L', = D,,, where

CyL, +2D2% + D,C. 8C2D?
Dw=<(¢ 2Dy + DuCo) | 5% Cp(Fmax + Cy +7Cy)

A3 A3
4Cy D,
+ ;12) (C<225(1+’Y) +Dv(rmax+ (1+’Y)CU))
4 3CsDu(l+7) +L;(rmax + (1 +7)C) 56
O

A.3  Smoothness of J(6)
In the following lemma, we show that the objective function J(6) is L j-smooth. We note that the
smoothness of J(6) is assumed in [Xu and Liang, 2021]] instead of being proved as in this paper.
Lemma 3. J(0) is L j-smooth, i.e., for any 6,6 € RY,

IVJ(0) = VIO < Lyl =], (37
where
2

2
3 —2 (romax + (1 +7)Cy)

v

Ly =2((1+7)C + (rmax + (1 +7)Cy)Dy) + 2y <O¢L +2D,
2((1)1,]%w + C¢Lw + (1 + ’}/)C¢) D, R,
+ (RwLv + DyLy,) ((rmax + (1 +7)Cy) + C¢Rw)). (38)

Proof. Before we prove the main statement, we first drive some boundedness and Lipschitz properties.
Recall that

=T By | (015, s (0)00(5) — 20(5, A)on()n(S) )
~hs.as (&w(e)))], (39)
w(0) = Eum [90(S)d0(S) ] Epm [0(S, A)ds,a,50 (6)d0(S)], (40)
hs a5 (6, w(0)) = (p(3, @) 5,0, (8) — Po(s) " w(6))V2Vo(s)w(B). (41)
We have shown in Lemmathat for any § € RY and any (s,a,s’) € § x A x 8,
|5s7a,8’(6)| = |r(s,a, 3/) + 'YVO(S/) - VG(S)‘ < Tmax + (1 + 'Y)Cv§ (42)
and that
[Eyms [p(S, A)ds,a,5(0)do(S)] — Epms [p(S, A)ds,4,57 (0")dor (S]]
< (1 49)CF + (rmax + (1+ v) ) w) 10 =0 43)

Also it is easy to see from the definition that

O A
[w(@)]] < )\4) (Pmax + (1 +7)Cy) = R.,. (44)
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Hence the Lipschitz continuity of E,~, [p(.S, A)¢e(S")¢e(S) Tw(6) can be shown as follows
[E,im [0S, A)po(S")pa(S) TNw(0) — Eyur { (5, A)«bef(S’)w ||
< [[Bpma [o(S, A)ga(S")d0(S) TTew(6) = By [0(S, A) o (S 8l

+HE w[p(S, A)¢(S")¢6(S) " w(? ) ,m,[ (S,A)¢9,(S’)¢9,( ) Tw(@)]]

g CiLu||0 — || + 2C4 Dy R, |0 — ¢
2

_ 2
- <C¢Lw +2D, 5"

% (Famax + (1 +7)C )) 16 -0, (45)

where (a) is due to the fact that w(f) is Lipschitz in (ZT) and the fact that
im0 [p(S, A) (") 00(S) '] = B [0(S, A)dor (S)dor (9) ][] < 2Co Dull6 — 0" (46)

We then show that the function hs 4 5 (6, w(6)) is Lipschitz in 6 as follows. We first note that for any
se€8and b, € RV,

[¢o(s) w(8) — dar(s) w (@]
< llda(s) "w(8) — dor(5) "w(B)[| + | (5) ' w(B) — por (5) "w (&)
< (DyRy, + CyuLy) |60 — 6. 47)
This implies that for any (s, a,s’) € 8§ x A x S and 6,6 € RV,
(s, a)ds,a,5(8) — ¢9(5)TW(9) — p(s,a)05,0,5 (0") + ¢9/(3)TW(9/)H
< (DyRy + CyLu + (1+7)Cyp(s, ) |0 — 0']]. 48)
We also show the following function is Lipschitz:
IV2Ve(5)w(8) — V2V (5)w(8)]|
< [[V2Va(s)w(8) — V2V (s)w(O)]| + [V Ver (8)w(8) — V2V (s)w(8)]]
< RwLVHQ - QIH + DvaHQ - 9/”
= (RyLy + D,Ly) |60 — '] (49)
Combining (@8) and {@9), it can be shown that h; , s (8, w(6)) is Lipschitz in 6 as follows

1s,a,57 (0, w () = hs a5 (6, w(0))]
= || (p(s,0)05,0,5 () = Po(s) T w(B)) V*Va(5)w(6)
= (p(s,0)05,0,5(8") = dor(5) Tw(6)) V*V (s)w ()]
< ((DyRa + CylLu + (1+7)Capls, @) DyR) 10— &
+ (RuLv + Dy L) (p(s,a) (rmax + (1 +7)Cy) + Co R0 — 0] (50)
From the results in (@3)), @3) and (50), it follows that
IVJ(0) = V(@)
< 2|[Epum [p(S, A)ds,a,s0(0)0(S) — p(S, A)ds,a,s:(8") e (S]]
T2y (B [0(5, A)0(S)60(S)Tw(0) — (S, A)dur(S')r (5)Tw(®")] |
+2[[Bym [hs.a,s0(0,w(0)) = hs a5, w(0))]]]
<2 ((1+79)C3 + (rmax + (1 +7)C0) Dy ) 0 — 0|
fy (Tmax + (1 + 'Y)Cv)> 16— 6"l
+ 2Bym [(DuRey + Cy Lo, + (1 4+ 7)Cop(S, A)) Do Ru)][|0 — ||
+ 2E,m [(RwLv + Dy L) (p(S, A) (Fmax + (1 +7)Cy) + CsRu)][|0 — ¢

+2y <C¢L +2D,
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@

< 2((149)C2 + (rmax + (1+9)C)Dy) [0 — 0|
2
% e+ (1470 )) o~

2((DyRy 4 CyLu + (1 +7)Cy) Dy R,,
+ (RwLV + Dva) ((rmax + (1 + '7)011) + C¢>RW)) ”9 - 9IH
= L6 =o'l (51
where (a) is due to the fact that E =, [p(S, A)] = 1, and

+2y <C¢L +2D,

2

Cs
Ly =2((1+7)C3 + (rmax + (1 +7)Cy)Dy) + 2y <C¢L + 2D, 3

(rmax + (1 + 7)0 )>
2( (Dva + C¢Lw + (1 + ’7)C¢) D,R,
+ (RuLV + Dva) ((Tmax + (1 + '7)011) + C¢Rw)) (52)

This completes the proof. O

B Non-asymptotic Analysis under the i.i.d. Setting

First we introduce the off-policy TDC learning with non-linear function approximation algorithm
under the i.i.d. setting in Algorithm 2] We then bound the tracking error in Appendix [B.T} and prove
the Theorem [T|under the i.i.d. setting in Appendix

Algorithm 2 Non-Linear Off-Policy TDC under the i.i.d. Setting
Input: T, o, B, 7, mp, { Vgl € RV}
Initialization: 6,,w,

1: Choose W ~ Uniform(0, 1,...,7 — 1)

2: fort=0,1,....,W —1do

3:  Sample O; = (s¢, as, 74, ;) according to p™

_ m(aslse)
Pt = ﬂb(z;t|sft)

6¢(0¢) = r(st, ar, sp) + Vo, (sy) — et(st)
ht(etawt) = (Pt5t(9t) — ¢, (St) ) V2 Ve, (St)wt
wipr = Mg, (wi + B (—do, (s1) e, (51) Twr + pedi(0:)do, (51)))

8: b1 =10, + Q(Pt5t(9t)¢at (1) — peo, (5}) o, (s¢) Twy — ht(etth))
9: end for

Output: Oy

AN A

We note that under the i.i.d. setting, it is assumed that at each time step ¢, a sample O; = (¢, at, ¢, ;)
is available, where s; ~ p™ (+), a; ~ mp(+|s¢) and s} ~ P(+|s¢, az).

