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ABSTRACT

Machine learning models are often used to decide who receives a loan, a job inter-
view, or a public benefit. Models in such settings use features without considering
their actionability. As a result, they can assign predictions that are fixed — meaning
that individuals who are denied loans and interviews are, in fact, precluded from
access to credit and employment. In this work, we introduce a procedure called
recourse verification to test if a model assigns fixed predictions to its decision
subjects. We propose a model-agnostic approach for recourse verification with
reachable sets — i.e., the set of all points that a person can reach through their
actions in feature space. We develop methods to construct reachable sets for dis-
crete feature spaces, which can certify the responsiveness of any model by simply
querying its predictions. We conduct a comprehensive empirical study on the
infeasibility of recourse on datasets from consumer finance. Our results highlight
how models can inadvertently preclude access by assigning fixed predictions and
underscore the need to account for actionability in model development.

1 INTRODUCTION

Machine learning models routinely assign predictions to people — be it to approve an applicant for a
loan [24], a job interview [5, 51], or a public benefit [66, 13, 16]. Models in such applications use
features about individuals without accounting for how individuals can change them. In turn, they
may assign predictions that are not responsive to the actions of their decision subjects. In effect, even
the most accurate model can assign a prediction that is fixed (see Fig. 1).

The responsiveness of machine learning models to our actions is vital to their safety in consumer-
facing applications. In applications like content moderation, models should assign fixed predictions
to prevent malicious actors from circumventing detection by manipulating their features [25, 42, 31].
In lending and hiring, however, predictions should exhibit some sensitivity to our actions. Otherwise,
models that deny loans and interviews may preclude access to credit and employment, thus violating
basic rights such as equal opportunity [3] and universal access [8].

In this work, we introduce a formal verification procedure to test the responsiveness of a model’s
predictions with respect to the actions of its decision subjects. Our procedure — recourse verification —
is grounded in a stream of work on algorithmic recourse [57, 59, 28]. While much of the work in
this area focuses on recourse provision — i.e., providing a person with actions to obtain a desired
prediction from a model — we focus on recourse verification — i.e., certifying that a model assigns
predictions that each person can change. Unlike provision, verification is a model auditing procedure
that practitioners can use to flag models that preclude access or promote manipulation.

The key challenge in recourse verification stems from the fact that we must test the sensitivity of a
model’s predictions with respect to actions rather than arbitrary changes in feature space. In a lending
application, for example, actions on a feature such as years_of_account_history should set its
value to a positive integer and should lead to a commensurate change in other temporal features like
age. Such constraints are easy to specify for features that are semantically meaningful, but difficult
to enforce in methods for recourse provision. To claim that a model assigns a fixed prediction to
a point, we must prove that its predictions will not change under any possible action. In practice,
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Figure 1: Stylized classification task where the most accurate classifier on a dataset with n~ = 60 negative

examples and nt = 90 positive examples assigns a prediction without recourse to individuals with (z1, z2) =
(1,1). We predict y = repay_loan using two binary features (21, z2) = (reapplicant, age > 60), which can
only increase from 0 to 1. We denote the actions on each feature as (a1, a2) and show the constraints they must
obey in the action set. Given any model, we certify the responsiveness of its outputs for (x1,x2) by checking its
prediction for each point in the reachable set Ra(x1,x2). In this case, 42 individuals with (z1,z2) = (1,1)
are assigned a prediction without recourse as f(x1,z2) = 0 for all (z1,22) € Ra(1,1).

this requires an exhaustive search over a combinatorial subset of actionable feature space. This is a
non-trivial computational task — especially for complex models — as we must certify the infeasibility
of a combinatorial optimization problem that faithfully encodes a complex decision boundary.

Our main contributions include:

1. We present a model-agnostic approach for recourse verification by constructing a reachable set
—1i.e., a set of all points that a person can attain through their actions in feature space. Given a
reachable set, we can certify the responsiveness of a model’s predictions by simply querying its
predictions over reachable points.

2. We develop fast methods to construct reachable sets for discrete feature spaces. Our methods can
construct complete reachable sets for complex actionability constraints, and can support practical
verification in model development and deployment.

3. We conduct a comprehensive empirical study on the infeasibility of recourse in consumer fi-
nance applications. Our results show how models can assign fixed predictions due to inherent
actionability constraints, and demonstrate how existing methods to generate recourse actions and
counterfactual explanations may inflict harm by failing to detect such instances.

4. We develop a Python package for recourse verification with reachable sets. Our package includes
an API for practitioners to easily specify complex actionability constraints, and routines to test the
actionability of recourse actions and counterfactual explanations.

Related Work We focus on a new direction for algorithmic recourse [57, 59, 29] — i.e., as a
procedure to certify the responsiveness of a model’s predictions with respect to the actions of its
decision subjects. Although actionability is a defining characteristic of recourse [see 59], few works
mention models may assign fixed predictions as a result of actionability constraints [57, 30, 10].
The lack of awareness stems, in part, from the fact that methods for recourse provision are typically
designed and evaluated with simple actionability constraints such as immutability and monotonicity.
As we show in Appendix C.5, however, infeasibility only arises once we start to consider actionability
constraints that are difficult to handle in algorithm design.

We study recourse verification as a model auditing procedure to safeguard access in applications
like lending. In such applications, verification is essential for reliable recourse provision — as it
can flag a model that cannot provide recourse to consumers before it is deployed. To this end, our
motivation aligns with a stream of work on the robustness of recourse provision with respect to
distribution shifts [52, 18, 2, 47, 20], model updates [56, 49], and causal effects [40, 28, 35]. More
broadly, recourse verification is a procedure to test the responsiveness of predictions over semantically
meaningful features, which may be useful for stress testing for counterfactual invariance [58, 41, 50],
certifying adversarial robustness on tabular datasets [39, 27, 23, 60, 42, 31], or designing models that
incentivize improvement or deter strategic manipulation [19, 11, 38, 44, 15, 6, 21, 54, 32, 33, 1, 22].
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2 RECOURSE VERIFICATION

We consider a standard classification task where we are given a model f : X — ) to predict a label
y € Y = {0, 1} from a vector of features © = [z1,...,24] € X in a bounded feature space X. We
assume each instance represents a person, and that f(x) = 1 represents a desirable target prediction —
e.g., an applicant with features « will repay a loan within 2 years.

Our goal is to test if each person can obtain a target prediction from the model by changing their
features. We represent such changes in terms of actions. Formally, each action as a vector a =
[a1,...,aq) € R? that shifts their features from « to  + a = x’ € X. We refer to the set of all
actions from & € X as an action set A(x), and assume that it contains a null action 0 € A(x). In
practice, an action set A(x) is a collection of constraints. As shown in Table 1, we can express these
constraints in natural language or as equations that we can embed into an optimization problem.

Semantically meaningful features admit hard actionability constraints. In the simplest cases, action-
ability constraints reflect the way that semantically meaningful features can only be altered in specific
ways. For example, a model may use a feature that cannot change (e.g., age) or that can only be
changed in specific ways (e.g., has_phd, which can only be changed from O to 1). More generally,
constraints may require that changing one feature will induce changes on other features (e.g., chang-
ing married from O to 1 must set single from 1 to 0). Such downstream effects can be directional
(e.g., changing retired from I to O will set work_days_per_week to 0, but not vice-versa), and may
affect features that are not themselves actionable (e.g., changing years_of_account_history from
0 to 2 will increase age by 2 years).

