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A Data Location and Code1

We provide an AWS S3 bucket hosting the data, which may be downloaded from the following links:2

• https://saramis.s3.eu-north-1.amazonaws.com/abdomen.tar.gz3

• https://saramis.s3.eu-north-1.amazonaws.com/amos.tar.gz4

• https://saramis.s3.eu-north-1.amazonaws.com/total.tar.gz5

• https://saramis.s3.eu-north-1.amazonaws.com/metadata.tar.gz6

• https://saramis.s3.eu-north-1.amazonaws.com/rl_expt.tar.gz7

The data includes the original SARAMIS dataset, as well as the data used to replicate the navigation8

experiments detailed in the paper. The code is made publicly available at the associated SARAMIS9

repository.10

A.1 Data Structure and Contents11

Data is provided as a .tar.gz files. Within the S3 buckets are five subfolders - three constituent datasets,12

Abdomen-1k, AMOS and TotalSegmentator, the data used for the autonomous navigation (Sec 5) in13

the paper in a subfolder “rl_expt", and a metadata folder.14

Within the Abdomen-1k, AMOS, and TotalSegmentator folders exist a number of sub-folders. Each15

sub-folder refers to an anonymised patient case, with matching names to the original CT datasets.16

The following files are listed in the Abdomen-1k and AMOS subfolders:17

1. .nii.gz: CT scan and label.18

2. slicer_segs: subfolder containing original .nii.gz files outputted from the TotalSegmentator19

model applied to the .nii.gz CT files.20

3. auto_seg_pre.seg.nrrd: original labelling node, converted from the slicer_segs to an individ-21

ual .seg.nrrd file, prior to the editing phase.22

4. auto_seg.seg.nrrd: edited labelling node post-editing phase.23
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5. analysis: subfolder containing the .npy arrays extracted from the auto_seg files for the24

analysis portion of the paper, pre- and post-editing, and with filtering, such that they could25

be converted into meshes.26

6. full_meshes: subfolder containing processed meshes for every organ, derived from the27

filtered .npy arrays.28

Within each full_meshes are a number of sub-folders referring to individual organs and their assets.29

Each sub-folder, for a given organ, contains a number of files:30

1. organ.ply: original meshed organ from the filtered npy array post-correction, extracted using31

a binary marching cubes algorithm.32

2. organ_laplace_smooth_mesh_decimation.ply: processed organ file, laplace smoothed and33

mesh decimated.34

3. organ_laplace_smooth_mesh_decimation_centered_local.ply: processed organ, centered35

in the local frame of reference (such that the organ is centered to 0 in it’s own frame of36

reference).37

4. organ_laplace_smooth_mesh_decimation_centered_global.ply: processed organ, centered38

in the patient frame of reference (such that all the organs in the patient are positioned relative39

to each other and globally mean 0 centered). Additionally, s-t coordinates for texturing are40

added to the mesh via Blender processing.41

5. organ_laplace_smooth_mesh_decimation_centered_global.vtk: tetrahedral mesh obtained42

from the global centered mesh.43

6. bake_map_diffuse_1000.png: diffuse maps baked from Blender.44

7. bake_map_normals_1000.png: normal maps baked from Blender.45

The formatting of the TotalSegmentator sub-dataset is slightly different, as it was not reviewed by the46

annotation team (considering that the ground truth labels from the original dataset were reviewed by47

a clinician and match the set of labels generated for the AMOS and Abdomen-1k dataset). Therefore,48

each subfolder contains the following data:49

1. ct.nii.gz: CT scan in .nii format.50

2. segmentations: subfolder with .nii.gz files labelled according to the organ the label corre-51

sponds to.52

3. analysis: folder containing .npy array for analysis of structures.53

4. full_meshes: subfolder containing folders with meshing output from the ground truth54

segmentations. If the segmentation extracted for a given organ from the segmentations55

subfolder is empty, there will be no associated subfolder for that organ in the full_meshes56

subfolder.57

Finally, some subfolders in the three datasets contain additional folders labelled colon, which contain58

the results of the procedural generation process as detailed in the paper. This folders contain files59

such as:60

1. bake*.png: baked diffuse and normal maps.61

2. Centerline curve*.csv and .json: files detailing the output of the manual segment picking62

using 3DSlicer as described in the paper.63

3. interp_curve.txt: interpolated BSpline curve from the individual centerline segments.64

4. indices_*.txt: points and indices (int) on curve or mesh corresponding to anatomy detailed65

in the paper.66

We describe which patient cases contain procedurally generated colons in the metadata .txt files67

corresponding to each dataset.68
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A.2 Data Loading Instructions69

The SARAMIS dataset contains multi-modal data that can be interacted with in different manners.70

Here we provide further information on how to load all the image formats supplied by the dataset.71

Code to load the data is also provided throughout the SARAMIS code repository.72

1. .nii.gz and .seg.nrrd files: the NIFTI file standard (.nii.gz) and NRRD file standard, respec-73

tively, are common medical imaging formats, and can be loaded using the 3DSlicer GUI74