B.1 Tracking Error Analysis under the i.i.d. Setting

Denote the tracking error by z; = w; — w(6;). Then by the update of w, the update of z; can be
written as

241 = Wil — w(9t+1)
=wy + B (—¢9t (St)¢9t(5t)TWt + Ptét(et)(bet(st)) — w(0r41)
= 2+ w(0:) — w(Os1) + B (o, (s0)¢0, (50) T (2 + w(6r)) + pe6:(6r)
=zt +w(0;) — w(Ory1) + B (—Ag, (5t)2t — Ag, (5¢)w(0:) + pids(0:) o,
where Ay, (st) = be, (5¢)ds, (s¢) . It then follows that

¢0t (St))
(s¢)) (53)

[t
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= ||zt + w(6:) — w(Orr1) + B (= Ap, (s1) 2 — Ap, (50)w(02) + pede(0:) g, (s1))I”
= [|zel* + [|w(8:) — w(Or41) + B (=Ap, (50) 2t — Ap, (5:)w(B:) + pi6:(0:) o, (s1)) |12

+ 2(2t, w(0r) — w(041)) — 28(z1, Ap, (51)21) + 2B(2t, — Ao, (st)w(0r) + pe6:(0r) do, (s1))
< lzell® + 282 (= Ao, ()2 — Ap, (s)w(8:) + pi0:(8e) o, (50)) ||

(a)
+ 2[|w () — w(Ore1)II” + 2(z,w(6:) — W(0r41)) —26(z1, Ap, (50)2t)
(b (c) (d)
+ 2B(2t, —Ag, (st)w(0:) + pide (1) do, (5t))- (54)
We then provide the bounds of the terms in (34) one by one. Their proofs can be found in Appen-

dices[B.I.1lto[B. 1.4

Term (a) can be bounded as follows:
26%|| (— A, (s0)2¢ — Ap, (50)w(0r) + pede(00)da, (50)) I < 452CZ |l zel® +46°Cyr,  (55)

3 2
where Cy1 = (%(rmax + (14 9)Ch) + pmaxCo(Tmax + (1 + v)Cv)) )
Term (b) can be bounded as follows:
2]l () — w(Oe1)|* < 40 LE Ly |lz]|* + 40 CF L2, (56)
where C’g = pmaxc¢ (Tmax + (1 +'Y)Ofu) +YPmaxI Cé +D,R, (Rw C(b + Pmax (Tmax +Cy +'YO'U))-
Term (c¢) can be bounded as follows:

2(z,w(0;) — w(B41))

1 L, a?C3D,
< 2Ly Ly + 5oLy +46°CoLy Do)l + a4 IV T(6)]2 + ——= + 2am(6:, 20, 0),
g

(57)

where 1 (0, 2¢,0¢) = — <zt, Vw(6) (Gt+1(0t,(ﬂ(9t>) + %(et))>.
Term (d) can be bounded as follows:
—2B(z1, Ap, (s0)2) < =281 2l” + 2B(z1, (Ao, — As, (51)) 1), (58)
where Ag = E,m, [¢0(S)pe(S) "] is the expectation of Ag(S).
By plugging all the bounds from (53)), (36), (37) and (38) in (54), it follows that

Zt11 2
Hg ?1 |L AB%CE + 40’ L2 L] + 2aLy Ly + oLy, 4 80°CyLg D,y — 28X, | 212
- iaLwHVJ(Gt)Hz +45°Cy1 +40’C2LL + O‘QCL;;D“ + 2amc 0y, 2, Oy)
+28{z1, (Ag, — Ag, (50))20) +28(z0, —Ag, (50)0(01) + pr3i(0), (51))
2 (1—q)llz*+ O‘i” IVJ(0))1? + 487 Cy1 + 40>CI L2 + aziﬂ + 2amg (0t, 2, O)
+ 28(z1, (Ao, — Ao, (51))2e) + 2B(zt, — Ao, (st)w(6:) + Pt5t(9t);9t(3t)>a (59)

where ¢ = 28\, — 452055 — 40 L L — 2Ly Ly — oLy — 8¢°CyLyD,,. Note that g = O(3 —
B% — a — a?) = O(B), hence we can choose o and 3 such that ¢ > 0.
Note that under the i.i.d. setting,

E [nG(0t, 2t, Or)] = E [E [n6 (01, 2t, Or)|F3]]

F

)

. wz(ot)>

— <Zt, VQJ(Gt)E

(Gtmot,w(at» n
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=0, (60)

which is due to the fact that E,,~, [Gy11(6,w(8))] = — Y2 when 6 is fixed, and F; is the o-field
generated by the randomness until 6; and w;. Similarly, it can also be shown that
E[(zt, (Ag, — Ag,(st))zt)] =0 (61)
E[(zt, —As, (st )w(0:) + pee(6)dp, (s¢))] = 0. (62)
Hence the tracking error in (39) can be further bounded as
al,, OéZCBDw
Efllze+1]%] < (1 = )E [[|2¢]|*] + — E [IVT(8:)]1%] +48°Cgr + 4a*CILE + Lig-
g
(63)
Recursively applying the inequality in (63), it follows that
2 t 2 aly ; t—i 2
E [J2ll?] < (1- )20l + 222 S0 = ) E [V (6]
i=0
1 a2C3 D,
+ - [48°Cp +40°CILL + —2— |, (64)
q ' L,
and summing up w.r.t. ¢ from 0 to 7" — 1, it follows that
T-1 T-1 T—1 t
—o E [ll2]?] o (-9 al :
t=0 < t=0 2 w 1— tflIE 1|12
o S Sl 4 G Y 30— R (IVI6)P]
1 a2C3D,,
+ - [48°Cp1 +40°COL, + —2—
q Ly
T-1
@ llzol® | alw 3o E [IV7(80)]%]
- Tq 4q T
1 a?C3D
+ = [48%Cy + 4020202 + — 2
q Ly
_of L el E[IVIEIIP] 8 ©5)
T8 B T ’

where (a) is due to the double-sum trick, i.e., forany z; > 0, 37" S2'_ (1—¢)" ey < 21—
Q) < a S " s, and the last step is because ¢ = O(5).

