
A Derivation of Eq. (9)

log p(x;U,w, θ, φ) = log

M∑
m=1

wm
N

Tφ,θ(x | um)

= log

M∑
m=1

wm
N

∫
z

rφ (z | um) pθ(x | z)dz

= log

∫
z

pθ(x | z)

M∑
m=1

wm
N

rφ (z | um) dz

= log

∫
z

qφ(z | x)pθ(x | z)
∑M
m=1 wmrφ (z | um) /N

qφ(z | x)
dz

≥ E
qφ(z|x)

log pθ(x | z)− E
qφ(z|x)

log
qφ(z | x)∑M

m=1 wmrφ (z | um) /N

= O(θ, φ, U,w;x). (20)

B Derivations of Eqs. (17) - (19)

B.1 Derivation of KL divergence in Eq. (17)

DKL (pφ(z | U,w)‖pφ(z | X))

=

∫
z

pφ(z | U,w) [log pφ(z | U,w)− log pφ(z | X)] dz

= EU,w[log pφ(z | U,w]− EU,w[log pφ(z | X)]

= EU,w
[
− logZ(U,w) +

M∑
m=1

wm log pθ(um | z)
]
− EU,w

[
− logZ(1N) +

N∑
n=1

1× log pθ(xn | z)
]

= logZ(1N)− logZ(U,w)− 1TNEU,w[log pθ(X | z)] + wTEU,w[log pθ(U | z)]. (21)

B.2 Derivation of Eq. (18)

The gradient of Eq. (21) with respect to a single pseudopoint um ∈ Rd can be expressed by

∇umDKL = −∇um logZ(U,w)−∇umEU,w
[
(log pθ(X | z))T1N

]
+∇umEU,w

[
(log pθ(U | z))Tw

]
.

(22)

First, we compute the gradient of the log normalization constant∇um logZ(U,w) by

∇um logZ(U,w) =
1

Z(U,w)
∇um

∫
exp

(
wT log pθ(U | z)

)
p0(z)dz

=

∫
1

Z(U,w)
p0(z)∇um

(
exp

(
wT log pθ(U | z)

))
dz

=

∫
1

Z(U,w)
p0(z) exp

(
wT log pθ(U | z)

)
∇um

(
wT log pθ(U | z)

)
dz

= wmEU,w [∇um log pθ(um | z)] . (23)

Then, for any function a(U, z) : Rd×M × Z→ R, we have

∇umEU,w [a(U, z)] =

∫
∇um

(
exp

(
wT log pθ(U | z)− logZ(U,w)

)
a(U, z)

)
p0(z)dz. (24)

Using the product rule,

∇umEU,w [a(U, z)]

= EU,w [∇uma(U, z)] + EU,w [a(U, z)(wm∇um log pθ(um | z))−∇um logZ(U,w)] . (25)

12

Combining Eq. (23) and Eq. (25), we have

∇umEU,w [a(U, z)]

= EU,w [∇uma(U, z)] + wmEU,w [a(U, z) (∇um log pθ(um | z)− EU,w [∇um log pθ(um | z)])] .
(26)

Subtracting 0 = EU,w [a(U, z)]EU,w [(∇um log pθ(um | z)− EU,w [∇um log pθ(um | z)])] yields

∇umEU,w [a(U, z)] = EU,w [∇uma(U, z)] + wm Cov [a(U, z),∇um log pθ(um | z)] . (27)

Finally, the gradient with respect to ui in Eq. (18) obtains by substituting (log pθ(X | z))T1N and
(log pθ(U | z))Tw for a(U, z).

B.3 Derivations of Eq. (19)

Similar to derivation above, we give the gradient with respect to weight vector w ∈ RM+ , which is
given by

∇wDKL = −∇w logZ(U,w)−∇wEU,w
[
(log pθ(X | z))T1N

]
+∇wEU,w

[
(log pθ(U | z))Tw

]
.

(28)

First, we compute the gradient of the log normalization constant via

∇w logZ(U,w) =

∫
1

Z(U,w)
∇w

(
exp

(
wT log pθ(U | z)

))
p0(z)dz

=

∫
1

Z(U,w)
p0(z) exp

(
wT log pθ(U | z)

)
∇w

(
wT log pθ(U | z)

)
dz

= EU,w [log pθ(U | z)] . (29)

Then, for any function a : Z→ R, we have

∇wEU,w [a(z)] = ∇w

∫ (
exp

(
wT log pθ(U | z)− logZ(U,w)

))
a(z)p0(z)dz

=

∫
∇w

(
exp

(
wT log pθ(U | z)− logZ(U,w)

))
p0(z)a(z)dz

= EU,w [(log pθ(U | z)−∇w logZ(U,w)) a(z)] . (30)

Combining Eq. (29) and Eq. (30), we have

∇wEU,w [a(z)] = EU,w [(log pθ(U | z)− EU,w [log pθ(U | z)]) a(z)] . (31)

Subtracting 0 = EU,w[a(z)]EU,w [log pθ(U | z)− EU,w [log pθ(U | z)]] yields

∇wEU,w[a(z)] = Cov [log pθ(U | z), a(z)] . (32)

Using the product rule, the gradient with respect to w in Eq. (19) follows by substituting 1TN log p(X |
z) and wT log pθ(U | z) for a(z).