Class Separable Discrete Example Features Constraint

Immutability v X n_dependents should not change z; = n_dependents a; =0

Monotonicity v X reapplicant can only increase x; = reapplicant a; >0

Integrality v 4 n_accounts must be positive integer < 10 z; = n_accounts a; € ZN[0 — 5,10 — ;]

Categorical x v preserve one-hot encoding ;= married ar+x; € {0,1}  xp +a € {0,1}
Encoding of married, single z = single aj+xj+ap+xp=1

Ordinal X v preserve one-hot encoding of x; = max_degree_BS aj+x; € {0,1} a+ar €{0,1}
Encoding max_degree_BS, max_degree_MS xj, = max_degree_MS ajtaj+ap+rp=1 aj+x;>ap+;
Logical if is_employed = TRUE «; = is_employed aj +x; € {0,1}

X v then work_hrs_per_week > 0
else work_hrs_per_week = 0

ax + zy, € [0,168]
aj +x; < 168(xg + ag)

Implications ), = work_hrs_per_week

Causal if years_of_account_history increases r; = years_at_residence

L I aj < ag
Implications then age will increase commensurately T = age

Table 1: Examples of deterministic actionability constraints. We show how each constraint can be expressed
in natural language and embedded into an optimization problem using standard techniques in mathematical
programming [see e.g., 65]. We highlight constraints that are discrete and non-separable because they can only
be enforced using special kinds of search algorithms.

Verification as a Feasibility Problem Given a model f : X — ) and a point € X with action
set A(ax), the recourse provision task seeks to find an action @ € A(x) that minimizes a cost function
cost(a | ). This task requires finding an optimal solution to an optimization problem as in Eq. (1).

The recourse verification task seeks to determine if recourse is infeasible from x —i.e., if a model
assigns the same prediction f(x + a) = 0 for all actions a € A(x). This task only requires finding
a feasible solution to Eq. (1), which can be cast as the optimization problem in Eq. (2).!

Recourse Provision Recourse Verification
min cost(a | @) min 1
st. flzg+a)=1 (N st. f(x4+a)=1 (2)
a € A(x) a € Ax)

'We set the objective of Eq. (2) to a constant so that any algorithm that solves Eq. (2) will terminate as soon
as it has found a feasible solution.



We can write the input and output of a recourse verification method as the function:

Yes, if method returns an actiona € A(x) such that f(x +a) =1
Recourse(z, f, A) = ¢ No, if method proves that f(x + a) = 0 for all actionsa € A(x)
1, otherwise

We say that a method for recourse verification certifies feasibility from « if it outputs Yes and that
it certifies infeasibility from « if it outputs No. In practice, existing methods for recourse provision
may return outputs that cannot support either of these claims. For example, they may fail to return
an action without having searched exhaustively, or return an “action” that violates actionability
constraints. In such cases, we say that the method abstains for  and denote its output as L.

Use Cases Recourse verification is a model auditing procedure to test the responsiveness of a
model’s predictions with respect to the actions of its decision subjects. We can apply this procedure
to flag models that are unsafe in different consumer-facing applications by testing responsiveness by
choosing an appropriate action set.

Detecting Preclusion. In applications where we would like to safeguard access (e.g., lending), we can
flag that a model f precludes access by testing the responsiveness of predictions on points for which
f(x) = 0. In this case, we would specify an action set that captures indisputable constraints and
applies to all individuals. We would claim that the model precludes access if Recourse(z, f, A) = No
for any point such that f(x) = 0.

Ensuring Robustness. In applications where we would like to mitigate gaming (e.g., content mod-
eration), we can certify that a model f is vulnerable to adversarial manipulation by testing the
responsiveness of its predictions on points for which f(x) = 0. In this case, we would specify an
action set A(x) that encodes a threat model [31] — i.e., actions that let individuals obtain a target
prediction by changing spurious features [see 15, 43]. We would claim that the model is vulnerable
to manipulation if Recourse(x, f, A) = Yes for any point such that f(z) = 0.

Since these audits apply over points in feature space, we can run verification at different stages of a
model lifecycle to minimize the chances of inflicting harm. In model development, we would test if a
model assigns fixed predictions to any point in the training data. In deployment, we would repeat
this test for new points. In both cases, the procedure would establish that a model assigns fixed
predictions, and could support further interventions to mitigate these effects (see Section 4).

Actionability can vary substantially between individuals [see 4, 59]. In principle, we can account for
these variations by calling a recourse verification method with personalized actionability constraints
that we elicit from each decision subject [via, e.g., an interface as in 62]. In practice, we can
mitigate harm in consumer-facing applications without eliciting personalized constraints. This is
because models may assign fixed predictions as a result of inherent actionability constraints —i.e.,
constraints that apply to all decision subjects and that practitioners could glean from a data dictionary
(e.g., constraints that enforce physical limits or preserve a feature encoding). Seeing how inherent
constraints represent a subset of personalized constraints, audits with inherent actionability constraints
should be used to flag that a model inflicts harm rather than to certify that it is safe.

Algorithm Design Requirements and Pitfalls Methods for recourse verification should be de-
signed to certify infeasibility. This is an essential requirement for verification — as it implies that
a method can prove that a model’s prediction will not change under any possible action. The vast
majority of existing methods for recourse provision are ill-suited for verification because cannot
certify infeasibility. In practice, these methods will return outputs that are inconclusive or incorrect
for recourse verification tasks. We refer to these instances as loopholes and blindspots and define
them below.

Definition 1. Given a recourse verification task for a model f for a point & with the action set A(x),
we say that a method returns a loophole if its output violates actionability constraints.

Methods for recourse provision return loopholes when they search for actions using an algorithm that
cannot enforce all actionability constraints in a recourse verification task. For example, methods that
search for recourse actions using gradient descent [45] will return loopholes when we must verify
recourse with respect to an action set that includes the discrete actionability constraints in Table 1.



Definition 2. Given a recourse verification task for a model f for a point « with the action set
A(x), we say that a method exhibits a blindspor if it fails to find an action for a point where
Recourse(z, f, A) = Yes.

Methods for recourse provision output blindspots when they cannot search exhaustively. Common
algorithm design patterns that lead to blindspots include: (i) Searching for actions over observed
data points [see e.g., 61, 46]; and enforcing actionability by post-hoc filtering —i.e., by generating a
large collection of changes in feature space and filtering them to enforce actionability [see e.g., 37] —
which exhibits blindspots when the generation step is guaranteed to generate all possible actions.

3 VERIFICATION WITH REACHABLE SETS

We introduce a model-agnostic approach for recourse verification. Our approach constructs reachable
sets —i.e., sets of feature vectors that obey actionability constraints.

Definition 3. Given a point  and its action set A(x), a reachable set contains all feature vectors
that can be attained using the actions in A(x): Ra(z) :={x +a|a € A(x)}.

Given a reachable set R4 (x), we can certify that a model f provides recourse to by querying its
predictions on each point © € R 4(x). Thus, we can write the verification function as:

Yes, if there exists a reachable point ' € Ra(x) s.t. f(z') =1
Recourse(z, f,R) = { No, if f(a’) = 0 for all reachable points ' € R4 (x) 3)
1, if f(2') = 0 for some reachable points ' € R C R4(x)

Verification with reachable sets has three key benefits:

Model Agnostic Verification: We can use reachable sets to verify recourse for any model class. Model
agnostic approaches are especially valuable for recourse verification because it is challenging, if
not impossible, to develop a model-specific approach for complex model classes such as ensembles
and deep neural networks. In particular, this stems from the fact that such method would have to
certify the infeasibility of a combinatorial optimization problem that encodes both the model and the
actionability constraints. In practice, such problems be prohibitively large to solve in an audit — as we
would have to encode a complex decision boundary [see e.g., 55, 48].

Amortization: In a recourse verification task where we have access to a suitable method for recourse
verification, we may still wish to verify recourse using a reachable set. This is because, once we have
constructed reachable sets, we can use them to verify recourse for as many models as we wish.