B.1.1 Bound on Term (a)

In this section we provide the detailed proof of the bound on term (a) in (33).

It can be shown that

I (— Ao, (st)zt — Ao, (s1)w(01) + pe6:(0:)do, (51)) ||
< 2| — Ag, (s0)zl|* + 2I| — Ao, (s)w(62) + pede(80) o, (s0)]I?

2
(a) c3
< 203|z* + 2 (A‘j(rmax + (14+7)Cy) + PmaxCo(Tmax + (1 + 7)%)) , (66)

where (a) is from the fact that || Ag(s)|| = [|¢a(s)¢e(s) " || < CZ and the bounds in @2) and ([@4).

B.1.2 Bound on Term (b)

In this section we provide the detailed proof of the bound on term (b) in (36).
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We first show that Gy 11 (6, w) is Lipschitz in w for any fixed 6. Specifically, for any 6, w;,ws € RY,
it follows that

[Gir1(0,w1) — Grya (8, w2)|

= [|pe6:(0)pa(se) — Ypedo(s)po(se) Twi — he(0,w1) — pede(0)do(se) + Yprda(s)da(se)  wa
+ he (0, wo)||

< ||ht(0aw1) - ht(aaWQ)” + ||70t¢9(52)¢9(5t)Tw1 - VPtQSG(S;)QS@(St)TWZH

(a)
< (C¢Dva + DU(C¢Rw + pmax(rmax +Cy+ ’VCU)) + meaxc(%) ||W1 - W2||

£ Lyllwi — wal], (67)

where Ly, = D, (2C4 Ry + pmax(Tmax + Cv +7Cy)) + ’ypmaXC;, and (a) is from the Lipschitz
continuous of h:(6,-), i.e.,

Hht(97w1> - ht(97w2)

| S pmax(rmax + (1 + 'Y)OU)DUHCul - WQH + 20¢D1)Rw‘|w1 - WQH-
6

We note that to show (67), we use the bound on wy, which is guaranteed by the projection step. And
this is the only step in our proof where the projection is used.

Then it follows that
10141 — Ocll = |G (0, wi) ||
< oG (0, wi) — Gria (0, w(0r)) + Grya (0, w(6:))|
< algllzll + al|Gia (0, w(0:)) |l
< aLgllz| + aCy, (69)
where Cg = pmaxCd) (rmax"_ (1 +7)Cv) +'7pmawaC$s +D’UR(.U (Rw Cd) +pmax(rmax +Cv +’ch)),
and the last step in (69) can be shown as follows
[Geq1(0r, w(6:))l
= [1p6:(0)da(s1) — vprdo(sy)da(s:) w(B) — he(6,w(0))]|
S pmaquS(Tmax + (1 + 'Y)Ov) + 'YpmawaCi + Dva (Rw0¢7 + pmax(rmax + CU + ’YCU))

(70)
Using (21)) and (69), it follows that
lw(0) = WO )l < LollOr41 = Ocll < Loy Lgl|ze]| + aCy L, (1)
and
[w(Br) — w(@r1)||* < 20°L L2 || 2e|1* + 20°CF L. (72)

This completes the proof for term (b).

B.1.3 Bound on Term (c)
In this section we provide the detailed proof of the bound on term (c¢) in (57).
Consider the inner product (z;,w(6;) — w(0;41)). By the Mean-Value Theorem, it follows that
(z6,0(00)) = (2,w(0r41)) = (2, w(0:) — w(O0r41)) = (21, Ve(0) (0 — Op41)),  (73)
where 0, = c; + (1 — ¢)0, for some ¢ € [0, 1]. Thus, it follows that
(26, w(0) — w(0r41))
= (2, Vw(0:)(0: = Or11))
= —a(z, Vw(0,)Grr1(0:, wr)

=—a <Zt, Vw(fy) (Gt+1(9t,Wt) — Gya1(01,w(0:)) + Gigr (0, w () + VJQ(9t)>>
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ta <zt,Vw(ét)VJ(9t)>

2

= —« <Zt, Vw(ét) (Gi1(0s, i) — Gt+1(9t7w(9t)))> +a <Zt7 Vw(ét)VJ(et)>

2
o < V() (Gm“’t’ w(®)) + Wa(et)> >
VJ(0:) ‘ - <Zt, Vw(0) <Gt+1(9tvw(9t)) ™ vJ2(€t)>>

2
ta <zt, (Veo(0r) — Veo(0))) (Gt+1(9t7w(9t)) L 310 >>

(a)
L aratylad? + oLl |

1 al,,
< aLuLyllal? + SaLullal? + “E2 V6|7 + one(Be . 0)
R VvJ(o
+alallIVel6:) = Tw @l | Genr Onto) + 5|

®) 1 al, .
< Ly Lyl + 504Lw||2t||2 + THV'](G:&)H2 + ane(0r, 2t, Or) + 2aCy Dy [|[[[0 — 04|

al,
8

(c) , 1 )
< aLuLyllz? + SaLulzl? +
+2aCy Dy |2 ||]|01 — Op41]]

||VJ(9t)||2 + 0477G(9t7 Zt, Ot)

() 9 1 o, oLy 2
< aLuLyllall? + 5oLl + S22V I0) 2 + an(6r, 2, 0,
+ 2aCy Dy, || 2t[|(aLg | 2t ]| + aCy)

(e) 1 al,
< aLyLgllz|” + 504Lw|\2t||2 + THVJ(@)HQ + ang (04, z¢, Oy)

02
+20°Cy D, (2L92t||2 + g)

AL,
1 2 o oLy 2, 03Dy
< (alwlg + gaLe +40°CoLyDo)llzt|” + == IVIO)I" + —7— + ang (b, 2, Or),
9
(74)
where G (0,2t,0:) = — <zt,Vw(9t) (Gt+1(9t,w(9t)) + %(et))) (a) is from the Lipschitz

continuity of Gy41(6,-) proved in (€7), (b) is from the Lipschitz continuity of Vw(6), which is

shown in (30), (c) is from the fact that ||6; — 6] = (1 — ¢)|[|6; — Or11|| < ||0¢ — Oy41]], (d) is from
2

the bound of ||0; — 6;1|| in (69), and (e) is from the fact that Cy || z¢|| < Lg||2¢|* + ngJ'

This completes the proof.

B.1.4 Bound on Term (d)

In this section we provide the detailed proof of the bound on term (d) in (38).

It can be shown that

—28(z1, Ao, (st)ze) = =20z, Ag, zt) + 20(zt, (Ao, — Ao, (S¢))2t)
< —28N\|zel|” + 28(zt, (Ao, — Ap, (s1)) ), (75)

where the inequality is due to the fact that (z;, Ag, 2;) = 2, Ag, 2 > Ar(Ap,)||2e )17 > Ao |2 ]|%.

