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Figure 1: Comparison between HiSplat and previous methods. HiSplat constructs hierarchical
3D Gaussians which can better represent large-scale structures (more accurate location and less
crack), and texture details (fewer artefacts and less blurriness).

ABSTRACT

Reconstructing 3D scenes from multiple viewpoints is a fundamental task in stereo
vision. Recently, advances in generalizable 3D Gaussian Splatting have enabled
high-quality novel view synthesis for unseen scenes from sparse input views by
feed-forward predicting per-pixel Gaussian parameters without extra optimiza-
tion. However, existing methods typically generate single-scale 3D Gaussians,
which lack representation of both large-scale structure and texture details, re-
sulting in mislocation and artefacts. In this paper, we propose a novel frame-
work, HiSplat, which introduces a hierarchical manner in generalizable 3D Gaus-
sian Splatting to construct hierarchical 3D Gaussians via a coarse-to-fine strategy.
Specifically, HiSplat generates large coarse-grained Gaussians to capture large-
scale structures, followed by fine-grained Gaussians to enhance delicate texture
details. To promote inter-scale interactions, we propose an Error Aware Mod-
ule for Gaussian compensation and a Modulating Fusion Module for Gaussian
repair. Our method achieves joint optimization of hierarchical representations, al-
lowing for novel view synthesis using only two-view reference images. Compre-
hensive experiments on various datasets demonstrate that HiSplat significantly en-
hances reconstruction quality and cross-dataset generalization compared to prior
single-scale methods. The corresponding ablation study and analysis of different-
scale 3D Gaussians reveal the mechanism behind the effectiveness. Code is at
https://github.com/Open3DVLab/HiSplat.
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1 INTRODUCTION

As a crucial task in stereo vision, reconstructing 3D scenes from multiple viewpoints has been
extensively explored. Recently, 3D Gaussian Splatting (Kerbl et al., 2023; Chen et al., 2024a) has
emerged, which utilizes 3D Gaussians as explicit scene representation and adopts gradient descent
to optimize the corresponding primitives. Different from previous methods based on ray-marching-
based volume rendering, e.g., Neural Radiance Fields (NeRF) (Mildenhall et al., 2020), 3D Gaussian
splatting (3D-GS) implements an efficient splatting rendering pipeline, enabling faster and higher-
quality scene reconstruction without extra depth information. Nevertheless, the original 3D-GS
requires a substantial number of multi-view images for per-scene optimization, which hinders its
implementation under limited resources and sparse obversed images. To boost its generalization and
transferability, data-driven generalizable 3D-GS (Szymanowicz et al., 2024; Charatan et al., 2024;
Chen et al., 2024b; Zhang et al., 2024; Wewer et al., 2024) have been proposed. Generalizable 3D-
GS leverages networks to feed-forward predict per-pixel Gaussian splatting parameters for unseen
scenes, which can be described as mapping each 2D pixel to a fixed number of 3D Gaussians, namely
splatter images. By generating splatter images, generalizable 3D-GS allows for high-quality novel
view synthesis using only sparse views, especially the most challenging two views, of the new scene
without additional optimization during inference.

However, current generalizable 3D-GS methods generate fixed-resolution splatter images using ex-
tracted single-scale features. The uniform 3D Gaussians result in a lack of hierarchical represen-
tation, making it challenging to simultaneously capture large-scale structures and delicate texture
details. Consequently, it causes issues such as blurriness, cracks, mislocation, and artefacts as il-
lustrated in Fig. 1. In 2D visual perception tasks such as segmentation and detection, hierarchical
and multi-scale representations (He et al., 2014; Liu et al., 2015; Lin et al., 2016; Kong et al., 2018;
Ghiasi et al., 2019) play an essential role in effectively capturing high-level semantic information for
large-scale objects and structures while preserving low-level details. Inspired by the success of 2D
multi-scale features, a natural question arises: as an explicit 3D representation akin to 2D features,
can 3D Gaussians benefit from a hierarchical structure to unleash the potential of representa-
tional capabilities? Nonetheless, applying the hierarchical manner to generalizable 3D-GS is not
straightforward. A simple preliminary experiment that extracts multi-scale features to generate hier-
archical 3D Gaussians and mixes them for rendering has been conducted. As shown in the first line
of Table 3, compared with the previous methods, constructing a vanilla hierarchical 3D Gaussians
cannot obtain improvement. The core issue lies in that the multi-scale 3D Gaussians are generated
independently and suffer from the inability to capture inter-scale information.