Explicit Abstention: In settings where we cannot enumerate a complete reachable set, we can use
the interior approximation of the reachable set R C R4 (). In this case, the procedure will certify
recourse if it can find a feasible action. Otherwise, it will abstain — thus, flagging « as a potential
prediction without recourse. We can exploit this property to speed up construction through a lazy
initialization pattern. For example, rather than constructing a complete reachable set for every training
example, we can construct an interior approximation R C R4 (x). In this setup, we would use the
interior approximations to certify feasibility, and only construct the full reachable sets R = R 4(x)
for points for which we would abstain Recourse(x, f, R) = L.

3.1 CONSTRUCTION

In Algorithm 1, we present a procedure to construct a
reachable set for a given point by solving an optimization
problem of the form:

Algorithm 1 GetReachableSet

Require: x € X, feature vector
Require: A(x), action set for a

FindAction(x, A) := argmin ||a| s.t. a € A(z) \ {0}. R {z}

A+ A(z)
We formulate FindAction(x, A) as a mixed-integer pro- ~ 1: while FindAction(z, A) is feasible do
gram that we present in Appendix B. Our formulation ~ 2: @ ¢ FindAction(z, A)
can encode all actionability constraints in Table 1 and 3: R RU {m*+ a’}
is designed to be solved in a way that is fast and reliable 4 A+ A\ {a}
using an off-the-shelf solver [see e.g., 17, for a list]. Output R = Ra(x)




Given a point x, the procedure enumerates all reachable points by repeatedly solving this problem
and removing prior solutions by adding a “no-good" constraint [see e.g., 53]. The procedure stops
once FindAction(x, A) is infeasible — at which point it has enumerated all possible actions and thus
reachable points. In practice, the procedure can be stopped when a user-specified stopping condition
is met, in which case it would return an interior reachable set R C R4 () that can certify feasibility.

Decomposition Seeing how reachable sets grow exponentially with the number of features, Algo-
rithm 1 may generate an incomplete reachable set that cannot certify infeasibility under reasonable
time constraints. We overcome this issue through a decomposition —i.e., by applying Algorithm 1 to
subsets of features that can be altered independently for all points € X'.?

Given an action set over d features, we can identify subsets that can be altered independently by
inspection. In this way, we can construct the most granular partition of features —i.e., a collection of
k < d feature subsets M := {S1,..., Sy} such that A(x) = [[gc s As(xs). Given the partition
M, we generate reachable sets for each feature subset Rg by calling Algorithm 1 for each Ag(xs),
and recover the full reachable set as R = [ g v Rs-

Decomposition moderates the combinatorial explosion in our setting — making it viable to enumerate
reachable sets in practice. This strategy leads to considerable improvement in runtime, as we construct
reachable sets for each subset by solving smaller instances of FindAction(), and can construct the
reachable set for a single feature subsets without solving a MIP.

3.2 AUDITING IN PRACTICE

We can verify recourse in model development by constructing a reachable set for each point in a
dataset. Once we have constructed reachable sets for each point, we can call recourse verification
for any model by querying its predictions on reachable points as per Eq. (3). In practice, the
most time-consuming part of our approach stems from the construction of reachable sets. In our
implementation, we can achieve a considerable speed up in construction through parallel computing
and sharing reachable sets across points. In a task with immutable features, for example, we only
need to construct and store a single reachable set for any points « and ' that only differ in terms of
immutable feature values.

Given that our approach is designed to verify recourse with prediction queries, it may be time-
consuming for models with a resource-intensive inference step. In such cases, we can minimize
prediction queries through short-circuiting. In some settings, we can certify that a model provides
recourse to a point analytically — i.e., without querying its predictions on reachable points — by
applying the result in Theorem 4.

Theorem 4. Suppose we have a dataset D = {(x;,y;)}"_, with n™ positive examples, and a point
@ with the reachable set R C R 4(x). In this case, every model f : X — Y will provide recourse to
x so long as its false negative rate over D obeys:

1 n
FNR(f) < anﬂ[xi ER Ay =1]
=1

Theorem 4 highlights an alternative approach for recourse verification with reachable sets —i.e., we
can certify that a model f must provide recourse to a point x so long as the false negative rate does
not exceed the density of positive examples in its reachable set. The values can be computed on any
dataset with labels — be it the training dataset or a separate dataset. In practice, this approach may be
useful when working with model classes where prediction queries are time-consuming. In practice,
the result requires a dataset that is “dense” enough so that a reachable set for a point contains other
labeled examples. When this condition holds, we can certify that a model provides recourse to a point
by comparing the false negative rate of f to the prevalence of positive examples in its reachable set.

Formally, we say two subsets of features .S, T' C [d] can be altered independently if the action set over
S UT can be expressed as a product of action sets over S and 71" for all points € X. For example, given the
subsets S, T where S U T = [d], we write A(x) = As(zs) X Ar(xr) forall x = [xg, 1] € X where X
denotes a Cartesian product.



3.3 DISCUSSION AND EXTENSIONS

Our methods are designed to construct reachable sets that can be used for recourse verification over
discrete feature spaces. In principle, we can construct reachable sets for continuous feature spaces
through sampling, but leave this as a topic for future work as it involves a probabilistic guarantee of
infeasibility (see Section 5).

Our methods may be useful as a tool to enforce actionability over continuous feature spaces. In
particular, we can extend our formulation for FindAction() as a routine to test the feasibility of
changes from existing methods to generate recourse actions and counterfactual explanations. In a
case where such methods would suggest that a person can change their prediction by altering their
features from @ to ', we can test the feasibility such changes with respect to actionability constraints
by solving an optimization problem of the form:

IsReachable(z,z’,A) = min 1 st x=z —a, ac A(z). 4)

This routine can be used as a way to test for actionability in existing methods via post-hoc filtering. In
such cases, the resulting procedure would allow practitioners to flag outputs that violate actionability
constraints, and avoid the challenges of detecting loopholes. As we explain in Section 2, it would not
be able to certify that recourse is infeasible.

4 EXPERIMENTS

We present experiments showing how predictions without recourse arise under inherent actionability
constraints and how existing methods can fail to detect these instances.

4.1 SETUP

We work with three classification datasets from consumer finance, where models that assign fixed
predictions would preclude credit access (see Table 2). We process each dataset by encoding
categorical attributes and discretizing continuous features. We use the processed dataset to fit a
classification model using one of the following model classes: logistic regression (LR), XGBoost
(XGB), and random forests (RF). We train each model using an 80%/20% train/test split and tune
hyperparameters using standard k-CV. We report the performance of each model in Appendix C.

We specify inherent actionability constraints for each dataset — focusing on identifying indisputable
conditions that apply to all individuals (e.g., compliance with physical limits, preserving feature
encoding, enforcing deterministic causal effects, and preventing changes to protected attributes). We
list the constraints for each dataset in Appendix C. We note that the constraints for all datasets include
a mix of separable constraints (e.g. immutability, integrality, monotonicity) as well as non-separable
constraints (e.g., encoding presentation, deterministic causal effects).

We construct reachable sets for each point in the dataset using Algorithm 1. We use the reachable
sets to identify individuals who are assigned a prediction without recourse by any one of the models.
The results from reachable sets reflect the ground-truth feasibility of recourse for each point and each
model class. We label our results as Reach and use them to benchmark the reliability of two salient
methods to generate recourse actions and counterfactual explanations:

* AR [57], a model-specific method that can certify infeasibility for linear classifiers and handle
separable actionability constraints,

* DiCE [45], a model-agnostic method that handles some separable actionability constraints.

4.2 RESULTS AND DISCUSSION

On Predictions without Recourse We summarize our results for each dataset, method, and
model class in Table 2. Our results show that models assign fixed predictions under inherent
actionability constraints. In practice, individuals who are assigned predictions without recourse may
vary drastically across models that perform equally well. Seeing how reachable sets do not change
across models, these differences arise from the different decision boundaries of each model.