B.2 Proof under the i.i.d. Setting

In this section we provide the proof of Theorem [T|under the i.i.d. setting.
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From Lemma we know that the objective function .J(#) is L ;j-smooth, hence it follows that
L
J(0r41) < J(0) + (VI (00), 01 = 00) + 7 0051 = 00

L
= J(0:) + a(VJ(0:), Gry1(0s,wi)) + 7‘7042||Gt+1(0t,wt)||2
VJ(0,)
2

= J(0:) — « <VJ(9t)7 —Gii1(0r,wi) — + Gry1(0r,w(0:)) — Gt+1(9t,w(9t))>

Ly
= SIVIE)I? + 55 0| Gri (Br, )]
= J(0:) = a(VJ(0r), =Gr11(0s,wi) + Giy1(0,w(0r)))

VJ(6 Ly
@ (V7000 S5+ Gnr(000(00) ) = FITIO + G Grra (B

VJ(6:)
2

L J00) + aLy| VIO w(8:) — il + o <W<6t>, +Gt+1<et,w<et>>>

(07 LJ
- §||VJ(9t)H2 + 7@2||Gt+1(9t7wt)\|2

VJ(6:)
2

€ 70 + aLy V16 2] + a <w<et>, ; Gt+1<et,w<et>>>

L
~||w<ot>u2 “La? (2122 +2C2) (76)

where (a) is from (67) and (b) is because [|0;11 — 04| = a||Gis1(0s, wy)|| < aLglz]| +aCy, whose
detailed proof is provided in (69). Thus by re-arranging the terms, taking expectation and summing
up w.r.t. t from O to T' — 1, it follows that

LT
5 Z [IV.7(6:)]1%]
t=0
T-1 T—1 T—1
< —E[J(0r)] + J(B0) + aLgy| > EIVI@)2]y| D Elllzell?] +a’LsLy Y Ell|=])’]
t=0 t=0 t=0
+a’CoLT, (717

which is due to the fact that under the i.i.d. setting,

E KVJ(H,E), v‘fz(et) + Gt+1(9t7w(9t))>:|

_E wat),ua [Wfﬁ) + Gt+1(9t,w(6t))‘3’t} >} 0, (78)

and the Cauchy’s inequality

T—1
E[[[VJ(60)|1z]l] < JZE [IV.7(0,)]12] $ZE AR (79)
t=0

Thus dividing both sides by <5-, it follows that

T—

,_.

t=0

o EVI(6)
T
20000 =T,y [ S BNV F E[=0]?)
- Ta
+2aLJL§—Zf=0 T[”Zt” } +2aC2Ly, (80)
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where J* £ ming J(6).
Recall the tracking error in (63):

o E [l

T
[l | oL Ximo E[IVI@IP] | 1 (. 2c2pe , 0D
< + 4%C,1 +40?C2 L2 + —2 ). (@381
Tq 4q T q g L,
We then plug in the tracking error and obtain that
o0 EIIVJ(©)]°]
T
WO =T) oz, o, \/z B 601
1 0 2C3D,,
HZOH +al, Z E[IVJ(6,)|? ] (4520 | 402C2I3 a2C?3 )
4q T q Ly
o [ Iz0l1? iZ E [[[VJ(6:)]]
+2aLJLg< Tq + L, “ T T
1 2 2272 a*Cy D,
+ 6 <4ﬁ Cgl + 4o Cng + Ti]
T—1
— J* o EJIIVJ(6,)]?
2 203D,
oL F B9 01 \/mn (100 + anncyr + SB02)
9
R EN iZ [ij(et)”ﬂ
+204L']Lg< + aL,, “ g T
1 o?2C3D,,
+ p (452091 +40?C2LE + Lg> ) (82)
9

where the last step is from the fact that \/z +y < \/z + /y for any x,y > 0. Re-arranging the
terms, it follows that

<1 ;oL onLJL?]Lw> =0 E[IVJ(0:)]?]
_ L, _

2q T

_J* 203D,
S ( (00) ) 4 20{02[/] 4 200 LJL2 ||Z0H 1 /BQCgl + 4@202[13 + aiq
Tq g ! Ly

2 QCng
+2L \/Z |VJ 9t || \/”ZOH 4320 4 4042C2L3J 4 aLg) (83)
g

2 2
Note that (Lg © L) =0 (\/7 + 2 ) hence we can choose a and 3 such that

(1 - L, ‘“;” — %) > 1. Thus (83) implies that

S E[IVI(8)]?]
T
4(J(00) — J*) 2 2 ||ZOH2 2 2272 O‘QCSDW
<« N Y ) __97«
< e Gy +dalyl | Fp s+ (45 +aelCRLL + —
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2 QCSDW
+aL \/Z ”W (601] \/”20” 4520 +4a202Lg+0‘L9>. (84)
g

2 23
Denote U = 74””;;“’ ) £ 4aC2L, + 4aLJL§ (—”geq“ +1(482Cp + 4020212 + T222 ),

. Then it follows that

and V = 4Lg\/'ZT°'2 +1 (452091 +4a202L2 +

azchw
q Ly

J(6;) J(0
o EIVI6OL) <V¢z EIVIO01 )
which further implies that
o ElIVI@)I?]
T
<VE42U
_ 2 HZOH 2 2072, @CDuy 8(J (o) — J*)
_16Lg< To "3 (4,8 Cor +4a*CLE + —- + =
sac2r, +sar,2 (1200 1 (4gec, 4 a2y @GP
+8aCyL;+8aL,L, Ty qﬁ 1+t4aCgly + I,
= (1617 + 8aLsL}) lzoll® 4B°Cq1 + 4*C L2 +7QQC§D“
g Iy Tq q 9w L,
8(J(6) — J*
1 86 = ) (;)a )+8aC§LJ
1 1
=0 (g5 +5+ 74)
111
—O(T1 . +W+T1—b>' (86)

This completes the proof.

B.3 Choice of Step-sizes

As the proof is complicated and we have made several assumptions on the step-sizes, in this section
we summarize all the assumptions we made on the step-sizes. This would help the readers to have a
more clear understanding of the choice of « and .
In the proof under the i.i.d. setting, we made two assumptions on step-sizes. In (59), we assume

q =28\, —46°C3 — 40’ L L} — 20Lyy Ly — aLy, — 8a°CyLyD,, > 0; (87)
And in @I), We moreover assume

21,12 L,
<1—Lg by _ 2205 >>
q

(88)

N =

2q

. . . Ay a Ay
Note that the first one can be satisfied if 5 < min {1, 402 } and £ < ILZLZ19L, Ly L, 80,5, Dy

As for assumption (88), we only need to find « and 8 such that
al,, 1
g — 4
a?L JLng
2q
Note that these two conditions are satisfied if condition (87)) is satisfied.

Ly

IN

IN
1

Hence to meet all the requirements on the step-sizes, we can set § < min {1 ﬂ} and & <
¢

. A
min=< 1 v .
{ » ALZ L2420y Ly+Lw+8C, Ly Dy }
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C Non-asymptotic Analysis under the Markovian Setting

In this section we provide the proof of Theorem [[Junder that Markovian setting. In Appendix we
develop the finite-time analysis of the tracking error and in Appendix [C.2] we prove Theorem

C.1 Tracking Error Analysis under the Markovian Setting

We first define the mixing time 73 = inf {¢ : mx* < 3} (Assumption . It can be shown that for
any bounded function || f(O;)|| < Cy, for any t > 73, |[E[f(O:)] — Eo~p= [f(O)]]| < Cyp and
g = O(—log ). We note that 5753 — 0 as 5 — 0, and we assume that ,87730; < i.