Different from predicting multi-scale Gaussians independently, we propose a novel hierarchical gen-
eralizable 3D-GS framework, namely HiSplat, for producing 3D Gaussians in a coarse-to-fine man-
ner. Specifically, HiSplat generates large coarse-grained Gaussians to establish the large-scale struc-
ture as a skeleton, followed by fine-grained Gaussians around the coarse Gaussians to gradually
enhance texture details as decoration. To prompt the interaction of different scales, we propose an
attention-based Error Aware Module that allows finer-grained Gaussians to focus on compensating
for errors generated by the coarse-grained Gaussians, referred to as Gaussian compensation. Addi-
tionally, to facilitate further correction of erroneous Gaussians, we propose a Modulating Fusion
Module to reweight the opacities of larger-scale Gaussians based on the rendering quality of in-
put reference images and the current joint features, termed Gaussian repair. By integrating Gaussian
Compensation and Repair, the joint optimization of hierarchical 3D Gaussians can be achieved. Dur-
ing training, supervision is applied to the rendering images in every stage to introduce more gradient
flow and provide richer depth information, enabling faster convergence and improved localization.
During inference, only the final fusion Gaussians are utilized for rendering.

Extensive experiments demonstrate that, compared to previous methods with single-scale 3D Gaus-
sian representations, HiSplat significantly enhances the quality of novel view synthesis, e.g., sur-
passing the leading open-source method +0.82 PSNR on RealEstate10K, while exhibiting stronger
generalization capabilities on diverse unseen scenes, e.g., improving +3.19 PSNR for zero-shot test-
ing on Replica. In summary, our contributions are as follows:

• We first study and introduce hierarchical 3D Gaussians representation in generalizable 3D-
GS. It can simultaneously reconstruct higher-quality large-scale structures and more deli-
cate texture details to significantly alleviate mislocation and artefacts.

2



Published as a conference paper at ICLR 2025

• We construct a novel generalizable framework named HiSplat, generating hierarchical 3D
Gaussians to reconstruct the scene with only two-view reference images. To exploit the
inter-scale information and achieve joint optimization, we propose Error Aware Module
for Gaussian compensation and Modulating Fusion Module for Gaussian repair.

• Comprehensive experiments on various mainstream datasets demonstrate that, compared
with previous methods, HiSplat obtains superior reconstruction quality and cross-dataset
generalization. Besides, ablation study and analysis on different scale Gaussians explain
the effectiveness of HiSplat.

2 RELATED WORK

2.1 NOVEL VIEW SYNTHESIS

Novel view synthesis aims to generate photorealistic images from unseen viewpoints given a set of
input images. Neural Radiance Fields (NeRF) (Mildenhall et al., 2020; Yu et al., 2021; Pumarola
et al., 2020; Barron et al., 2021; 2022) marked a significant breakthrough by modeling scenes as
continuous volumetric radiance fields parameterized with neural networks. Despite achieving high-
quality results, NeRF suffers from slow training speeds and high memory usage due to extensive
MLP evaluations and the storage of numerous point samples. In contrast, 3D Gaussian Splatting
(3D-GS) (Kerbl et al., 2023; Yu et al., 2024; Yang et al., 2023) offers an explicit scene representation
using anisotropic 3D Gaussians, defined by their positions, covariances, colors, and opacities. A
differentiable renderer projects these Gaussians onto the image plane, allowing efficient rendering
and gradient computation. However, traditional NeRF and 3DGS methods require dense multi-
view images for single-scene optimization and lack generalization, performing poorly in sparse-view
reconstruction tasks. Our approach addresses these limitations by achieving high generalization with
only two-view reference images.