LR XGB RF
Dataset Metrics Reach AR DiCE  Reach AR DiCE Reach AR DiCE
Certifies No Recourse  22.2% — — 223% — 31.3% —
heloc Outputs Action 77.8% 859% 57.6% 71.7% 573% 68.7% 49.3%
n=>5,842 d =43 L Loopholes 00% 41.1% 344% 0.0% NA 42.1% 0.0% NA 29.5%
FICO [14] Outputs No Action 222% 14.1% 424% 22.3% 427% 31.3% 50.7%
L Blindspots 0.0% 0.0% 21.0% 0.0% 21.1%  0.0% 19.8%
Certifies No Recourse 7.4% — — 7.1% —  28.6% —
german Outputs Action 92.6% 91.7% 921% 92.9% 93.3% 71.4% 68.0%
n = 1,000 d= 36 L Loopholes 0.0% 22% 16.6% 00% NA 23.1% 00% NA 24.0%
Dua and Graff [12] Outputs No Action 7.4% 8.3% 7.9% 7.1% 6.7% 28.6% 32.0%
L Blindspots 0.0% 1.3%  09%  0.0% 0.0% 0.0% 3.4%
Certifies No Recourse  15.6% — — 16.5% — 0.2% —
givemecredit Outputs Action 844% 844% 79.7% 83.5% 78.5% 99.8% 97.7%
n = 120,268 d =23 L Loopholes 00% 40.7% 346% 0.0% NA 347% 00% NA 57.7%
Kaggle [26] Outputs No Action 15.6% 15.6% 20.3% 16.5% 21.5%  0.2% 2.3%
L Blindspots 0.0% 00% 47% 0.0% 5.0%  0.0% 2.3%

Table 2: Overview of results for all datasets, model classes, and methods. For each dataset and model class,
we use Reach to determine individuals who are assigned predictions without recourse. We use these results to
reliability of AR and DiCE for recourse verification tasks. We evaluate each method in terms of the percentage
of points where it: certifies no recourse; outputs an action; outputs a loophole, i.e., an action that violates
actionability constraints; outputs no action; exhibits a blindspot, i.e., outputs no action when recourse exists.
Here, each metric is expressed as a percentage of the points that are assigned a negative prediction by a model.

On Loopholes Our results in Table 2 show how methods to generate recourse actions may output
loopholes — i.e., actions that violate actionability constraints. In particular, this failure mode affects
between 2.2% to 57.7% of individuals across datasets, methods, and models. As we describe
in Section 2, methods return loopholes when they cannot enforce all actionability constraints in a
prediction task. In this case, we note that AR and DiCE can enforce separable actionability constraints.
Thus, the loopholes arise from constraints that affect multiple features.

Loopholes reflect silent failures that undermine the benefits of recourse provision and may inflict
harm. Consider a consumer finance application where we use AR or DiCE to provide consumers with
actions that they can perform to qualify for a loan. In this case, loopholes that are left undetected
would lead us to present consumers with recourse actions that are fundamentally impossible. On
the heloc dataset, for example, we find that DiCE returns a loophole for 42.1% of individuals who
are denied credit by an XGB model. Although some loopholes may be easy to spot through visual
inspection or a basic immutability check, this is not always the case. In this case, ~ 27% of individuals
receive an action that alters 5 or more features simultaneously — many of them can only be detected
reliably through a programmatic approach that can test if they meet actionability constraints.

On the Ilusion of Feasibility Our experiments show that recourse often appears to be feasible
when methods are only able to enforce simple constraints. We study this effect in Appendix C through
an ablation study where we audit models for the heloc dataset under special classes of actionability
constraints. Our results show that methods return loopholes for individuals with fixed predictions
under simple constraints such as immutability and monotonicity, and that infeasibility only arises
once methods can enforce more complex constraints. In this case, we find that LR assigns a prediction
without recourse to 22.2% of individuals. If we enforce monotonicity and integrality constraints,
however, recourse appears to be feasible for &~ 99% points when using AR.

On Blindspots Our results show how existing methods for recourse provision may return results
that are inconclusive or incorrect for verification. In Table 2, we highlight this failure mode by
reporting the prevalence of blindspots — i.e., the proportion of instances where a method fails to return
a recourse action for an individual who has recourse. On the heloc dataset, for example, we find
that DiCE fails to find an action for 42.7% of individuals who are denied by the XGB model. In this
case, DiCE returns an error message ‘“no counterfactuals found for the given configuration, perhaps
try with different parameters...” Our analysis shows that nearly half of these cases (21.1% of 42.7%)
correspond to blindspots while the other half are predictions without recourse (21.6%).

Blindspots differ from loopholes in that they represent an “overt” failure mode that is unlikely to
inflict harm. In practice, these failures are more likely to stump practitioners who find that a method
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Figure 3: Reachable sets for each point in the heloc dataset, ordered from smallest to largest along the x-axis.
We show predictions without recourse in red and highlight incorrectly predicted points in darker colors. As
shown, predictions without recourse are prevalent across all reachable set sizes and can vary significantly
between classifiers.

fails to find a recourse action. In such cases, the key issue is attribution, as practitioners cannot
determine whether the failure is due to (1) a prediction without recourse; (2) the search algorithm
used to search for actions; (3) a bug in the recourse provision package; (4) a bug in their code. More
broadly, the results highlight the value of designing methods that can certify infeasibility — as methods
that could certify infeasibility could provide evidence of preclusion in such cases.

On Interventions to Mitigate Preclusion Our results show how recourse verification can guide
heuristic interventions that mitigate preclusion. At a minimum, we can use the results from an audit
for model selection — i.e., to choose a model that minimizes preclusion among models that are almost
equally accurate. On the heloc dataset, for example, we find that RF and XGB models have a test
AUC = 0.780 but an 11% difference in the predictions without recourse — thus, we can reduce
preclusion without compromising performance by simply choosing to deploy an XGB model over an
RF model. Seeing how reachable sets measure preclusion through prediction queries, we can apply
this strategy in earlier stages of model development — e.g., we can search for model hyperparameters
that minimize preclusion by defining a custom metric to compute the “preclusion rate.” In this case,
we note that parameters that control the decision boundary of the model can lead to substantial
differences in preclusion without compromising training accuracy — as we only need to assign a target
prediction to a reachable point rather than the current point. In general, we can mitigate preclusion by
defining features to promote actionability or by dropping features that lead to fixed predictions. In
contrast to the previous interventions, this may require constructing a new collection of reachable
sets at each iteration.

5 CONCLUDING REMARKS AND LIMITATIONS

Our paper highlights how machine learning models can assign fixed predictions as a result of
actionability constraints, and describes how such predictions can lead to preclusion in consumer-
facing applications such as lending and hiring. Our work proposes to address these failure modes by
developing methods for a task called recourse verification.

Recourse verification broadly represents a new direction for research in algorithmic recourse —i.e.,
as a model auditing procedure to certify the responsiveness of predictions with respect to actions.
The methods in this paper are designed for recourse verification over discrete feature spaces and
deterministic actionability constraints, but should be extended to address the following limitations:

* Our methods are designed to certify infeasibility with respect to actions over discrete feature spaces
— and cannot certify infeasibility with respect to actions on continuous features. In principle, it
is possible to construct reachable sets that certify infeasibility over continuous feature spaces by
sampling. We leave this topic for future work as it requires a different algorithm and returns a
probabilistic guarantee of infeasibility.

* Our methods do not consider probabilistic causal effects — i.e., where actions on a feature may
incite changes on downstream features in a probabilistic causal model [see, e.g., 30, 34, 10, 35].
Although our methods may be useful to generate actionable interventions in this setting, a reliable
method for verification should return a probabilistic guarantee of infeasibility that accounts for
potential misspecification in the causal model.
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Our work highlights how machine learning models can assign fixed predictions as a result of
actionability, and proposes a task called recourse verification to reliably detect such instances.