From (53)), the update of the tracking error z; can be written as
zep1 = 2t + B(— Ao, (5t)2e + b (1)) + w(0) — w(Br41), (90)

where Ay, (s;) = b, (5¢)de,(s:) " and by(0;) = —Ag, (s¢:)w(0:) + pS:(0;)de, (s¢). Note that for
any § € RY and any sample Oy = (sy,ar,7¢,5041) € 8 x A X R x 8, [|b,(6;)]| < C3R, +

PmaxCs(Tmax + Co +7Cy) = bmax.
Then it can be shown that
E [llze+1l” — [12]]
=E 22/ (241 — 20) + ||ze01 — 2]|°]
=E [222—(2,5“ — 2z + ﬁAgtzt)] +E [Hth — zt||2] + R [22:(—A9t)zt]
<E [lzt41 — 2el1?] +E [22] (2041 — 20 + BAg, 20)] —2BAE [[|2e]%] , On
(a) (b)

where the last inequality is due to the fact that Az, (Ag,) > A,. We first provide the bounds on terms
(a) and (b) as follows, and their detailed proof can be found in Appendices and

Term (a) can be bounded as follows:

For any ¢ > 0, we have that
241 — 2l < 28°Cll2e]1> + 28% (bmax + LuwCy)*. (92)

Term (b) can be bounded as follows:

For any t > 73, we have that

1
N
<(Ri+R3s+ P+ P+ P3)E |:Hzt||2:| +(Q1+ Q2+ Q3+ P+ P+ Ps)

@ 2
+ g5 LB (196 ©3)

where the definition of P;, Q; and R;, i = 1,2, 3, can be found in (TT4), (TT7) and (T20).
From (@T), it can be shown that for any ¢ > 73,

E [llze5111* = l1ze]I]
<28(Ri+Rs+ P+ P+ P3)E [Ilzt\ﬂ +26(Q1+ Q2+ Qs+ PL+ P+ Ps)

e
+ FLE[IVIOI] +282CHE [201%] + 26%(bmax + LuCy)? — 28ME [l2e]?] . (94)
Thus by re-arranging the terms we obtain that

E [|lze+1]%]
< (1= 28X, +28(Ry + Ry + Py + Po+ Py) + 28°C)E [|120]") + S LE [[V7(6,)])
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+268(Q1 + Q2+ Qs + Pr + Py + Ps) + 23 (bmax + LuCy)*
2 (1= @E[|=]?] + TLE[IVI@)I?] +p. (95)
where ¢ = 26, — 28(R1 + R3 + Py + P, + P3) — 28°C = O(B) and p = 26(Q1 + Q2 + Q3 +

Py + Py+ P3) + 2% (bmax + LwCy)? = O(3%75). Then by recursively using the previous inequality,
it follows that for any ¢ > 73,

t

Ella]?) < (1= 0B [|lor, ] + 232 31— 0 EITI@ AP+ 09
7=0
and hence
T
T, Blll=ll”) | 02" Elllz)?)
T T
2
B ] 7 @l + 2875 e + L)) | L S ENVI@II | p
- Tq T 4q T q
o 1 75\, oLe S0 EIIVI@)]?] | p
< (2]|zo]| + 2673 (bmax + LuCy)) <Tq+ T>+ 10 T +q
2
O<T5+§Z VI ﬁw)? o7

where the last step is because ¢ = O(3) and p = O(B%73).

C.1.1 Bound on Term (a)
In this section we provide the detailed proof of the bound on term (a) in (9T).
We first note that from the update of z; in @0), term ||z;41 — z¢|| can be bounded as follows

241 = zell < 18(=Ap, (st) 2t + be(62))]] + lw(0r) — w(Besa) |
S 5037”215” + ﬁbmax + Lw”et - 9t+1||

(@)
< BC?;”ZtH + Bbmax + aLng
< BC3 1zl + Bbimax + LuCy), ©8)

where (a) is due to the fact ||G41(0¢,w;)|| < Cy for any t > 0, and where the last inequality is from
the fact that « < /3. Hence term (a) can be bounded as follows

241 = 21> < 282Cgllzell* + 26 (bmax + L Cy)*. (99)
This completes the proof.
C.1.2 Bound on Term (b)

In this section we provide the detailed proof of the bound on term (b) in (OT).
From (98), it follows that
lzeall < (1 + BCY)l2ell + Bbumax + aLuCy
< (1+ BCH)||ze]l + B(bmax + LuCy). (100)

By applying (T00) recursively, it follows that

(1+pC3)" -1

lzell < (1 + BCE) 0]l + B(bamax + LuCy) 5C?
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(1+8C32) -1
= (1+ BC3)" 0]l + (Bumax + Lwcg>c—§.

We first show the following lemma which bounds the update ||2; — z;—-, || by [|z|.
Lemma 4. Foranyt > 1gandt > j >t — 73, we have that

”ZJH < 2”'215*7[; ” + 2ﬂ7—ﬁ(bmax + Lng);
2t = #1ryll < 2B73C2 20— ry | + 2675 (s + L),
2t — 2t—rs | < 4B73C3 |2l + 4873 (bmax + LwCy).

Proof. From (T00), it follows that
||Zt+1 || S (1 + ﬁci)”ZtH + B(bmax + Lwcg)~

First note that ﬁC’éTB < 1 and hence BC’; < é < %. This implies that

(1+B8C3)™ <1+ 2738C3,

which is because (1 + z)* < 1 + 2k forz < 182,

Applying inequality (T03) recursively, it follows that
i1l < (14 BCZY ™7 |lzt—ry || + (bmax + LuCly) o2
¢
(1+pC3)™" -1

2
C¢>

< (1+ BC) ™ |2ty | + (bmax + LuCy)

(@)
< (14 275BCE)|| 2t~y | + 2875 (binax + LuCy)

(b)
< 2Hzt*7'/3 || + 2ﬁ7—ﬁ(bmax + Lng)7
where (a) is from (T06), and (b) is from the fact that 573C3 <

To prove (T03)) and (T04), first note that
-1

lze = 2t—rs | < D Nlzin — 2
Jj=t—7p

1
I

(a) t—1
< Y BClIzl + Brs(bmax + LuCy)
j=t—7g
t—1

(b)
< Z ﬁ0£(2”2:t773 || + QﬁTﬁ(bmax + Lng>) + BTﬁ(bmax + Lng)

j=t—7g

<BraCE (2 21—, || + 2878 (bmax + L Cy)) + B75 (bmax + LuCy)

= 2873C3 || 2t—r, | + (28°73C3 + B75) (bmax + LuCy)

(c)
< 287503 || 2t—r, || + 2875 (bmax + L Cy),

(1+pC3)™ -1

(101)

(102)
(103)
(104)

(105)

(106)

(107)

(108)

where (a) is from @8), (b) is from (T07) and (c) is due to the fact that S75C3 < § . Moreover, it

can be further shown that

12t = ze—rs || < 267'50;(”215” + [zt = 2e—rsll) + 2875 (bmax + LuCy)

1
< 28505 |12l + G121 = 2yl + 2875 (Bmax + LuCl),

where the last step is because 373 Cg < i. Hence

120 = ze—ry || < 4BT5CE 12| + 4875 (bmax + LuCy)-
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The bound on term () in (@1) is straightforward from the following lemma.
Lemma 5. For anyt > 73, it follows that

ol ()]

<(Ri+R3+P+ P+ P)E {Hztﬂz} +(Q1+ Q2+ Q3+ P+ P+ Ps)

« 2
+ g5 LB [IVI01] (1)

where the definition of P;, Q; and R;, i = 1,2, 3, can be found in (114), (IT7) and (120).