(via drag and drop), or using the python packages niibabel and pynrrd.75

2. .vtk: tetrahedral mesh format, which can be read using gmsh.76

3. .ply: Polygon File Format may be loaded using a GUI such as MeshLab, 3DSlicer, and77

Blender. It can also be loaded using VTK data formats, PyTorch Geometric, PyTorch3D,78

amongst others.79

4. .png, .npy, .csv: common image and data formats that can be loaded with the numpy Python80

package.81

The metadata folder contains a number of files:82

1. {dataset}_interp_colons.txt: detailing the folders for each dataset which were manually83

processed to extract the centerlines for procedural colons as detailed in the paper.84

2. {dataset}_old.csv and {dataset}_new.csv: files containing the pixel values per organ used to85

perform the analysis reported in the paper.86

3. exclude.txt: comma separated txt file with case folder and reason why it is excluded from87

the dataset.88

B Appendix - Datasheet for Datasets89

Motivation90

91

For what purpose was the dataset created? Was there a specific task in mind? Was92

there a specific gap that needed to be filled? Please provide a description.93

Laparoscopy and endoscopy are techniques in surgical and medical practice which involve inserting94

video cameras into a patient in order to diagnose and treat a number of conditions, and have made95

it possible to perform minimally invasive surgery (MIS). The benefits of MIS have been well96

documented [2, 18, 27], and can be summarised as follows: 1) Reduced post-operative pain, 2)97

Shortened hospital stays [27, 17], 3) Improved rates of patient recovery [6], and 4) Lowered costs98

to hospital systems in a number of interventions [2, 24, 17, 7]. Additionally, recent advances in99

robotics have enabled the pairing of robotic elements with laparoscopic equipment, which provides100

further benefits such as an improved ergonomic environment for surgeons [31] and the possibility of101

teleoperation [5]. In tandem, (partially) autonomous robotic surgery has emerged as an increasingly102

important research topic [4, 22, 9]. Indeed, many surgeons consider the full automation of robot-103

assisted minimally invasive surgery (RAMIS) as the ‘end goal’ of surgical practice [9].104

Traditional computer vision applications have long exploited tracking devices and LIDAR-like sensors105

to create large-scale annotated datasets for relevant tasks such as camera-pose estimation or scene-106

reconstruction [8, 14]. However, these devices are logistically challenging to incorporate into surgical107

workflow, as they require sterilisation, consequently multiple calibrations, and are expensive to accrue.108

Overall, this has resulted in limited open-source datasets for computer vision tasks in MIS/RAMIS. In109

parallel, synthetic data and rendering environments have emerged as promising, alternative resources110

to enable computer vision at scale [20, 25], and are important for the development and testing of safe111

autonomous systems. However, in silico datasets for the development of deep learning algorithms112

and autonomous systems in MIS/RAMIS are limited in number and application [13].113
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The proposed dataset, “Simulation Assets for Robotic Assisted and Minimally Invasive Surgery"114

(SARAMIS), aims to provide the first large scale dataset of rendering assets for the tasks of MIS and115

RAMIS.116

Who created this dataset (e.g., which team, research group) and on behalf of which117

entity (e.g., company, institution, organization)?118

The dataset was created by researchers at the Centre for Medical Image Computing (CMIC),119

Wellcome/EPSRC Centre for Interventional And Surgical Sciences (WEISS), on behalf of University120

College London (UCL), London, United Kingdom.121

Who funded the creation of the dataset? If there is an associated grant, please provide122

the name of the grantor and the grant name and number.123

This work is supported by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences124

[203145Z/16/Z]. NMB, AA, ET, AS, and SF are supported by the EPSRC-funded UCL Centre125

for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health) [EP/S021930/1].126

AA is supported by an EPSRC Industrial Case grant [EP/W522077/1], and a Microsoft Research127

PhD Scholarship Wellcome Trust award [221915/Z/20/]. MJC, YH, NMB, and SUS are supported128

by EPSRC grant [EP/T029404/1]. TD is supported by EPSRC grant [EP/V052438/1]. ZMCB129

is supported by the Natural Sciences and Engineering Research Council of Canada Postgraduate130

Scholarships-Doctoral Program, and the University College London Overseas and Graduate Research131

Scholarships. This work is also supported by the International Alliance for Cancer Early Detection,132

an alliance between Cancer Research UK [C28070/A30912, C73666/A31378], Canary Center at133

Stanford University, the University of Cambridge, OHSU Knight Cancer Institute, University College134

London and the University of Manchester.135

Any other comments?136

Composition137

138

What do the instances that comprise the dataset represent (e.g., documents, photos,139

people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings;140

people and interactions between them; nodes and edges)? Please provide a description.141