C Derivation of Algorithm 2

First, We initialize the pseudocoreset through subsampling M datapoints from the whole dataset and
reweighting them to match the overall weight of the full dataset,

um ← xbm , wm ← N/M, m = 1, . . . ,M

B ∼ UnifSubset ([N],M), B := {b1, . . . , bM} .

After initializing, we simultaneously optimize Eq. (17) over both pseudodata points and weights. The
learning rate of each stochastic gradient descent step is γt ∝ t−1, where t ∈ {1, · · · , T} denotes the
iteration for optimization. Then,

wm ← max
(

0, wm − γt
(
∇̂w
)
m

)
, um ← um − γt∇̂um , 1 ≤ m ≤M (33)

13

where ∇̂w ∈ RM and ∇̂um ∈ Rd are the stochastic gradients of w and um respectively. Based on
S ∈ N samples (z)Ss=1 ∼ pφ(z|U,w) from the coreset approximation and a minibatch of B ∈ N
datapoints from the full dataset, we obtain these stochastic gradients, as follows,

∇̂w = − 1

S

S∑
s=1

g̃s

(
N

B
gTs 1− g̃Ts w

)
, ∇̂um = −wm

1

S

S∑
s=1

h̃m,s

(
N

B
gTs 1− g̃Ts w

)
, (34)

where,

h̃m,s = ∇U log pθ(um|zs)− 1/S

S∑
s′=1

∇U log pθ(um|zs′)), (35)

gs =

(
log pθ(xb|zs)− 1/S

S∑
s′=1

log pθ(xb|zs′)

)
b∈B

, (36)

g̃s =

(
log pθ(um|zs)− 1/S

S∑
s′=1

log pθ(um|zs′)

)M
m=1

. (37)

This process is shown in Algorithm 2.

D More t-SNE visualization results

We already report the t-SNE visualization of ByPE-VAE and standard VAE in Figure. 3. Here we
give more t-SNE visualization results.

(a) VampPrior on MNIST (b) Exemplar on MNIST

(c) ByPE-VAE on Fashion
MNIST

(d) VampPrior on Fashion
MNIST

(e) Exemplar on Fashion
MNIST

(f) VAE on Fashion
MNIST

Figure 6: t-SNE visualization of learned latent representations, colored by labels.

E ByPE-VAE samples

First, we randomly sample from ByPE-VAEs trained on different datasets, namely, MNIST, Fashion
MNIST, and Celeba, as shown in Fig.7. Second, we give more generated samples in Fig.8, among
which the samples in each plate are based on the same pseudodata point.

14

(a) MNIST (b) Fashion MNIST

(c) CelebA

Figure 7: Random samples drawn from ByPE-VAEs trained on different datasets.

15

(a) Dynamic MNIST

(b) Fashion MNIST

(c) CelebA

Figure 8: Samples generated by ByPE-VAE based on the same pseudodata point in each plate.

16

F KNN on CIFAR10

In section 5.2, We only report the KNN results of MNIST and Fashion MNIST in the Fig. 4. Here
we give the KNN results on Cifar10. As shown in Fig. 9, the results of ByPE-VAE are significantly
better than other models with different values of K ∈ {3, 5, 7, 9, 11, 13, 15}.

4 6 8 10 12 14
K

40

42

44

46

48

Ac
cu

ra
cy

Gaussian
Exemplar
Vampprior
BPE-VAE

Figure 9: KNN on CIFAR10

G Interpolation between samples in CelebA

Figure 10: Interpolation between samples from the CelebA dataset.

17

H Density estimation on CelebA

We report the density estimation results on Dynamic MNIST, Fashion MNIST, and CIFAR10 based on
different network architectures in Table. 1. Here we also report the test negative log-likelihood(NLL)
for CelebA, as shown in the Table. 4 below. The experimental results show that ByPE-VAE outper-
forms other models.

Method Gaussian prior VampPrior Exemplar ByPE
Test-loglikelihood 183.16 ± 0.40 183.61 ± 0.69 185.03 ± 1.46 182.11± 1.10

Table 4: Density estimation on CelebA based on the Fully Convolutional Neural Network

I Sensitivity analysis on k

In our optimization algorithm, the pseudocoreset {U,w} is updated by every k epochs rather than be
updated every epoch. So, we also test the sensitivity about k. The results are summarized in Table. 5.
Considering performance and time consumption, we set k to 10 in the experiments.

k k = 1 k = 10 k = 50 k = 100
ByPE-VAE on MNIST 23.60 23.61 23.62 23.70

Table 5: Test negative log-likelihood on different update interval k

J More results on Generative Data Augmentation

In section 5.4, we report the test error on permutation invariant MNIST in Table. 3. Here we give the
test error on permutation invariant Fashion MNIST and CIFAR10. The results are summarized in
Table. 6. The test error of ByPE-VAE is lower than other models on most case for both sampling way.

