
A Appendix

A.1 Experimental Details

All our models were trained on an Nvidia A100 using the Adam optimizer. Batch size, learning rate
(LR), and weight decay hyperparameters are summarized in the table below. Recall from Sections 4.1
through 4.3 that we train the CNNs and C8-CNNs (architecture description below) on rotated MNIST
and train AlexNet, ResNet50, DenseNet121, and LeViT192 on Maritime xView. Hyperparameters
were chosen based on an informal search. Running our experiments with a more comprehensive
hyperparameter search would be a worthwhile future exercise since it might yield insight into how
different hyperparameters affect model invariance and equivariance.

The standard CNN and C8-CNN used in Section 4.1 consist of 6 convolutional blocks, each containing
a standard convolutional layer, a batch norm, a ReLU nonlinearity, and a pooling layer. The C8-CNN
models have an analogous 6 block structure with the difference that each block uses C8-rotation
equivariant, steerable convolutional layers and a so-called inner batch norm (a batch norm adapted
for equivariant frameworks [45]). Both model types have a final linear layer.

Table 1: Experimental hyperparameters.

Batch size LR Weight Decay
CNN 64 5⇥ 10�4 1⇥ 10�5

C8-CNN 64 5⇥ 10�4 1⇥ 10�5

AlexNet 64 5⇥ 10�5 1⇥ 10�5

ResNet50 64 5⇥ 10�4 1⇥ 10�5

DenseNet121 64 1⇥ 10�5 1⇥ 10�5

LeViT192 64 5⇥ 10�5 1⇥ 10�5

A.2 Dataset Details

The datasets used in our experiments include (i) rotated MNIST , which consists of images from
MNIST rotated by random angles [14] (MNIST is covered by a Creative Commons Attribution-Share
Alike 3.0 license) and (ii) xView maritime, a classification dataset we constructed by cropping the
bounding boxes of all maritime vessel classes found in xView [31], an overhead imaging dataset
(xView is covered by an Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA
4.0) license). In our version of rotated MNIST we excluded the class 9 so that we could remove
the drop in model accuracy resulting from the similarity of a 9 and an upside-down 6. We apply a
circular mask to all images before using them as input to a model so that invariance is not broken by
the artifacts introduced by rotating a rectangular image by ✓ degrees where ✓ 6= 0�, 90�, 180�, 270�.
See the bottom right image in Figure 6 for an example of this.

Below we describe our OOD datasets for Section 4.2.

• MNIST Train: The original MNIST training images (with class 9 excluded).
• CIFAR10: Grayscale versions of the CIFAR10 images [28] (CIFAR10 is covered under an

MIT license).
• MNIST (Noisy) 1-6: MNIST images perturbed by noise randomly sampled uniformly from

intervals (1) [0, 0.2], (2) [0, 0.4], (3) [0, 0.6], (4) [0, 0.8], (5) [0, 1.0], and (6) [0, 1.2]. Notice
that any of these noise perturbations can push pixels outside of image bounds. We generally
assume that images with more noise are farther OOD.

• MNIST (blurry): MNIST images with Gaussian blur applied with a size 7⇥ 7 kernel with
standard deviation .5.

• Omniglot: Another image classification dataset that contains characters [30] (Omniglot is
covered under an MIT license).

• Inverted MNIST: MNIST where each pixel has had the transformation f(x) = 1 � x

applied to it. This inverts the intensity of pixels to make the MNIST dataset look more like
Omniglot (the background has high intensity and the digits have low intensity).

15

Figure 6: Examples of the OOD datasets that we used to evaluate our models. From left to right and
top to bottom: MNIST train, MNIST (noisy) 1–6, MNIST (blurry), Omniglot, inverted MNIST, and
CIFAR10 (grayscale).

A.3 How does invariance in a model’s latent space change when augmentation is or is not
used?

As in Section 4.3, we focus on the case where G = C8 (the group generated by 45� rotations) and the
dataset xView Maritime. We trained 5 ResNet50s, 5 AlexNets, and 5 DenseNet121s with and without
rotation augmentation respectively. We then measured latent space C8-EED in all models. Our results
can be found in Figure 11. We find that models trained without augmentation indeed had consistently
lower C8-EED both when we used our standard Euclidean distance metric and when we used the
cosine similarity version. These experiments serve as evidence that our metrics are measuring the
properties that we think they are measuring.