2.2 GENERALIZABLE 3D GAUSSIAN SPLATTING

Generalizable 3D Gaussian Splatting has become a key approach for efficient 3D scene represen-
tation and novel view synthesis. Splatter Image (Szymanowicz et al., 2024) predicts 3D Gaussian
parameters from a single image using an image-to-image neural network, enabling ultra-fast single-
view 3D reconstruction. PixelSplat (Charatan et al., 2024) extends this to sparse multi-view settings,
using image pairs and an epipolar transformer to learn cross-view correspondences and predict depth
distributions. MVSplat (Chen et al., 2024b) constructs cost volumes via plane sweeping to capture
cross-view similarities, improving geometry reconstruction by predicting depth maps and unpro-
jecting them to obtain Gaussian centers. TranSplat (Zhang et al., 2024) employs a transformer-
based model for sparse-view reconstruction, using depth-aware deformable matching and monocu-
lar depth priors for refinement. Despite these advancements, existing methods often fail to capture
fine-grained details due to single-scale features, leading to artefacts and reduced quality, especially
in complex regions. To address these limitations, we propose a hierarchical 3D Gaussian splatting
method for coarse-to-fine generalizable multi-view reconstruction.

2.3 HIERARCHICAL NEURAL REPRESENTATION

Hierarchical and multi-scale representations are fundamental in computer vision and graph-
ics (Clark, 1976; Burt & Adelson, 1983; Adelson et al., 1984). In 2D visual perception, SPP-net (He
et al., 2014) introduced multi-scale pooling layers for robust recognition across scales. SSD (Liu
et al., 2015) utilized multi-resolution feature maps for efficient object detection, while FPN (Lin
et al., 2016) constructed feature pyramids with top-down pathways and lateral connections, enabling
high-level semantic features at all scales. Subsequent works (Kong et al., 2018; Ghiasi et al., 2019)
continued to refine multi-scale feature representations. In 3D novel view synthesis, hierarchical ap-
proaches have enhanced efficiency and quality. NeRF (Mildenhall et al., 2020) used hierarchical
sampling with coarse and fine networks. Subsequent works like KiloNeRF (Reiser et al., 2021), and
PyNeRF (Turki et al., 2023) employed strategies such as spatial partitioning and multi-scale NeRF
models to improve rendering speed and quality across varying scene complexities. Our work ex-
tends hierarchical principles to generalizable 3D-GS, drawing inspiration primarily from 2D vision
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techniques. We are the first to apply hierarchical neural representation to explicit 3D Gaussian rep-
resentations, unleashing the potential of 3D Gaussian representations in capturing rich scene details
across scales.

3 METHOD

3.1 FRAMEWORK OVERVIEW
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Figure 2: The overall framework of HiSplat. For simplicity, the situation with two input images is
illustrated. HiSplat utilizes a shared U-Net backbone to extract different-scale features. With these
features, three processing stages predict pixel-aligned Gaussian parameters with different scales,
respectively. Error aware module and modulating fusion module perceive the errors in the early
stages and guide the Gaussians in the later stages for compensation and repair. Finally, the fusing
hierarchical Gaussians can reconstruct both the large-scale structure and texture details.

The overall framework of HiSplat is illustrated in Figure 2. Given a set of sparse sequential input
images with their corresponding and the target camera pose information, HiSplat aims to feed-
forward render the photorealistic target images from unseen views. To achieve this, HiSplat adopts
a shared U-Net CNN with a multi-view transformer to extract the hierarchical cross-view features.
The subsequent processing can be divided into three interrelated stages. For the lowest stage with the
lowest resolution, the cross-view features are fed into a CNN with cost volume formulation to predict
the depth and Gassian features, which can be decoded into corresponding Gaussian parameters. For
the other two higher stages, they utilize the information (depth, features, and image errors) from
the lower stages to predict their corresponding Gaussians via the Error Aware Module. Finally,
the Modulating Fusion Module is used to adjust the Gaussian parameters and aggregate them to
generate fusing multi-scale Gaussians. During training, fusing multi-scale Gaussians in each stage
will be used to render target views parallelly with the supervision of ground truth. For inference,
only the fusing Gaussians in the last stage are adopted.