Model Fashion MNIST CIFAR10
Gaussian prior w/ Variational Posterior 9.98 ± 0.08 50.07 ± 0.23
Vampprior w/ Variational Posterior 10.03 ± 0.05 50.74 ± 0.16
Exemplar prior w/ Variational Posterior 9.46± 0.02 49.59 ± 0.21
ByPE-VAE w/ Variational Posterior 9.75 ± 0.02 49.00± 0.04
Exemplar prior w/ Prior 9.58 ± 0.01 47.20 ± 0.13
ByPE-VAE w/ Prior 9.56± 0.02 46.60± 0.13

Table 6: Test error (%) on permutation invariant Fashion MNIST and CIFAR10.

Then, we report the performance of our method based on different values of λ in Table. 7. We use 0.4
as reported in [13].

K KL Loss

To measure these two different pseudo-inputs, we could compare the value of the KL divergence
between the prior distribution and the variational posterior distribution. The results (shown in Table. 8)
show our method mostly outperforms VampPrior on three datasets, indicating that the pseudo-inputs
learned by our method are better.

18

λ 0 0.1 0.2 0.3 0.4 0.5
Test error 1.42 ± 0.08 1.16 ± 0.10 0.93 ± 0.01 0.96 ± 0.01 0.88 ± 0.02 0.83± 0.05

λ 0.6 0.7 0.8 0.9 1.0 -
Test error 0.90 ± 0.02 0.94 ± 0.02 0.98 ± 0.01 1.06 ± 0.01 1.31 ± 0.00 -

Table 7: MNIST test error versus λ, which controls the relative balance of real and augmented data

KL Dynamic MNIST Fashion MNIST CIFAR10
VAE w/ VampPrior 12.08 ± 0.05 8.05 ± 0.05 21.80 ± 0.07

ByPE VAE 11.93± 0.12 8.03±0.01 21.55± 0.02
HVAE w/ VampPrior 12.20 ± 0.06 8.15 ± 0.03 22.34 ± 0.14

ByPE HVAE 12.18± 0.06 8.10± 0.04 22.16± 0.06
ConvHVAE w/ VampPrior 12.66 ± 0.06 8.54 ± 0.05 24.42 ± 0.24

ByPE ConvHVAE 12.50± 0.06 8.49± 0.05 24.15± 0.28

Table 8: The comparision of KL loss on different datasets

L Dynamics of optimization process

To better examine the dynamics of the two-stage optimization approach, we drawn the negative
log-likelihood curve on validation set. As shown in Figure. 11, the loss function is steadily decreasing,
except for an increase in the first update of pseudocoreset, and is convergent at the end.

0 100 200 300 400 500
Epoch

25

50

75

100

125

150

175

Va
l N

LL

Figure 11: Loss curve of ByPE-VAE on MNIST validation set.

M Hyper-parameters in Experiments

For each dataset, we use a 40-dimensional latent space. We use Gradient Normalized Adam with
learning rate of 5e− 4 and minibatch size of 100 for all of the datasets. For the sake of uniformity,
all data sets are continuous, that is, the pixel value is compressed to between 0 and 1. We use
early-stopping with a look ahead of 50 epochs to stop training. That is, if for 50 consecutive epochs
the validation ELBO does not improve, we stop the training process. The gating mechanism is used
for all activation functions. The size of pseudocoresets is 500 for all experiments except 240 for
CelebA. The stepsize used in pseudocoresets updating is best in {0.1, 0.5}. The update interval k of
pseudocoresets is 10. All results are averaged over 3 random training runs.

19

	Introduction
	Preliminaries
	Exemplar VAE
	Bayesian Pseudocoresets

	Bayesian Pseudocoresets Exemplar VAE
	Related Works
	Experiments
	Density Estimation
	Representation Learning
	Efficiency Analysis
	Generative Data Augmentation

	Conclusion
	Derivation of Eq. (9)
	Derivations of Eqs. (17) - (19)
	Derivation of KL divergence in Eq. (17)
	Derivation of Eq. (18)
	Derivations of Eq. (19)

	Derivation of Algorithm 2
	More t-SNE visualization results
	ByPE-VAE samples
	KNN on CIFAR10
	Interpolation between samples in CelebA
	Density estimation on CelebA
	Sensitivity analysis on k
	More results on Generative Data Augmentation
	KL Loss
	Dynamics of optimization process
	Hyper-parameters in Experiments