A.4 Does learned equivariance involve re-ordering of tensor channels?

Suppose that the function f` : X ! RC`⇥H`⇥W` corresponds to the first ` layers of a network,
terminating with a 3-tensor which has C` channels of height H` and width W`. Suppose that G is
a group that acts both on the input space X and the hidden space RC`⇥H`⇥W` . The channelwise
G-EED metric that we proposed in this paper, assumes that when we compare channels from f`(gx)
with channels from gf`(x), we should assume the trivial bijection. That is, we should compare the
first channel of f`(gx), [f`(gx)]1, with the first channel of gf`(x), [gf`(x)]1, the second channel
[f`(gx)]2 with the second channel [gf`(x)]2, etc.

On the other hand, in many equivariant CNN’s, the group action of g on f`(x) not only changes
individual channels, it also permutes their order. It is reasonable to ask whether CNNs trained with
augmentation might learn some similar “emergent” structure not only within individual channels, but
also among them. The channelwise G-EED metric would likely not detect this kind of equivariance.
In this section we examine this possibility. Though we do not disprove its existence, we run several
preliminary experiments that suggest that this is not likely. This is an area that would benefit from
additional study.

In our preliminary investigation, we focus on the filters at each layer (rather than input and output).
We chose to do this based off of the observation that in equivariant CNNs that utilize the regular
representation and which are designed to display the phenomenon we are looking for, filters come in
entire orbits. That is, if w is a filter in a layer, then so is each element in the orbit Gw (i.e., the orbit
of w under the action of G). In Figure 12 for example, four filters of a C4-equivariant convolutional
layer [45] are displayed. The filters represent an orbit under the action of all 90-degree rotations (e.g.,
C4).

As a first step towards identifying structured equivariance in augmentation trained CNNs, we com-
pared all channels of each pair of filters at a given convolutional layer of an AlexNet CNN. However,
comparing all the possible pairings is combinatorially prohibitive, even for simple architectures like
AlexNet. In Figure 13, we plot the metric

min
j 6=i;k
g2C4

||g(w`,i,t)� w`,j,k||`2 , (7)

where w`,i,t is the height H 0
`

and weight W 0
`
2-tensor obtained by taking channel t from filter i in

layer ` and g(w`,i,t) is the action of group element g on w`,i,t. It this case simply rotating by a
multiple of 90�. We report the average of this metric over all convolutional layers of four different

16

Figure 7: The channelwise C8-EED for the composition of various layers in 10 conventional CNNs
and 10 C8-equivariant CNNs (C8-CNN) [45] trained on the rotated MNIST dataset. Both plots
include 95% confidence intervals. Smaller values indicate more C8-equivariance.

AlexNet models trained on MNIST: AlexNet trained from scratch without rotation augmentation,
AlexNet trained with rotation augmentation but no pretraining, AlexNet with both pretraining and
rotation augmentation, and finally Alex with C8-equivariant layers [45]. Random i and t are selected
for each computation, and for computational simplicity we only evaluated on the subgroup C4 of C8

generated by 90-degree rotations.

A network where some filters are rotations of others would be expected to achieve a value of 0 for (7).
Indeed, we can see that this is what happens to the C8-equivariant network. We see that the other
networks do not achieve zero. Indeed, with the exception of the pretrained AlexNet, for which (7)

17

Figure 8: (Left) The cosine similarity version of latent space C8-EED for 10 conventional CNNs and
10 C8-CNNs all trained on rotated MNIST. Surprisingly, the C8-CNNs are less invariant with respect
to this metric. We speculate as to why this might be in Section 4.1. (Right) One of our hypotheses
is driven by plotting the unnormaized version of this metric which suggests that C8-CNNs clusters
points in a single C8 orbit closer than the CNNs, but do not scatter other points as far as the CNNs do.