3.2 HIERARCHICAL FEATURE EXTRACTION AND DEPTH ESTIMATION

Hierarchical Cross-view Feature Extraction. To extract hierarchical multi-scale features from
input multi-view 2D images, we construct a CNN and Transformer mixed feature extraction back-
bone network with a U-Net (Ronneberger et al., 2015) architecture. Specifically, the network is
divided into an encoder and a decoder, each composed of three 3 × 3 standard residual blocks (He
et al., 2016). Each residual block performs upsampling/downsampling to extract features at different
scales, and residual connections are used to integrate features of the same scale from the encoder and
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decoder. At the end of the encoder, features are fed to a multi-view Transformer (Xu et al., 2023;
2022) that employs cross-attention and self-attention to extract mutual information from multi-view
images and injects it into the subsequent decoding stream. For features extracted from different de-
coder stages, a simple convolutional head is used to obtain the corresponding scale features. To fur-
ther enhance the generalization of feature extraction (see Table. 3), we follow MVSFormer++ (Cao
et al., 2024) to introduce features of frozen DINOv2 (Oquab et al., 2023) and interpolate DINOv2
features to add with each scale features. Formally, Given N input images Irefin ∈ RN×H×W×3 with
image size H ×W , the cross-view feature for stage i are denoted as

Fi = N (Irefin ; θN )i + Interp(D(Irefin ; θD)), (1)

where Fi ∈ RN× H

23−i × W

23−i × C

2i−1 , C is the channel number of F1; N and D are the U-Net backbone
and DINOv2 respectively; θ is the corresponding parameters of network; N (·; ·)i denotes the output
features from ith stage of U-Net backbone decoder; Interp(·) is the interpolating operation.

Depth Estimation. With the camera matrix, depth is used to reproject the image pixel to 3D space,
which is important for the correct location of Gaussians. For hierarchical Gaussians, the larger-
scale Gaussians form the skeleton, while smaller Gaussians are near larger-scale Gaussians as a
supplement. Therefore, the depth prediction principle is estimating the largest-scale Gaussian depth
accurately, and using it as a reference to predict the depth of smaller-scale Gaussians. For depth
in the first stage, we utilize the cost volume matching in Multi-View Stereo (MVS) (Cao et al.,
2022; 2024; Yao et al., 2018) for accurate depth estimation. Since cost volume matching introduces
unbearable computational load at high resolutions, we only apply it in the first stage. Specifically,
given the feature F ∈ RN×H

4 ×W
4 ×C and the corresponding camera pose P ∈ RN×4×4, a plane-

sweep stereo approach (Collins, 1996; Yao et al., 2018; Im et al., 2019) is utilized to sample R
different depth candidates V = {d1, d2, ..., dR} from [dnear, dfar]. Then, the matching feature
F ij
warp,k ∈ RH

4 ×W
4 ×C is sampled by warping the jth view feature F j to ith view according to depth

plane dk, which is denoted as

F ij
warp,k = Warp(F j , P i, P j , dk) (2)

where Warp is the warping and sampling operation (Yao et al., 2018; Xu et al., 2023; Chen et al.,
2024b). The matching features from other views are utilized to generate the cost volume feature
F i
cv = {F i

cv,1, F
i
cv,2, ..., F

i
cv,R} by matching it with F i, computed as

F i
cv,k =

1

N − 1

N∑
j=1,j ̸=i

F ij
warp,k · F i

√
C

. (3)

The cost volume features are fed into a lightweight CNN (Chen et al., 2024b) to obtain refined F̂ i
cv,k

and the Gaussian feature FGS . The depth of ith view Di ∈ R+
H
4 ×W

4 is computed as

Di = softmax(F̂ i
cv)V. (4)

For Gaussians in subsequent stages, we employ an Error Aware Module to predict their relative
depth offsets, enabling the placement of Gaussians in appropriate positions where the large-scale
Gaussians lack details or are incorrect.