We study recourse verification as a model auditing procedure that practitioners and auditors can use
to detect preclusion in consumer-facing applications such as lending and hiring. The normative basis
for the right to access in such applications stems from principles such as equality of opportunity (e.g.,
in hiring) and universal access (e.g., for basic health insurance). In other words, these are applications
where we would want to safeguard access — even if it comes at a cost — because it reflects the kind
of society we want to build. In practice, ensuring access may not impose any cost. In lending, for
example, lenders only collect labels for consumers who are approved for loans [36, 9, 63, due to
selective labeling]. Thus, consumers assigned predictions without recourse cannot generate labels
that would signal creditworthiness [7]. In the United States, such effects have cut off credit access for
large consumer segments whose creditworthiness is unknown [64, see, e.g., 26M “credit invisibles™].

Our paper primarily studies auditing models in lending and hiring with respect to indisputable con-
straints that apply to all decision subjects — inherent actionability constraints. Our recommendation
is based on the fact that such constraints can be gleaned from a data dictionary, that claims surround-
ing preclusion should be indisputable, and that models may lead to preclusion as a result of such
constraints. Given that individuals in these applications will face additional actionability constraints,
the results of such an audit should be used to flag models that preclude access rather than to certify
that models are safe.

In applications where elicitation is possible, our proposed approach can support a number of practices
to handle assumptions surrounding actionability in a way that promotes transparency, contestability,
and participatory design. In particular, individuals can express their constraints in natural language
— allowing stakeholders to scrutinize and contest them even without technical expertise in machine
learning. In the event that stakeholders disagree on actionability constraints, we recommend deter-
mining if their disagreements affect claims of infeasibility through an ablation study. In such cases,
we can run verification using the subset of “consensus constraints” that all stakeholders agree on. In
this worst case, we may still find that models lead to preclusion since the “consensus constraints”
will always contain inherent constraints.
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A PROOF OF THEOREM 4

Theorem 4. Suppose we have a dataset of labeled examples D = {(z;,y;)}?_,. Every model
[+ X = Y can provide recourse to x if:

1 n
FNR(f) < FZl[mieR Ay = +1] 5)
i=1
where FNR(f) := = > | 1[f(®;) = —1 A y; = +1] is the false negative rate of f on D and
where n™ is number of positive examples in D, and R C R a(x) is any subset of the reachable set.

Proof. The proof is based on an application of the pigeonhole principle over the set of positive
examples ST := {x; | y; = +1,7 € [n]}. Given a classifier f, denote the number of true positive
and false negative predictions over S™ as:

n

TP(f)i= D Uf (@) = +1 Ay = +1] FN(f) =3 1[f(@i) = =1 Ays = +1].

i=1

Consider a region of feature space R C R 4 () for which the number of correct positive predictions
exceeds the number of positive examples outside R so that:

TP(f) > n* — |S* N R).

In this case, the pigeonhole principle ensures that the classifier f must assign a correct prediction
to at least one of the positive examples in R — i.e., there exists a point £ € ST N R such that
f(@) = y; = +1. Given R C Ra(x), we have that & € R(x). Thus, we can reach x’ from

@ by performing the action a = &’ — x — i.e., we can change the prediction from f(x) = —1 to
fle+a)=+1.
We recover the condition in the statement of the Theorem as follows:
TP(f) >n" —|STNR| (6)
FN(f) < [ST N R], )
1 n
FNR(f) < FZﬂ[xieR Ay = +1] (8)
i=1

Here, we Eqn. (7) uses the fact that TP(f) = n™ — FN(f), and (8) divides both sides by —L-. The
result follows by applying the definition of the false negative rate. O



B REACHABLE SET GENERATION

In this section, we describe how to formulate the optimization problems in Section 3 as mixed-
integer programs. We start by presenting a MIP formulation for the optimization problem we solve
in the FindAction(x, A(x)) and IsReachable(z, ', A(x)) routines. Next, we describe how this
formulation can be extended to the complex actionability constraints in Table 1.

B.1 MIP FORMULATIONS

Given a point € X, an action set A(x), and a set of previous optima A", we can formulate
FindAction(x, A(x)) as the following mixed-integer program:

maln E aj + a;

J€ld]

S.t. a;L >aj j€ld positive component of a; (9a)
ay > —a; j € d] negative component of a; (9b)
aj=ajk+6,,— 0, J€ld,ar €A™ distance from prior actions (9c)

emin < Y (67, +0;,)  ak €A™ any SOMEiOn 15 € s away from G (9d)

J E[d]
5+ Mk jeld,ar €A™ 65 >0 = wp=1 (%e)
S5k gMM(l — wj k) jEld,ar € AT 5, >0 = uj=0 )
aj € Aj(x) j € ld separable actionability constraints on j )
al,a; €Ry j € [d] absolute value of a; (9h)
6 b ERY jeld signed distances from aj,j (9i)
uj. € {0,1} j€ld] Uj k= 1[5;19 > 0] )

The formulation searches for an action in the set a € A(x)/A°"" by combining two kinds of
constraints: (i) constraints to restrict actions @ € A(x) and (ii) constraints to rule out actions in

a € AP,

The formulation encodes the separable constraints in A(x) —i.e., a constraint that can be enforced for
each feature. The formulation must be extended with additional variables and constraints to handle
constraints as discussed in Appendix B.2. These constraints are handled through the a; € A;(x)
conditions in Constraint 9g. This constraint can handle a number of actionability constraints that
can be passed solver when defining the variables a;, including bounds (e.g., a; € [—x;,10 — x;]),
integrality (e.g., a; € {0,1} ora; € {L —x;,L —x; +1,...,U — x;}), and monotonicity (e.g.,
aj Z OOI'(Z]' S O)

The formulation rules out actions in a € A" through the “no good" constraints in Constraints (9¢) to
(91). Here, Constraint (9d) ensures feasible actions from previous solutions by at least £.,;,. We set to
a sufficiently small number e, := 1076 by default, but use larger values when working with discrete
feature sets (e.g., emin = 1 for cases where every actionable feature is binary or integer—valued)
Constraints (9¢) and (9f) ensure that either (5+k > 0 or 5 k> 0. These are “Big-M constraints"

where the Big-M parameters can be set to represent the largest value of signed distances. Given an

action a; € [a%®, a}®], we can set M} := [a¥® — a; ;) and M, = |a;  — a5P|.

The formulation chooses each action in a € A(x)/. A" to minimize the L; norm. We compute the
L,-norm component-wise as |a;| := aj + a; where the variables a;r and a; are set to the positive
and negative components of |a;| in Constraints (9a) and (9b). This choice of objective is meant to
induce sparsity among the actions we recover by repeatedly solving Algorithm 1.

MIP Formulation for IsReachable Given a point € X', an action set A(x), we can formulate the
optimization problem for IsReachable(x, ', A(x)) as a special case of the MIP in (9) in which we
set AP = () and include the constraint @ = & — @’. Given that the objective function does not affect
the feasibility of the optimization problem, we can set the objective to 1 when solving the problem
for IsReachable. In this case, any feasible solution would certify that ' is reachable from « using
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the actions in A(x). Thus, we can return IsReachable(x, ', A(z)) = 1 if the MIP is feasible and
IsReachable(x, ', A(x)) = 0 if it is infeasible.

B.2 ENCODING ACTIONABILITY CONSTRAINTS

We describe how to extend the MIP formulation in (9) to encode salient classes of actionability
constraints. Our software includes an ActionSet API that allows practitioners to specify these
constraints across each MIP formulation.