Proof. We only prove the case ¢ = 73 here. The proof for the general case with ¢t > 75 is similar,
and thus is omitted here. First note that

1
T
E [ZTH (_AeTﬁ Fre B (Z‘fﬂJrl - Z‘fﬁ))]

- [ZTTB (—Aow + Ao, (%)) zm} -E [zjﬂbm} g |7 9 (0n) — @ (Orn)

2 ] . (112)

B

‘We then bound the terms in @) one by one. First, it can be shown that
‘E [z;; <_A0r,j + A(;Tﬁ (sm)) zTﬁ}
< ’]E {ZOT (—AQTB + AQTB (sTﬁ)) ZO:| ‘ + 'E [(zTﬁ — ZO)T (_AQTB + AGTB (575)) (szj — Zo)”

+2 )E [(Zm — ZO)T (_AQTﬁ + Aem (575)) zo} ‘

< Izl [ [ 40

+ Ao, (50,)]|| + 2C2E [I2r, = 201%] + 20| C2E [l125, — 2oll]

+ [|z0]2 HE (=40, (5,) + Aa, (5,)] H +2C2E [+, — 20]|2] + 41|20 C2E [|[2r, — 20]]

8 T3

< 202 [|E [~ Ao, + Agy (55)] | + l1z0l1® [ [~ A6, + 40,

(a)
< (BC3 +4CyD,Cyats) ||z0|* + 2C3E [||2r, — 20)1?] + 4l 20|C3E ||z, — 20ll],  (113)

where (a) is due to the facts that ||E [—Ag, + Ag, (sr,)] || < C38 from the uniform ergodicity of the

MDP, both Ay and Ay (s, ) are Lipschitz with constant 2Cy D, and || — 0, ]| < Z;‘;El 041 —
05l < argCy.

We then plug in the results from Lemmafd] and hence we have that

‘E [z;; (—A@vj + AgTﬁ (Sm)) zTﬁ}
< (BC3 +4CyD,Cyas) |0l +2C2E [, — 20?] + 40l C2E [[zr, 2ol

< (802 +40,D,Cyars) (21 +4B75C2)%E [[|27,|1*] +326%75 (bmax + LuCy)?)
+2C3 (328273 [|[20, |°] + 328273 (bmax + LuiC,)?)
+4C3 (4BraC3(1 + 4BrsCLE |[[2r, ||| + 4873(bmax + LuCy) (1 + 8875C2E [|| 27, ])
+ 64C3 875 (bmax + Lo Cy)?
2 RiE ||z, |*] + PiE [[l20, )] + @1, (114)
where (a) is from (T04) and the fact that

|20l < ||zTB - z0|| + ||zTﬁH <(1+ 457’502) HzTﬂH + 4873 (bmax + L Cy); (115)
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and Ry = 2(1 + 4875C3)? (BC3 + 4Cy DyCyats ) + G45>73CE + 16875CH(1 + 4875C3) =
OB7s), P = 16C285(bmax + LuCy)(1 + 8875C2) = O(B7s) and Q =
(ﬁcg n 4C¢Dvcgmﬁ) 328272 (bmax+ L Cy)? +64C2 8272 (b + Lo Cy )2 +64C2 8272 (b +
LCy)? = 0(82r2).

Similarly, the second term in (T12)) can be bounded as follows
[+ 02,)] | < [E [y — 50 b 02,)]] + [E [0, 00)]|
+||E [2g (bry (87,) — bry (60))] |
< bmaxE [Hzna - ZOM + Bbmax||z0] + O‘TﬁCng||ZOH7 (116)

where Ly = 203Dy Ry + LouC2 + pmax((1 +7)CF + Dy(Tmax + (1 +7)Cy)) is the Lipschitz
constant of b;(6). Again applying Lemma[4]implies that

B [0, (61|
< bmaxE [”Z'r/s - ZOH] + Bbmax|| 20 + O‘TBCng”ZO”
< b (437aCEE [0, ] + 4373 b + L.Cy)
+ (Bbmax + a73Cy Ly) (1 +4875C3) E [[|27,|] + 4575 (bmax + L Cy))
& BB (|2 ] + Qo a

where Py = 4873bmaxC2+ (Bbmax +a75Cy Ly) (1 + 4%0;) = O(Br5) and Qs = 4575 (buax +

Lng)(bmaX =+ 5bmax -+ aT[gCng) = O(BTQ).
We then bound the last term in (I12) as follows

‘E {T w(0,) waml)} '

LBL, V)01~ 01

f]E[zTTﬁ Vw(ém )Gryi1(07,,w0r,)] ‘

) lzjﬂw(éfﬁ) (Gml(ew W) = Gy 41 (0ry,w(0r,)) + Gy 41 (07, 0(65,)

_|_

VJ(0,) VJ(0-,)
2 2

%E lz:ﬁVw(ém)(GmH(Qm,wm) - GTB+1(9m,w(9m)))] ’

2]

+ ’ZE {z; Ve (b,,) <Gm+1(0m,w(9m)) +

%IE [z;;Vw(éTB) (—W(;”*)> ] ‘

< CLLE [ ] + S5 (o] + L [19705,) ]

+

E [z;(Vw(ém) = Vw(0r,)) (Gm+1(9w’“(9m)) + VJ(;W))} ’
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[e%

< GLuLeE [lon, ] + 55 LB [lon, ] + g5 LaE [I[9 65,
E {zgw(em) <G7ﬂ+1(9m,w(975)) + VJ(QGTB))] ‘

E {( ~ 20) TV () (Gmﬂ%w(%” * W(zgﬁ))] ‘

+

+
@I ™I

2
+ 2 Cy DR ||z, || 1075 — Ors 4[]

=

LuLyE[lon, ] + 22 E[Hzﬂ,n] g5 LB 1V

!
"))
P (vw(om) (Gm 1(0ry,00(0,,)) + VJ(;)TB )

o g [% — 2) Vuw(6,,) (GT‘*“(HT‘“M(O“*) " W(;TB))”

26
E |:Z(;rvw(00) (GTB""l(aO’

+

2c
+ - CgDuE {27, || |05 — 07541 ]]