3.3 ERROR AWARE MODULE

To enable small-scale Gaussians to supplement the lacking details and correct structural errors of
the large-scale Gaussians, we render the mixed Gaussians from the previous stage from input views
and compute an error map with the input images. A lightweight 2D U-Net (Ronneberger et al.,
2015; Zhou et al., 2018b) with two predictors is used to aggregate and generate the depth offsets and
Gaussian features. To ensure that the decorative Gaussians are always near the skeletal Gaussians,
we have restricted the range of depth offsets. Formally, given the images Ĩrefi−1 ∈ RN×H×W×3

rendered from Gaussians of stage i − 1, the depth offsets degree αi ∈ [0, 1]N× H

23−i × W

23−i and
Gaussian features FGS

i ∈ RN× H

23−i × W

23−i ×CGS can be computed as

(αi, F
GS
i ) = U(|Ĩrefi−1 − Irefin |, Fi; θU ), (5)
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where U and θU are the lightweight U-Net and its corresponding weights. Given a maximum depth
coefficient η ∈ [0, 1] (typical value 0.1), the depth Di in stage i can be computed as

Di = ∆Di + Interp(Di−1),∆Di = (2αi − 1) · ηInterp(Di−1), (6)

where Interp is the interpolating operation aiming to upsameple Di−1 to the same spacial size as
Di. By introducing η, the ∆Di can be restricted in [−ηInterp(Di−1), ηInterp(Di−1)].

3.4 GAUSSIAN PARAMETER PREDICTION

After obtaining the Gaussian features FGS
i and corresponding depth Di in stage i, we follow Pixel-

Splat (Charatan et al., 2024) to predict the pixel-aligned Gaussian parameters, including the Gaus-
sian center, opacity, covariance, and spherical harmonics coefficients. Specifically, for the Gaussian
center, we utilize the Di along the pixel-aligned ray to unproject the 2D pixel to the 3D space lo-
cation as the Gaussian center. For other Gaussian parameters, stacked convolutional layers with the
corresponding predictor are adopted to generate them.

3.5 MODULATING FUSION MODULE

Simply fusing Gaussians of different scales struggles with achieving optimal joint optimization, and
merely introducing smaller-scale Gaussians cannot fully correct the potential errors generated by
large-scale Gaussians. Therefore, inspired by spatial attention (Jaderberg et al., 2015; Almahairi
et al., 2016), we propose the Modulating Fusion Module. It focuses on modulating and reweighting
the Gaussians’ opacity in the areas with significant errors. Formally, given the Gaussian features
from current and previous stages FGS

i and {FGS
k |k ∈ [1, i − 1]}, we obtain the concatenate Gaus-

sians’ features F cat = {F cat
k |k ∈ [1, i− 1]}, denoted as

F cat
k = cat(interp(FGS

i ), FGS
k ), (7)

where interp(·) is interploating FGS
i to the same corresponding spatial size as each FGS

k ; cat(·, ·)
is concatenating in the channel dimension. An MLP1 is used to squeeze the dimension of F cat

to multiply the corresponding error maps spatially, following another MLP2 with sigmoid out-
puts the modulating coefficient ξk ∈ [0, 1]N× H

23−k × W

23−k of previous Gaussians’ opacity Ok ∈
[0, 1]N× H

23−k × W

23−k , denoted as

ξk = Sigmoid(MLP2(MLP1(F
cat
k ; θMLP1) · interp(|Ĩ

ref
k − Irefin |); θMLP2)), (8)

where Sigmoid(·) is the non-linear sigmoid operation; θMLP is the corresponding weights. The
previous Gaussians’ opacity {O1, O2, ..., Oi−1} is updated following Ok := Ok · ξk.

3.6 TRAINING OBJECTIVE

During training, we render the fusing hierarchical Gaussians in all stages to obtain images from
target novel views and utilize the photometric losses (Charatan et al., 2024; Chen et al., 2024b),
including Mean Squared Error (MSE) loss and Learned Perceptual Image Patch Similarity (LPIPS)
losses (Zhang et al., 2018), to supervise each image. The all training objective is