Encoding Preservation for Categorical Attributes Many datasets contain subsets of features that
reflect the underlying value of a categorical attribute. For example, we may encode a categorical
attribute with K = 3 categories such marital_status € {single, married, other} using a subset
of K — 1 = 2 dummy variables such as married and single. In such cases, actions on the dummy
variables must obey non-separable actionability constraints to preserve the encoding —i.e., to ensure
that a person cannot be married and single at the same time.

We can enforce these conditions by adding the following constraints to the MIP Formulation in (9):

L<Y wj+a; <U (10)
jeTJ
Here, J C [d] is the index set of features with encoding constraints, and L and U are lower and
upper limits on the number of features in 7 that must hold to preserve an encoding.

Given a standard one-hot encoding of a categorical variable with K categories, J would contain the
indices of K — 1 dummy variables for the K — 1 categories other than the reference category. We
would ensure that all actions preserve this encoding by setting L = 0 and U = 1.

Implications and Deterministic Causal Effects Datasets often include features where actions on
one feature will induce changes in the values and actions for other features. For example, in Table 1,
changing is_employed from FALSE to TRUE would change the value of work_hrs_per_week from 0
to a value > 0.

We capture these conditions by adding variables and constraints that capture logical implications
in action space. In the simplest case, these constraints would relate the values for a pair of features
J»j" € [d] through an if-then condition such as: “if a; > v; then a; = v;,". In such cases, we could
capture this relationship by adding the following constraints to the MIP Formulation in (9):

Mu > a; —vj+e€ (11

M1 —u)>v;—aj (12)

UV = Qg (13)
ue{0,1}

The constraints shown above capture the “if-then" condition by introducing a binary variable u :=
1[a; > v;]. The indicator is set through the Constraints (11) and (12) where M := a8 — v; and
€ = le — 5. If the implication is met, then a; is set to v;, through Constraint (13). We apply this
approach to encode a number of salient actionability constraints shown in Table 1 by generalizing
the constraint shown above to a setting where: (i) the “if" and “then" conditions to handle subsets of
features, and (ii) the implications link actions on mutable features to actions on an immutable feature
(i.e. so that actions on a mutable feature years_since_last_application will induce changes in
an immutable feature age).

Generalized Reachability Constraints We end with a general-purpose solution to enforce arbitrary
actionability constraints on discrete features. These constraints can be used, for example, to preserve
a one-hot encoding of ordinal features (e.g., max_degree_BS and max_degree_MS) or a thermometer
encoding (e.g., monthly_income_geq_2k, monthly_income_geq_5k, monthly_income_geq_10k).

We can formulate custom reachability constraints for the relevant features J C [d] given two
parameters:

1. Set of Viable Values: V/, a set of all values that can be assigned to the features in J.
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2. Reachability Matrix: E € {0,1}***, a matrix where e; ; = 1[v; is reachable from v;] for all
Vi, V5 € V.

Given these parameters, we constrain the reachability of features j € J by adding the following
constraints to the MIP formulation in (9):

a; = Z €i,k0j kU K (14)
ke E[i]

1= > ujp (15)
ke E[i]

Ujk < €k (16)
ujr € {0,1}

Here, u;  := 1[a’ € V] indicates that we choose an action to attain point ' € V. Constraint (14)
defines the set of reachable points from ¢, while Constraint (14) ensures that only one such point can
be selected. Here, ¢; 1 is i row of F for point i and a; j, := ', — x; is the action on feature j to
reach point &’ € V' from point .

We show an example of how to formulate reachability constraints to preserve a thermometer encoding
in Fig. 4.

\%4
NetFractionRevolvingBurdenGeq9@ NetFractionRevolvingBurdenGeq6@ NetFractionRevolvingBurdenlLeq30 E
0 0 0 [1,1,0,0]
1 0 0 [0,1,0,0]
0 1 0 [1,1,1,0]
0 1 1 [1,1,1,1]

Figure 4: V' denotes valid combinations of features. For these features, we wanted to produce actions that would
reduce NetFractionRevolvingBurden for consumers. E shows which points can be reached. For example,
[1,1,0,0] represents point [0, 0, 0] can be reached, and point [1, 0, 0] can be reached, but no other points can be
reached.
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C SUPPLEMENTAL MATERIAL FOR EXPERIMENTS

C.1 ACTIONABILITY CONSTRAINTS FOR THE german DATASET

We show a list of all features and their separable actionability constraints in Table 3.

Name Type LB UB Actionability Sign
Age Z 19 75 No

Male {0,1} © 1 No

Single {0,1} 0 1 No
ForeignWorker {0,1} © 1 No
YearsAtResidence Z 0 7 Yes +
LiablePersons Z 1 2 No
Housing=Renter {0,1} © 1 No
Housing=0wner {0,1} O 1 No
Housing=Free {0,1} © 1 No
Job=Unskilled {0,1} © 1 No

Job=Skilled {0,13 0 1  No
Job=Management {0,1} O 1 No
YearsEmployed>1 {0,1} © 1 Yes +
CreditAmt>1000K {0,1} 0 1 No
CreditAmt>2000K {0,1} © 1 No
CreditAmt>5000K {0,1} O 1 No
CreditAmt>10000K {0,1y 0 1 No
LoanDuration<6 {0,1} © 1 No
LoanDuration>12 {0,1} © 1 No
LoanDuration>24 {0,1} 0 1 No
LoanDuration>36 {0,1} © 1 No

LoanRate Y/ 1 4 No

HasGuarantor {0,1} © 1 Yes +
LoanRequiredForBusiness {0,1} © 1 No
LoanRequiredForEducation {0,1} O 1 No
LoanRequiredForCar {0,1} © 1 No
LoanRequiredForHome {0,1} O 1 No
NoCreditHistory {0,1} © 1 No
HistoryOfLatePayments {0,1} O 1 No
HistoryOfDelinquency {0,1} © 1 No
HistoryOfBankInstallments  {0,1} O 1 Yes +
HistoryOfStoreInstallments {0,1} 0 1 Yes +
CheckingAcct_exists {0,1} O 1 Yes +
CheckingAcct>0 {0,1} © 1 Yes +
SavingsAcct_exists {0,1} © 1 Yes +
SavingsAcct>100 {0,1} © 1 Yes +

Table 3: Separable actionability constraints for the german dataset.

The non-separable actionability constraints for this dataset include:

1. DirectionalLinkage: Actions on YearsAtResidence will induce to actions on [‘Age’]. Each unit
change in YearsAtResidence leads to:1.00-unit change in Age

2. DirectionalLinkage: Actions on YearsEmployed>1 will induce to actions on [‘Age’]. Each unit
change in YearsEmployed>1 leads to:1.00-unit change in Age

3. ThermometerEncoding: Actions on [CheckingAcctexists, CheckingAcct>@] must preserve
thermometer encoding of CheckingAcct., which can only increase. Actions can only turn on
higher-level dummies that are off, where CheckingAcctexists is the lowest-level dummy and
CheckingAcct>@ is the highest-level-dummy.

4. ThermometerEncoding: Actions on [SavingsAcctexists, SavingsAcct>100] must preserve
thermometer encoding of SavingsAcct., which can only increase. Actions can only turn on
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higher-level dummies that are off, where SavingsAcctexists is the lowest-level dummy and
SavingsAcct>100 is the highest-level-dummy.

C.2 ACTIONABILITY CONSTRAINTS FOR THE heloc DATASET

We show a list of all features and their separable actionability constraints in Table 4.