E
< gL LE (|25, "] + BL SE [[[VI(6,,)]I°]
VJ(0;
+ Lzl E[wao,wwom ‘ )H]
25L o [z } 3 l120l| Lk [[|6-, — bo|] + 5 ZLuCyE [z, — 2oll]
+ gCngE [ll= I H% — Oy |]
L0, [ll] + B [lonl] + L [I9500 ] + SlolaCys
L0l Co + 22 LuCE [y — 20f]] + 2 C2DLE |2 ]
5 g9 /B g B ﬂ B
« [0
:(ﬂLng+2ﬂLw)E[r|zm|\}+BCQD E(or ] + LB 960,
2
+ (aLng + aﬁTBLkCg> Ilzoll —l— 5 L C,E [Hzm — ] , (118)

where (a) is from the Mean-Value theorem and HATﬁ = cbr, + (1 —c)0,,41 for some c € [0,1], (b)
is from Lemmasand (c) is due to the fact that [Gt+1 (0o, w (o)) + W] H < Cyf3 for any

t > 7gand ||0,, — 0| < argCy, and Ly = 2Cy D, + (LJ + %) L,, is the Lipschitz constant of
Vw(8) (Gt+1(9, w(0)) + %M)), and L} is the Lipschitz constant of G1.1(0,w(9)).

Our next step is to rewrite the bound in (TT8) using ||z, ||. Note that from Lemma we have that
20l < [|2r — 20| + ||2rs || < (1 +4B75C) ||2rs || + 4875 (bmax + LuCy). (119)
Plugging in (TT8), it follows that
’E [ZT w(em) - w(9m+1)} ’
TL—} /B
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2 202
< (5ot +25 VB e ] + 25-C2DLE oy ] + g5 [I9900)]

(aL Cy+ % & L, ) lzoll + %O‘Lwcha (1205 — 0|
2
< (S2uty + L0V E [for] + 2 C2DLE [y ) + SSLE |90,
2
(aL Co + ZaLiCy ) (1 +4B73C)E (|| 27, ||] + 4875 (bmax + LuCy))
- %Lwcg (E [4875C3 || 27, ||] + 4878 (bmax + LuCy))

= (et g5t ) B fleo ]

2&2 2
+( =-C?D,, + (aL Cy +
(5 ;

[e% 2
+55heB [w70-0)1] + (aL Cy+ 5
+ 875 Ly Cy(bmax + LuCy)

mLAT)ﬂ+46m0®+8amLM%C?>EUPmm

ﬁ TngC > (457’5(bmax + LWC’g))

£ R |||z, ||°] + BE (|| [] + @2 + 5L JE |[[V766,,)] ] (120)
where Ry = (Lol +3Le) = 0(%), = <2§203Dw +
(aL Cy+ 4 TBLkC ) (1 + 4p73C3) + 8arsL,C C’) O(arg) and Q3 =

(aL Cy+ S 75L1Cy ) (4875 (bmax + Lo Cy)) + 8075 LoCy (bnax + LuwCly) = O(as).
Then we combine all three bounds in (T14), (IT7) and (120), and it follows that

‘E {Zjﬁ <_A9r F1s T % (2rs41 — ZTB)>:| ‘

< (s + BB [[2]]”] 4 (Pr+ Po ot BJE [0 + @1+ @2+ @9)

+ %LwE IV (121)

Finally due to the fact that x < 2?2 + 1, Vo € R, it follows that

1
5 ()

2
S(Rl+R3+P1+P2+P3)E|:HZTBH:|+(Q1+Q2+Q3+P1+P2+P3)

« 2
+ 55 heB [[[v76-)]"] (122)
This completes the proof. O

C.2 Proof under the Markovian Setting

In this section, we prove Theorem [[Junder the Markovian setting.

From the L ;-smoothness of J(6), it follows that
L
J(Bri1) < T(O) + (VI (0,), 01 = 00) + = 001 = 0]

L
= J(0:) + a(VJ(0:), Gry1(0s,wi)) + 7‘]042||Gt+1(‘9taWt)||2
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VJ(6:)
2

= J(Gt) — <VJ(9t), —Gt+1(9t,wt) — + Gt+1(9t,w(9t)) — Gt+1(9t7w(9t))>

Ly
= SIVI@)I? + S 02 Gt (00, w0)]”
= J(Qt) — <VJ(915), _Gt+1(9t, Wt) + Gt+1(9t,w(9t))>

VJ(6 @ L
#a (900, 750 1 Genr(00000) ) = SIVIOIE + 5L a?|Graa 00

VJ(6:)
2

<T(0) + Ly VIO |(6r) — i + a <w<et>, i Gt+1<et,w<9t>>>

« Ly
- §||VJ(9t)H2 + 7012||Gt+1(9t,wt)\|2
V. J(6:)

J(60,) + aLy|[V.(6,) 1z +a<w<ot>, +Gt+l<et,w<et>>>

L
—*IIVJ(Qt)HQJr L2, (123)

where (a) is from the fact that H9t+1 —8,|| < aCy. Thus by re-arranging the terms, taking expectation
and summing up w.r.t. ¢ from 0 to 7" — 1, it follows that

a T—1
3 2 ElIvI©)]*)
t=0
T-1 T-1 T-1
< —E[J(07)] + J(60) + aLgy | Y E[[VI(6:)]%] E[l|z][2] + )~ aE[a (6, Oy)]
t=0 t=0 t=0
+ L;a”’TCY, (124)

where (g(0;,0) = <VJ(9t), V6 4 Gt+1(9t,w(6t))>. We then bound (¢ in the following
lemma.

Lemma 6. Foranyt > 73,

El¢c(0:, 0p)] < 2C2B3 + 2a75LcCy. (125)

Proof. We only need to consider the case t = 73, the proof for general case of ¢ > 73 is similar, and
thus is omitted here. We first have that

6,
Cg(em,orﬁ) = <VJ(97—3), w + GTﬁ.H (HTB,W(GW))>

VJ(6o)

- <VJ(90), + GT,1+1(90,W(90))>

v.J(0,,)
+<VJ(9771)7 2 - +GT[1+1(0T/37W(97/1))>

- <VJ(90), %(00) + Gm+1(00,w(90))>

IN

+ Grs11(00,w(00))

J(6
< V) | G7ﬁ+1(oo,w<oo>>> L]0, — b
> + 2a1gL¢Cy, (126)

< VJ290)

where L¢ = 2C, (L + 3L1) is the Lipschitz constant of (g (6, O;).
Then it follows that

[CG( 7'57 )]
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— & [(9000). T 4 G t00) )| + 20LCms

< 2028 + 2a13L¢Cy,

(127)
where the last step follows from the uniform ergodicity of the MDP (Assumption 4). O
Plugging the bound in (124), it follows that