Lall =

3∑
i=1

λmseLmse(Ĩ
tar
i , Itar) + λlpipsLlpips(Ĩ

tar
i , Itar), (9)

where the loss coefficient λmse = 1, λlpips = 0.05. Except for the frozen feature extractor of
DINOv2, other parameters are trainable and supervised by the training objective.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Datasets. To comprehensively evaluate the reconstruction ability, we train and test models in
two large-scale datasets, RealEstate10K (Zhou et al., 2018a) and ACID (Liu et al., 2021). The
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RealEstate10K dataset comprises videos sourced from YouTube, divided into 67,477 training scenes
and 7,289 testing scenes. The ACID dataset consists of nature scenes captured via aerial drones,
with 11,075 scenes for training and 1,972 scenes for testing. Both datasets are calibrated with
Structure-from-Motion (SfM) (Schonberger & Frahm, 2016) algorithm to estimate camera intrinsic
and extrinsic parameters for each frame. Following the novel view synthesis settings of previous
works (Charatan et al., 2024; Chen et al., 2024b; Zhang et al., 2024), two context images are as
input, and three novel target views are rendered for each test scene. Besides, to compare the cross-
dataset generalization ability, we select other two multi-view datasets, including real object-centric
dataset DTU (Jensen et al., 2014) and synthetic indoor dataset Replica (Straub et al., 2019), for zero-
shot test (without fine-tuning or training). Following (Chen et al., 2024b) and (Zhi et al., 2021), we
select sixteen scenes in DTU and eight scenes in Replica for testing. To quantitatively measure the
rendering quality of novel views from different aspects, Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity (SSIM) (Wang et al., 2004) and Learned Perceptual Image Patch Similarity (LPIPS)
losses (Zhang et al., 2018) are adopted as testing metrics.

Implementation Details. For a fair comparison, we follow the commonly used training set-
tings (Chen et al., 2024b; Charatan et al., 2024; Zhang et al., 2024). Specifically, the input images
are resized as 256 × 256, and the model is optimized by Adam (Kingma, 2014) for 300,000 iter-
ations. The training experiments are implemented in 8 RTX4090 with batch size 2 for two days.
There are more implementation details in A.1.

4.2 MAIN RESULTS

4.2.1 NOVEL VIEWS SYNTHESIS

To verify the effectiveness of the proposed HiSplat on novel view synthesis, we train and test the
model on large-scale multi-view datasets RealEstate10K and ACID, respectively. We select four
typical feed-forward NeRF-based methods, including pixelNeRF (Yu et al., 2021), GPNR (Suhail
et al., 2022), AttnRend (Du et al., 2023), MuRF (Xu et al., 2024), and three recent Gaussian-
Splatting-based methods, including PixelSplat (Charatan et al., 2024), MVSplat (Chen et al., 2024b),
TranSplat (Zhang et al., 2024) as comparisons. As shown in Table 1, compared with previous meth-
ods, HiSplat can consistently achieve state-of-the-art (SOTA) performance on different datasets and
metrics with significant improvement, which demonstrates the superiority of the proposed hierar-
chical structure of Gaussian primitives. Specifically, on RealEstate10K dataset, HiSplat surpasses
the latest state-of-the-art (SOTA) open-source method MVSplat by +0.82 PSNR, and exceeds the
leading method Transplat by +0.52 PSNR, achieving a new milestone by obtaining higher than 27
PSNR in the challenging two-view reconstruction task. On ACID dataset, HiSplat outperforms other
methods by +0.5 PSNR than MVSpalt and +0.4 PSNR than TranSplat. For the patch-level SSIM
and feature-level LPIPS metrics, HiSplat also gains significant improvement, suggesting that HiS-
plat can reconstruct details and large-scale structures with higher quality. Besides the performance,
we also report the inference time and peak GPU memory in A.2.

Table 1: Evaluation on RealEstate10K and ACID. Compared with the previous NeRF-based and
generalizable Gaussian-Splatting-based method, HiSplat can consistently obtain higher rendering
quality of unseen views.

Method RealEstate10K ACID
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

pixelNeRF (Yu et al., 2021) 20.43 0.589 0.550 20.97 0.547 0.533
GPNR (Suhail et al., 2022) 24.11 0.793 0.255 25.28 0.764 0.332
AttnRend (Du et al., 2023) 24.78 0.820 0.213 26.88 0.799 0.218

MuRF (Xu et al., 2024) 26.10 0.858 0.143 28.09 0.841 0.155
PixelSplat (Charatan et al., 2024) 25.89 0.858 0.142 28.14 0.839 0.150