Name Type LB UB Actionability Sign
ExternalRiskEstimate>40 {0,1} 0 1 No
ExternalRiskEstimate>50 {0,1} 0 1 No
ExternalRiskEstimate>60 {0,1} 0 1 No
ExternalRiskEstimate>70 {0,1} 0 1 No
ExternalRiskEstimate>80 {0,1} 0 1 No
YearsOfAccountHistory Z 0 50 No
AvgYearsInFile>3 {0,1} 0 1 Yes
AvgYearsInFile>5 {0,1} 0 1 Yes
AvgYearsInFile>7 {0,1} 0 1 Yes
MostRecentTradeWithinLastYear {0,1} 0 1 Yes
MostRecentTradeWithinLast2Years {0,1} 0O 1 Yes
AnyDerogatoryComment {0,1} 0 1 No
AnyTrade120DaysDelq {0,1} 0 1 No
AnyTrade9@DaysDelq {0,1} 0 1 No
AnyTrade6@DaysDelq {0,1} 0 1 No
AnyTrade3@DaysDelq {0,1} 0 1 No
NoDelgEver {0,1} 0 1 No
YearsSincelLastDelqTrade<1 {0,1} 0 1 Yes
YearsSincelLastDelqTrade<3 {0,1} 0 1 Yes
YearsSincelLastDelqTrade<5 {0,1} 0 1 Yes
NumInstallTrades>2 {0,1} 0 1 Yes
NumInstallTradesWBalance>2 {0,1} 0 1 Yes
NumRevolvingTrades>2 {0,1} 0 1 Yes
NumRevolvingTradesWBalance>2 {0,1} 0 1 Yes
NumInstallTrades>3 {0,1} 0 1 Yes
NumInstallTradesWBalance>3 {0,1} 0 1 Yes
NumRevolvingTrades>3 {0,1} 0O 1 Yes
NumRevolvingTradesWBalance>3 {0,1} 0 1 Yes
NumInstallTrades>5 {0,1} 0 1 Yes
NumInstallTradesWBalance>5 {0,1} 0 1 Yes
NumRevolvingTrades>5 {0,1} 0 1 Yes
NumRevolvingTradesWBalance>5 {0,1} 0 1 Yes
NumInstallTrades>7 {0,1} 0 1 Yes
NumInstallTradesWBalance>7 {0,1} 0 1 Yes
NumRevolvingTrades>7 {0,1} 0 1 Yes
NumRevolvingTradesWBalance>7 {0,1} 0 1 Yes
NetFractionInstallBurden>10 {0,1} 0 1 Yes
NetFractionInstallBurden>20 {0,1} 0 1 Yes
NetFractionInstallBurden>50 {0,1} 0 1 Yes
NetFractionRevolvingBurden>10 {0,1} 0 1 Yes
NetFractionRevolvingBurden>20 {0,1} 0 1 Yes
NetFractionRevolvingBurden>50 {0,1} 0O 1 Yes
NumBank2NatlTradesWHighUtilizationGeq2 {0,1} 0 1 Yes +

Table 4: Separable actionability constraints for the heloc dataset.

The non-separable actionability constraints for this dataset include:

1. DirectionalLinkage: Actions on NumRevolvingTradesWBalance>2 will induce to actions on
[‘NumRevolvingTrades>2’]. Each unit change in NumRevolvingTradesWBalance>2 leads to:
1.00-unit change in NumRevolvingTrades>2

2. DirectionalLinkage: Actions on NumInstallTradesWBalance>2 will induce to actions on
[‘NumInstallTrades>2’]. Each unit change in NumInstallTradesWBalance>2 leads to: 1.00-
unit change in NumInstallTrades>2

3. DirectionalLinkage: Actions on NumRevolvingTradesWBalance>3 will induce to actions on
[‘NumRevolvingTrades>3’]. Each unit change in NumRevolvingTradesWBalance>3 leads to:
1.00-unit change in NumRevolvingTrades>3
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DirectionalLinkage: Actions on NumInstallTradesWBalance>3 will induce to actions on
[‘NumInstallTrades>3’]. Each unit change in NumInstallTradesWBalance>3 leads to: 1.00-
unit change in NumInstallTrades>3

DirectionalLinkage: Actions on NumRevolvingTradesWBalance>5 will induce to actions on
[‘NumRevolvingTrades>5’]. Each unit change in NumRevolvingTradesWBalance>5 leads to:
1.00-unit change in NumRevolvingTrades>5

. DirectionalLinkage: Actions on NumInstallTradesWBalance>5 will induce to actions on

[‘NumInstallTrades>5’]. Each unit change in NumInstallTradesWBalance>5 leads to: 1.00-
unit change in NumInstallTrades>5

. DirectionalLinkage: Actions on NumRevolvingTradesWBalance>7 will induce to actions on

[‘NumRevolvingTrades>7’]. Each unit change in NumRevolvingTradesWBalance>7 leads to:
1.00-unit change in NumRevolvingTrades>7

DirectionalLinkage: Actions on NumInstallTradesWBalance>7 will induce to actions on
[‘NumInstallTrades>7’]. Each unit change in NumInstallTradesWBalance>7 leads to: 1.00-
unit change in NumInstallTrades>7

DirectionalLinkage: Actions on YearsSincelLastDelqTrade<1 will induce to actions on
[‘YearsOfAccountHistory’]. Each unit change in YearsSincelLastDelqTrade<1 leads to: -
1.00-unit change in YearsOfAccountHistory

DirectionalLinkage: Actions on YearsSincelLastDelqTrade<3 will induce to actions on
[‘YearsOfAccountHistory’]. Each unit change in YearsSincelLastDelgqTrade<3 leads to: -
3.00-unit change in YearsOfAccountHistory

DirectionalLinkage: Actions on YearsSincelLastDelqTrade<5 will induce to actions on
[‘YearsOfAccountHistory’]. Each unit change in YearsSincelLastDelgqTrade<5 leads to: -
5.00-unit change in YearsOfAccountHistory

ReachabilityConstraint: The values of [MostRecentTradeWithinLastYear,
MostRecentTradeWithinLast2Years] must belong to one of 4 values with custom reachability
conditions.

ThermometerEncoding: Actions on [YearsSincelLastDelqTrade<1,
YearsSincelLastDelqTrade<3, YearsSincelLastDelqTrade<5] must preserve thermometer
encoding of YearsSinceLastDelqTradeleq., which can only decrease. Actions can only turn
off higher-level dummies that are on, where YearsSincelLastDelqTrade<1 is the lowest-level
dummy and YearsSincelLastDelqTrade<5 is the highest-level-dummy.

ThermometerEncoding: Actions on [AvgYearsInFile>3, AvgYearsInFile>5,
AvgYearsInFile>7] must preserve thermometer encoding of AvgYearsInFilegeq., which can only
increase. Actions can only turn on higher-level dummies that are off, where AvgYearsInFile>3
is the lowest-level dummy and AvgYearsInFile>7 is the highest-level-dummy.

ThermometerEncoding: Actions on [NetFractionRevolvingBurden>10,
NetFractionRevolvingBurden>20, NetFractionRevolvingBurden>50] must preserve
thermometer encoding of NetFractionRevolvingBurdengeq., which can only decrease. Actions
can only turn off higher-level dummies that are on, where NetFractionRevolvingBurden>10 is
the lowest-level dummy and NetFractionRevolvingBurden>5@ is the highest-level-dummy.

ThermometerEncoding: Actions on [NetFractionInstallBurden>10,
NetFractionInstallBurden>20, NetFractionInstallBurden>5@] must preserve ther-
mometer encoding of NetFractionInstallBurdengeq., which can only decrease. Actions can
only turn off higher-level dummies that are on, where NetFractionInstallBurden>10 is the
lowest-level dummy and NetFractionInstallBurden>50 is the highest-level-dummy.

ThermometerEncoding: Actions on [NumRevolvingTradesWBalance>2,
NumRevolvingTradesWBalance>3, NumRevolvingTradesWBalance>5,
NumRevolvingTradesWBalance>7] must preserve thermometer encoding of NumRe-
volvingTradesWBalancegeq., which can only decrease. Actions can only turn off higher-level
dummies that are on, where NumRevolvingTradesWBalance>2 is the lowest-level dummy and
NumRevolvingTradesWBalance>7 is the highest-level-dummy.