Figure 9: The cosine similarity version of latent space C8-EED (normalized on the left, unnor-
malized on the right) for conventional untrained CNNs, conventional CNNs trained on MNIST,
and C8-equivariant CNNs (C8-CNN) [45] trained on MNIST with respect to a range of in- and
out-of-distribution datasets. Both plots include 95% confidence intervals. Lower values indications
more C8-invariance. As can be seen, without normalization, the trained conventional CNNs and the
C8-CNNs are often comparable. On the other hand, after normalization the conventional CNNs show
much lower latent space C8-EEG, indicating more C8-invariance. The differences between these two
plots seems to indicate that the conventional CNNs have learned to better separate orbits of points
rather than learning to cluster orbits together more tightly.

increases slightly over training, the other non-equivariant networks do not change significantly at all.
This indicates that this form of emergent equivariance does not emerge in this example.

A.5 A Proof of Proposition 3.1

Proof. 1. To prove this, consider the function f : R2
! R defined such that for (x, y) 2 R2

f(x, y) =
x+ y

2
.

18

Figure 10: The latent space D8-EED measured every 200 training iterations (for a total of 10,000
iterations) for a range of model architectures that were initialized with either random or pretrained
weights generated using ImageNet. Note that D8 is the dihedral group of order 16 generated by a
45� angle and a reflection across an axis.

Figure 11: Latent space C8-EED on xView Maritime for models trained with and without rotation
augmentation. (Left) The standard latent space C8-EED metric. (Right) The alternative version
of latent space C8-EED where cosine similarity is used instead of Euclidean distance. Note that
different models are not necessarily comparable since their latent spaces can have different dimension.
(smaller means more invariant to rotation.)

The order 2 cyclic group Z2 = {1,�} acts on R2 by permuting coordinates. That is, the
only nonidentity element � acts on R2 by sending (x, y) 7! (y, x). It is clear that f is
Z2-invariant.

However, note that if f1 : R2
! R2 is defined by f1(x, y) = (2x, y) and f2 : R2

! R is
defined by

f2(x, y) =
x+ 2y

4
,

then f = f2 � f1. But neither f1 nor f2 is Z2-equivariant to the actions described above.

2. This proof follows easily from the definitions. Suppose that f1 is G-invariant, then for any
x 2 X and g 2 G, f1(gx) = f1(x). Hence

f(gx) = f2(f1(gx)) = f2(f1(x)) = f(x).

19

Figure 12: Four 7⇥ 7 filters from a randomly initialized C4-equivariant convolutional layer. Note
that this is the orbit of one of these filters under the rotation action of C4.

Figure 13: The average minimum `2 norm differences (7), between pairs of individual filters (one with
group element g 2 C4 applied and one not) from the convolutional layer of AlexNets. Augmented
training does not appear to cause emergent equivariance of the kind seen in hardcoded equivariant
architecture.

A.6 A Proof of Proposition 3.2

Proof. First note that for fixed x and g, m(f(gx), gf̂(x)) = 0 if and only if f(gx) = gf(x). This
follows from the fact that since G acts faithfully on Y , f̂(x) = f(x) and from the fact that m is
a metric. First assume that m(f(gx), gf̂(x)) = 0. Then, since m is a metric, f(gx) = gf̂(x) =
gf(x) giving the desired result. Next, if f(gx) = gf(x) = gf̂(x), then it again follows that
m(f(gx), gf̂(x)) = 0.

Next we recall the basic fact [17, proposition 2.16] from measure theory, which states that if
h : W ! [0,1] is a non-negative measurable function on measure space (W, ⌫), then

Z

W

h = 0 , h = 0 almost everywhere. (8)

Since f̂(x) = f(x), let W = X ⇥ G with ⇠ = ⌫ ⇥ µ be the product measure on W generated by
Haar measure µ on G, and the probability measure ⌫ associated with D. Note that f is measurable by
virtue of being continuous, G acts linearly and hence is measurable, and m is measurable by virtue of
being a metric. It follows that the function h : X ⇥G ! [0,1] defined by

h(x, g) = m(f(gx), gf(x))

20

is measurable. The result then follows from the observation that m is non-negative (and hence h is)
and from (8). That is, if (3) is zero, then since m(f(gx), gf̂(x)) is non-negative, then (8) tells us that
m(f(gx), gf̂(x))) is zero almost-everywhere with respect to measure ⇠. On the other hand, (8) also
says that if m(f(gx), gf̂(x)) is zero almost everywhere (including the case where this term is zero
everywhere), then (3) is equal to zero.