MVSplat (Chen et al., 2024b) 26.39 0.869 0.128 28.25 0.843 0.144
TranSplat (Zhang et al., 2024) 26.69 0.875 0.125 28.35 0.845 0.143

HiSplat(Ours) 27.21 0.881 0.117 28.75 0.853 0.133

4.2.2 CROSS-DATASET GENERALIZATION

To verify the generalization ability of HiSplat, we train the model on RealEstate10K and directly test
it on DTU, ACID, and Replica in a zero-shot setting. As depicted in Figure 3, the images generated
by HiSplat are more aligned with human perception, featuring less edge blurriness, less artefacts
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and more accurate location. The quantitive results are shown in Table 2. Compared with previ-
ous single-scale Gaussian-Splatting-based methods, HiSplat performs a significant generalization
improvement, e.g., obtaining +1.05 PNSR on object-centric dataset DTU, +0.55 PSNR on outdoor
dataset ACID and +3.19 PSNR on indoor dataset Replica over the suboptimal methods, suggest-
ing that HiSplat is more effectively deployed in the practical open-world scenario with various data
distribution. It is worth noting that on ACID, HiSplat’s zero-shot performance even outperforms
others trained specially on ACID significantly. The outstanding generalization ability can be ex-
plained from two aspects: 1) the hierarchical Gaussian representation can reconstruct scenes of
vastly different scales simultaneously 2) the error-aware mechanism is scale-invariant, which can
benefit consistently across a wide range of scenes.
Table 2: Evaluation on cross-dataset generalization. We train models on RealEstate10K, and test
them on object-centric dataset DTU, outdoor dataset ACID, and indoor dataset Replica in a zero-shot
setting. Compared with previous methods, HiSplat can better handle various scenes with different
distributions and scales.

RealEstate10K → DTU RealEstate10K→ACID RealEstate10K→ReplicaMethod PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
PixelSplat (Charatan et al., 2024) 12.89 0.382 0.560 27.64 0.830 0.160 23.98 0.821 0.202

MVSplat (Chen et al., 2024b) 13.94 0.473 0.385 28.15 0.841 0.147 23.79 0.817 0.165
TranSplat (Zhang et al., 2024) 14.93 0.531 0.326 28.17 0.842 0.146 - - -

HiSplat(Ours) 16.05 0.671 0.277 28.66 0.850 0.137 27.17 0.899 0.113

4.3 ABLATION EXPERIMENT

To verify the effectiveness of each proposed technique of HiSplat, we conduct ablation exper-
iments to eliminate each component step by step, and compare them with previous methods on
RealEstate10K. As illustrated in Table 3, different degrees of performance degradation are observed
of any removal, validating the necessity of each component. It merits attention that the vanilla hi-
erarchical 3D Gaussian representation cannot perform competitively compared with previous meth-
ods (-0.21 PSNR compared with MVSpalt). Whereas, when combined with the proposed EAM
and MFM, the potential of hierarchical manner is unleashed with prominent improvement (+0.82
PSNR). The reason is that the EAM and MFM promote the transfer of error-aware information
and features across different scales, driving Gaussians in the later stages to compensate for lacking
details and repair the error of earlier stages for joint optimization, as stated in Sec 1.

Table 3: The ablation study on RealEstate10K. Hier: Hierarchical Gaussian, EAM: Error Aware
Module, MFM: Modulating Fusion Module, DINO: using DINOv2 feature. Only using vanilla
hierarchical Gaussians cannot perform better than previous methods. Each proposed component
contributes to the final superior results.

Hier EAM MFM DINO PSNR↑ SSIM↑ LPIPS↓
✓ × × × 26.18 0.869 0.135
✓ ✓ × × 26.76 0.874 0.123
✓ ✓ ✓ × 27.02 0.879 0.120Variants of HiSplat(Ours)

✓ ✓ ✓ ✓ 27.21 0.881 0.117
PixelSplat (Charatan et al., 2024) 25.89 0.858 0.142Other methods MVSplat (Chen et al., 2024b) 26.39 0.869 0.128

4.4 ANALYSIS OF HIERARCHICAL GAUSSIANS

In this section, we visually analyze the different stages during the inference process to reveal the
mechanism behind the effectiveness of HiSplat.