ThermometerEncoding: Actions on [NumRevolvingTrades>2, NumRevolvingTrades>3,
NumRevolvingTrades>5, NumRevolvingTrades>7] must preserve thermometer encoding of
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NumRevolvingTradesgeq., which can only decrease. Actions can only turn off higher-
level dummies that are on, where NumRevolvingTrades>2 is the lowest-level dummy and
NumRevolvingTrades>7 is the highest-level-dummy.

ThermometerEncoding: Actions on [NumInstallTradesWBalance>2,
NumInstallTradesWBalance>3, NumInstallTradesWBalance>5,
NumInstallTradesWBalance>7] must preserve thermometer encoding of Numlnstall-
TradesWBalancegeq., which can only decrease. Actions can only turn off higher-level
dummies that are on, where NumInstallTradesWBalance>2 is the lowest-level dummy and
NumInstallTradesWBalance>7 is the highest-level-dummy.

ThermometerEncoding: Actions on [NumInstallTrades>2, NumInstallTrades>3,
NumInstallTrades>5, NumInstallTrades>7] must preserve thermometer encoding of
NumlInstallTradesgeq., which can only decrease. Actions can only turn off higher-level dummies
that are on, where NumInstallTrades>2 is the lowest-level dummy and NumInstallTrades>7
is the highest-level-dummy.

C.3 ACTIONABILITY CONSTRAINTS FOR THE givemecredit DATASET

We present a list of all features and their separable actionability constraints in Table 5.

Name Type LB UB Actionability Sign
Age<24 {0,1} © 1 No
Age_bt_25_to_30 {0,1} © 1 No
Age_bt_30_to_59 {0,1} © 1 No

Age>60 {0,1} 0 1 No
NumberOfDependents=0 {0,1} © 1 No
NumberOfDependents=1 {0,1} © 1 No
NumberOfDependents>2 {0,1} © 1 No
NumberOfDependents>5 {0,1} © 1 No

DebtRatio>1 {0,1} © 1 Yes +
MonthlyIncome>3K {0,1} © 1 Yes +
MonthlyIncome>5K {0,1} © 1 Yes +
MonthlyIncome>10K {0,1} © 1 Yes +
CreditLineUtilization>10.0  {0,1} O 1 Yes
CreditLineUtilization>20.0  {0,1} O 1 Yes
CreditLineUtilization>50.0  {0,1} O 1 Yes
CreditLineUtilization>70.0  {0,1} O 1 Yes
CreditLineUtilization>100.0 {0,1} O 1 Yes
AnyRealEstatelLoans {0,1} © 1 Yes +
MultipleRealEstatelLoans {0,1} © 1 Yes +
AnyCreditLinesAndLoans {0,1} © 1 Yes +
MultipleCreditLinesAndLoans  {0,1} O 1 Yes +
HistoryOfLatePayment {0,1} © 1 No
HistoryOfDelinquency {0,1} © 1 No

Table 5: Separable actionability constraints for the heloc dataset.

The non-separable actionability constraints for this dataset include:

1. ThermometerEncoding: Actions on [MonthlyIncome>3K, MonthlyIncome>5K,
MonthlyIncome>10K] must preserve thermometer encoding of Monthlylncomegeq.,
which can only increase.Actions can only turn on higher-level dummies that are off,
where MonthlyIncome>3K is the lowest-level dummy and MonthlyIncome>10K is the
highest-level-dummy.

2. ThermometerEncoding: Actions on [CreditlLineUtilization>10.9,
CreditLineUtilization>20.0, CreditLineUtilization>50.0,

CreditLineUtilization>70.0, CreditLineUtilization>100.0] must preserve ther-
mometer encoding of CreditLineUtilizationgeq., which can only decrease. Actions can only turn
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off higher-level dummies that are on, where CreditLineUtilization>10.0 is the lowest-level
dummy and CreditLineUtilization>100.0 is the highest-level-dummy.

ThermometerEncoding: Actions on [AnyRealEstateloans, MultipleRealEstatelLoans] must
preserve thermometer encoding of continuousattribute., which can only decrease. Actions can
only turn off higher-level dummies that are on, where AnyRealEstatelLoans is the lowest-level
dummy and MultipleRealEstateloans is the highest-level-dummy.

ThermometerEncoding: Actions on [AnyCreditLinesAndLoans,
MultipleCreditLinesAndLoans] must preserve thermometer encoding of continuousattribute.,
which can only decrease. Actions can only turn off higher-level dummies that are on, where
AnyCreditLinesAndLoans is the lowest-level dummy and MultipleCreditLinesAndLoans is
the highest-level-dummy.

C.4 RESULTS ON CLASSIFIER PERFORMANCE

In Table 6, we report the performance of models on all datasets using all algorithms. We split each
dataset into a training sample (80%, used for training and hyperparameter tuning) and a hold-out
sample (20%, used to evaluate out-of-sample performance).

AUC Error
Dataset Model Train Test Train Test
heloc LR 0.7723 0.7882 0.2774 0.2774

XGB 0.7721 0.7880 0.2783 0.2783
RF 0.8593 0.7853 0.2877 0.2877

german LR 0.8193 0.7602 0.2350 0.2350
XGB 0.8191 0.7614 0.2300 0.2300
RF 0.9708 0.7937 0.2350 0.2350

givemecredit LR 0.8411 0.8441 0.2390 0.2390
XGB 0.8412 0.8442 0.2380 0.2380
RF 0.8752 0.7928 0.2619 0.2619

Table 6: Overview of model performance

C.5 RESULTS ON THE ILLUSION OF FEASIBILITY

We present the results of an ablation study to show how recourse may appear to be feasible when we
fail to consider complex actionability constraints. Here, we repeat the experiments in Section 4 for
the heloc dataset over three classes of nested actionability constraints:

Simple, a separable action set which only includes constraints to conditions on the immutability,
integrality, and soundness of features.

Separable, a separable action set which includes all conditions in Simple and adds monotonicity
constraints to ensure that certain features can only increase or decrease.

Actual, a non-separable action set which includes all conditions in Simple and Separable. Note that
this corresponds to the action set that we use in our main study.

We present the results from our procedure for all three action sets in Table 7.
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Actual Separable Simple

Model Type Metrics Reach AR DiCE AR DiCE AR DiCE
Certifies No Recourse  22.2% — — — — — —

Outputs Action 77.8% 859% 57.6% 859% 57.0% 99.9% 65.6%

LR L Loopholes 0.0% 41.1% 344% 41.1% 34.8% 955% 50.3%
Outputs No Action 222% 14.1% 424% 141% 43.0% 0.1% 34.4%

L Blindspots 0.0% 0.0% 21.0% 0.0% 21.7% 0.0% 14.6%

Certifies No Recourse  22.3% — — —

Outputs Action 77.7% 57.3% 57.5% 60.5%

XGB L Loopholes 0.0% NA 42.1% NA 42.0% NA 46.7%
Outputs No Action 22.3% 42.7% 42.5% 39.5%

L Blindspots 0.0% 21.1% 21.1% 18.2%

Certifies No Recourse  31.3% — — —

Outputs Action 68.7% 49.3% 49.3% 59.2%

RF L Loopholes 0.0% NA 29.5% NA 29.5% NA 44.8%
Outputs No Action 31.3% 50.7% 50.7% 40.8%

L Blindspots 0.0% 19.8% 19.7% 15.7%

Table 7: Feasibility of recourse across model classes, and various actionability constraints on the heloc dataset.
We determine the ground-truth feasibility of recourse using reachable sets (Reach), and use these results to
evaluate the reliability of verification with baseline methods for recourse provision (AR and DiCE). We describe
the metrics in the caption of Table 2.
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