T-1
a
S BV
t=0
T-1
< J(6o) — J* +aL, ZE 1V.7(61)]2] ZE 2¢12]
+a’ClLyT + o (T (2Cgﬁ+2mﬂL<Cg)+4TﬁC§), (128)
and thus
T-1
> E[IVI@)1%
t=0
2(.J(6o) — J* = =
< W =T | ngJ > E[IIVJ(Ht)IIQ]J > Blllf] + 2005,
2 (T(2C28 + 2a13L¢Cy) + 473C7) . (129)
This further implies that
[llVJ(9t)||2]
* (0:)
2000 =) \/z S 601 \/z B0 | o,
2 2’6
(( C'gﬂJrQaTBLgC'g)Jrlng?). (130)
We plug in the tracking error (97), and it follows that
o E[IVI(8)]?]
T
J(6 J* T
20J( 0) )+2a02LJ+2((20§5+2mﬁL<0g)+4c§?‘3)
o, %z B 61
2( 1, 1), oLy Xig E[IVJOIIP] | »
\/<2||ZO|| + 29750+ LC)* (7 + 2 ) + 2 A +2
2(J(0g) — J* T
< % + zaogLJ +2 (2628 +2a75LcCy) +4C2 77 )
+2L, aL E[[|VJ(6:)]I°)
T
Yo |VJ (0[] 1
2L (2 2 max + L — —. (131
+ \/ 2ol + 2875 e + LCo))? 77+ 2 ) + 2. 13D
Note that 2L afq = (\/%), hence we can choose « and 3 such that 2L, 4q‘“ < % Hence
it follows that
—1
E[[VJ(0)I%] _ 4(J(00) — J*) 2 2 278
- < =S 4 4aClLy +4 (2028 + 20m5LcC,) + 409?)
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4L ¢ i ||VJ(9t)II ]
| \/(2”20” + 2875 (b + LuCy))” (1 + ?) .
\/ TLLBIVIO -

where U = 4L \/(2||zo||+2575( max + Lo C)) ( q+%’3>+§:(9 ,/BTB+%ﬁ)andV:

=) - 4aCTLy + 4 (2076 + 2015 LeCy) +4C3F) = O (75 + ams + B). Thus it can
be shown that

[Hw (0[] <U+\/U2+4V>

<U2+42V
1 T
=16L; ( (2|20l + 2875 (bmax + L Cy))? (Tq + rﬁ) + 7;)
8(J( J*) 2 2 278
aT +8aC2Ly +8 ((2C28 + 2075 LcCy) +4C2 )
1 1
=0 (ﬁrﬁ + 75 ot Ta) . (133)

This completes the proof.

C.3 Choice of Step-sizes

In the proof under the Markovian setting, we first assume 373 C’; < i. The last assumption on the

step-sizes is & < 12— Where ¢ = 28X, —2B8(R1 + R3 + P + P2 + P3) — 23°C% = O(3). Note
2L

that this assumption can be satisfied by controlling % similar to Section which we omit here.

Hence we set 5 < min{l, m}, and% < {17 T%L }
’L.

D Experiments

In this section, we provide some numerical experiments on two RL examples: the Garnet problem
[Archibald et al.,|1995]] and the “spiral” counter example in [Tsitsiklis and Van Roy, |1997].

D.1 Garnet Problem

The first experiment is on the Garnet problem [Archibald et al.,[1995]], which can be characterized by
S(|8|, |-A|, b, N). Here b is a branching parameter specifying how many next states are possible for
each state-action pair, and these b states are chosen uniformly at random. The transition probabilities
are generated by sampling uniformly and randomly between O and 1. The parameter N is the
dimension of € to be updated. In our experiments, we generate a reward matrix uniformly and
randomly between 0 and 1. For every state s we randomly generate one feature function &(s) € [0, 1]
using as the input. In both experiments, we use a five-layer neural network with (1,2,2,3,1) neurons in
each layer as the function approximator. And for the activation function, we use the Sigmoid function,
ie., f(x) = H% We set all the weights and bias of the neurons as the parameter § € R23,

We consider two sets of parameters: §(5,2,5,23) and §(3, 2, 3,23). We set the step-size « = 0.01
and 3 = 0.05, and also the discount factor v = 0.95. In Figures[T]and[2] we plot the squared gradient
norm v.s. the number of samples using 40 Garnet MDP trajectories, i.e., at each time ¢, we plot
|[VJ(6:)|*. The upper and lower envelopes of the curves correspond to the 95 and 5 percentiles of
the 40 curves, respectively. We also plot the estimated variance of the stochastic update along the
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iterations in Figures and[2(b)] Specifically, we first run the algorithm to get a sequence of 6; and

wy. Then we generate 500 different trajectories O = (0}, O3, ..., Oy, ...) where i = 1, ..., 500, and

S 1IG 4 (Be,wi) =V I (8:) |12
500

use them to estimate the variance |G (6;,w¢) — V.J(6;)]|* and plot at

each time ¢.

It can be seen from the figures that both gradient norm ||V.J(6;)|| and the estimated variance converge
to zero.
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Figure 1: Garnet problem 1: G(5,2, 5, 23).

D.2 Spiral Counter Example

In our second experiment, we consider the spiral counter example proposed in
[1997], which is often used to show the TD algorithm may diverge with nonlinear function
approximation. The problem setting is given in Figure[3] There are three states and each state can
transit to the next one with probability % or stay at the current state with probability % The reward is
always zero with the discount factor v = 0.9. Similar to [Bhatnagar et al.| [2009]], we consider the
value function approximation:

Vo(s) = (a(s) cos(kB) + b(s) sin(k6))e?, (134)

where in Figure@ a = [0.94,—0.43,0.18] and b = [0.21,—0.52,0.76]; and in Figure |3, a =
[0.21,—0.33,0.29] and b = [0.68,0.41,0.82]. We let k¥ = 0.866 and ¢ = 0.1. The step-size are
chosen as & = 0.01 and 3 = 0.05. In Figures[4(a)|and [5(a)| we plot the squared gradient norm v.s.
the number of samples using 40 MDP trajectories. The upper and lower envelopes of the curves
correspond to the 95 and 5 percentiles of the 40 curves. Similarly, we also plot the estimated variance
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[ 2000 4000 6000 8000 10000 0 1000 2000 3000 4000 5000 6000
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(@) [|[VJ(0)]. (b) Estimated variance.

Figure 2: Garnet problem 2: §(3, 2, 3, 23).
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|Gis1(0r,wi) — VJ(0:)]]? of the stochastic update along the iterations using 50 samples at each time
step. More specifically, we first run the algorithm to get a sequence of 0; and w;. Then we generate
50 different trajectories O* = (0%, 0%, ..., 04, ...) where i = 1, ..., 50, and use them to estimate the

) 50 i wr)— 2 )
variance |Gy (¢, w) — V.J(6;)]|* and plot Lzt HG”I(Q;EJ D=VIOOI ot each time ¢.

It can be seen that in both experiments, the gradient norm ||V.J(6;)|| converges to 0, i.e., the algorithm
converges to a stationary point. The estimated variance also decreases to zero.

Figure 3: Spiral counter example.
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Figure 4: Spiral counter example 1:
a =[0.94,-0.43,0.18],b = [0.21, —0.52,0.76].
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Figure 5: Spiral counter example 2:
a =[0.21,-0.33,0.29], b = [0.68,0.41, 0.82].
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