Analysis of 3D Gassian Primitives. To visually display the fusing Gaussians in different stages,
we take the center of Gaussian primitives as the 3D position of point clouds and utilize the color of
corresponding context images to draw the Gaussian primitives. As shown in Figure 4, for the later
stage, as the number of Gaussian primitives increases, the rendering quality also gradually improves,
demonstrating the effectiveness of adding Gaussian primitives. To further analyze the function of
adding Gaussians of each stage, we report the statistical probability of opacity and mean scale of
Gaussians. It is noteworthy that because the fusing Gaussians in the later stage contain the Gaussians
from the early stages, for a clear analysis, we individually report the statistical value of fusing Gaus-
sians from each stage. It can be observed that the Gaussian primitives in stage 1 are sparse, solid,
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Ground TruthReference Images PixelSplat MVSplat Ours

DTU

Replica

ACID

Figure 3: Qualitative comparison of generalization ability. For the scenes out of training distribu-
tion, HiSplat can generate higher-quality novel-view images. More comparison is provided in A.3.

and large while the adding Gaussian primitives from later stages gradually become dense, trans-
parent and small. This pattern of Gaussian attributes aligns with our hypothesis: larger and more
solid Gaussian primitives form the skeleton of the scene, aiming to establish the large-scale
basic structure, while smaller and more transparent Gaussian primitives serve as decoration,
further refining the texture details, which can be described as “from bone to flesh”. Following
this hypothesis, we explain the function of the displayed hierarchical Gaussians that Gaussian primi-
tives from stage 1 and stage 2 are relatively solid, adhering closely to the surface of the scene, which
gradually completes the outline and basic structure; as for the Gaussian primitives from stage 3, they
are very tiny and transparent, introducing richer texture details and illumination. Besides, compared
with other methods, HiSplat can render a high-quality novel-view image with more accurate and
consistent geometry, especially the toy bird’s crest in Figure 4.

Analysis of 2D Error Map. To analyze how hierarchical Gaussians reconstruct the scene step
by step in detail, we show the colored error map of different stages, generated by comparing the
rendering images with the ground truth in Figure 5. The brighter and redder pixels exhibit more
significant errors and a rectangle highlights the regions with complex and rich textures. It can be
observed that as the stage index increases, the overall error continuously decreases, especially in
areas with complex textures. Besides, by directly examining the rendered images, we can observe
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Reference Images Ours Stage3

PSNR:18.42

MVSplat

PSNR:15.08

MVSplat

PSNR:15.08

PixelSplat

PSNR:14.54

PixelSplat

PSNR:14.54

Ours Stage1

PSNR: 17.53

Ours Stage2

PSNR:18.11

Gaussian 

Primitives

Rendering

Images

Opacity

Distribution

Mean Scale

Distribution

Ours Stage1 Ours Stage2 Ours Stage3

Figure 4: Comparison of Gaussian primitives in different stages on DTU. HisPlat can gradually
generate large-scale solid Gaussians as “bone” and small-scale transparent Gaussians as “flesh”,
confirming better rendering quality and geometry.

Ground Truth

Reference Images
Stage1

PSNR: 28.05

Stage2

PSNR:30.18

Stage3

PSNR:31.49

Figure 5: Comparison of rendering images from different stages on RealEstate10K. HiSplat can
perceive the error, and utilize Gaussians in the later stages to add details and correct errors gradually.

that there is less blurriness and more details. It suggests that HiSplat can perceive the error in the
early stage, and utilize Gaussians in the later stage for repair and compensation.

5 CONCLUSION

In this paper, we propose a novel generalizable 3D Gaussian Splatting framework, HiSplat, aiming to
render novel-view images from sparse (only two) context images. Different from previous methods
predicting single-scale Gaussians, HiSplat gradually generates multi-scale hierarchical Gaussians to
reconstruct the large-scale structure and texture details with higher quality. To facilitate the informa-
tion interaction of different stages, we propose Error Aware Module and Modulating Fusion Module
for Gaussian compensation and repair. Extensive experiments across multiple datasets demonstrate
that HiSplat significantly enhances the quality of reconstructions and cross-dataset generalization,
surpassing previous single-scale methods.
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