A.7 The Reason for Normalization of Latent Space G-EED

We normalize Elatent(f,G) by M because when we use `2-distance to compute G-EED without
normalization, it is sensitive to scaling in a way that is unrelated to downstream task performance.
To illustrate, note that if f = f2 � f1 is a model with feature extractor f1 and classifier f2, then
by scaling f1 by c > 1, the unnormalized latent space G-EED increases, indicating a decrease in
G-invariance. More precisely, if f 0

1 = cf1, then E(f 0
1, G) = cE(f1, G). However, if we set f 0

2 = 1
c
f2,

then f
0
2 � f

0
1 = f = f2 � f1. Thus, f1 can be made to have arbitrarily large unnormalized latent space

G-EED while the model f itself remains constant. A different but equally illustrative example is
visualized in Figure 14. Two feature extractors have identical unnormalized latent space C8-EED for
a single rotation orbit of an image of a 4 (average distance between blue points and their centroid),
but the second feature extractor closely clusters points in the orbit relative to other instances from
MNIST, while the first feature extractor does not. We would argue that in most cases the second
feature extractor should be called more invariant with respect to this particular task. Normalization
mitigates this issue, giving a more reasonable notion of latent space invariance in the context of
machine learning.

Figure 14: This illustration shows why it is important to normalize the latent space G-EED by the
average distance between random pairs from the dataset. The set O (blue) is the orbit of an image
of a ‘4’ under the rotation action of C8. Two feature extractors f1 and f

2 map O as well as other
unrelated images (red) from MNIST [14] to a latent space. While points from f

1(O) and f
2(O) both

have the same average distance to their centroid, f2(O) clusters closely together relative to other
points from the dataset. f1(O) is mixed with instances not belonging to f

1(O). We would argue that
f
2 extracts more invariant features.

A.8 Channelwise C8-EED for out-of-distribution datasets

In this section we provide Figure 15, which shows the channelwise C8-EED for collections of: CNN
models with random weights, CNN models that have been trained on MNIST, and C8-CNN models
that have been trained on MNIST.

In Figure 15 we show the channelwise C8-EED at layers 2 and 5 for each of the model types.
Unsurprisingly, the C8-CNN has high C8-equivariance for all layers, whereas both the trained and
untrained CNNs have substantially lower C8-equivariance. Across layers, the channelwise C8-EED
remains fairly constant across datasets for the untrained models. However, the channelwise C8-EED
for early layers of the trained CNNs differs across datasets (with equivariance on OOD datasets

21

generally being less than the equivariance on the training set MNIST). In later layers, however, the
difference in C8-equivariance between MNIST and an OOD dataset is negligible (Figure 15, right).
This suggests that CNNs do learn some minimal amount of equivariance at early layers, but this
equivariance either dissipates or becomes undetectable at later layers. Equivariance in earlier layers
is also tied to image content. Images with high frequency signals tend to differ more significantly
when rotated (with at the extreme end, a constant valued image unchanged with rotation).

Figure 15: The channelwise C8-EED for the first two (left) and first five (right) convolutional blocks
of a CNN with random weights, a CNN with weights trained on MNIST, and a C8-CNN with weights
trained on MNIST. Error bars indicated 95% confidence intervals.

Figure 16: The softmax C8-EED after 10, 000 iterations of training on xView maritime for a range of
model architectures initialized with either random or pretrained weights generated using ImageNet.
The 95% confidence intervals are represented by the black bars.

22

	Introduction
	Related Work
	Quantifying Invariance and Equivariance
	Measuring equivariance

	Understanding invariance and equivariance in deep learning
	Do networks trained with augmentation learn equivariant layers?
	Does learned invariance hold for out-of-distribution data?
	How does the use of pretrained weights affect invariance and equivariance?
	The invariance of supervised and self-supervised models

	Limitations and Conclusion
	Appendix
	Experimental Details
	Dataset Details
	How does invariance in a model's latent space change when augmentation is or is not used?
	Does learned equivariance involve re-ordering of tensor channels?
	A Proof of Proposition 3.1
	A Proof of Proposition 3.2
	The Reason for Normalization of Latent Space G-EED
	Channelwise C8-EED for out-of-distribution datasets