Each instance in the dataset represents organs and anatomical features of the human body. Each142

instance is acquired from a singular human subject.143

How many instances are there in total (of each type, if appropriate)?144

There are a total of 2529 instances across the dataset.145

Does the dataset contain all possible instances or is it a sample (not necessarily146

random) of instances from a larger set? If the dataset is a sample, then what is the147

larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so,148

please describe how this representativeness was validated/verified. If it is not representative149

of the larger set, please describe why not (e.g., to cover a more diverse range of instances,150

because instances were withheld or unavailable).151

The dataset contains all possible instances.152

What data does each instance consist of? “Raw” data (e.g., unprocessed text or153

images) or features? In either case, please provide a description.154

Each instance consists of the following:155

• Computed Tomography (CT) Scan: the original CT scan the data is derived from is included156

for reference and re-analysis. The CT scan is in the format of a .nii.gz file, a common157
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medical imaging data format. The CT scans were previously anonymised by the respective158

centres, and as such do not contain identifying information.159

• Segmentation Map: two segmentation labels are provided describing anatomical features160

within the CT scan. Each segmentation map describes the voxel class of the CT scan from161

the following classes: the spleen, kidney right, kidney left, gallbladder, liver, stomach, aorta,162

inferior vena cava, portal vein and splenic vein, pancreas, adrenal gland right, adrenal gland163

left, lung upper lobe left, lung lower lobe left, lung upper lobe right, lung middle lobe right,164

lung lower lobe right, vertebrae L5, vertebrae L4, vertebrae L3, vertebrae L2, vertebrae165

L1, vertebrae T12, vertebrae T11, vertebrae T10, vertebrae T9, vertebrae T8, vertebrae T7,166

vertebrae T6, vertebrae T5, vertebrae T4, vertebrae T3, vertebrae T2, vertebrae T1, vertebrae167

C7, vertebrae C6, vertebrae C5, vertebrae C4, vertebrae C3, vertebrae C2, vertebrae C1,168

esophagus, trachea, heart myocardium, heart atrium left, heart ventricle left, heart atrium169

right, heart ventricle right, pulmonary artery, brain, iliac artery left (common iliac left artery),170

iliac artery right (common iliac right artery), iliac vena left (common iliac left vein), iliac171

vena right (common iliac right vein), small bowel, duodenum, colon, rib left 1, rib left 2,172

rib left 3, rib left 4, rib left 5, rib left 6, rib left 7, rib left 8, rib left 9, rib left 10, rib left 11,173

rib left 12, rib right 1, rib right 2, rib right 3, rib right 4, rib right 5, rib right 6, rib right 7,174

rib right 8, rib right 9, rib right 10, rib right 11, rib right 12, humerus left, humerus right,175

scapula left, scapula right, clavicula left, clavicula right, femur left, femur right, hip left,176

hip right, sacrum, face, gluteus maximus left, gluteus maximus right, gluteus medius left,177

gluteus medius right, gluteus minimus left, gluteus minimus right, autochthon left (erector178

spinae left), autochthon right (erector spinae right), iliopsoas left (psoas major left), iliopsoas179

right (psoas major right), and the urinary bladder. The segmentation files are provided as180

.seg.nrrd files, a common medical imaging data format. One segmentation label corresponds181

to the data pre-review, and the other label corresponds to the data post-review by a team of 7182

trained clinical annotators and 4 radiologists. From the above list, several structures were183

corrected in name compared to the original model’s output (found in brackets next to the184

original label).185

• Ground Truth Label: the original segmentation label from the original segmentation datasets186

is also provided for reference and further analysis.187

• 3D mesh models (.ply): each label in the post-processed segmentation map is converted into188

a surface model representation in standard .ply format.189

• Tetrahedral volumes (.vtk): each surface model representation is converted into a tetrahedral190

volume for collision simulations.191

• Normal maps (.png): each surface model has baked a normal/bump map simulating geomet-192

ric textures of the organ.193

• Diffuse maps (.png): each surface model has a baked diffuse map simulating color of the194

organ.195

Is there a label or target associated with each instance? If so, please provide a196

description.197

We include the original ground truth labels from the parent datasets for reference. These labels were198

generated by clinicians, and are voxel-wise segmentations of different anatomical structures within199

the scan.200

• Abdomen-1k: (label=1), kidney (label=2), spleen (label=3), and pancreas (label=4).201

• AMOS: (label=1) spleen, (label=2) right kidney, (label=3) left kidney, (label=4) gallbladder,202

(label=5) esophagus, (label=6) liver, (label=7) stomach, (label=8) aorta, (label=9) postcava,203

(label=10) pancreas, (label=11) right adrenal gland, (label=12) left adrenal gland, (label=13)204

duodenum, (label=14) bladder, (label=16) prostate/uterus205

• TotalSegmentator: the segmentations match the voxel classes of the proposed dataset (see206

above).207
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Is any information missing from individual instances? If so, please provide a description,208

explaining why this information is missing (e.g., because it was unavailable). This does not209

include intentionally removed information, but might include, e.g., redacted text.210

The dataset was derived from a variety of CT scans. These were classified as belonging to one of211

the following set: {full-body (FBCT), chest-abdomen-pelvis (CTCAP), abdomen-pelvis (CTAP),212

abdominal (ACT)} (see Table 1). Given that each CT scan images different parts of the human213

anatomy, the presence of each label in the segmentation map will vary. For example, the cervical214

vertebrae (vertebrae C*) or the brain will not be imaged in an ACT. Therefore, different instances215

will contain different sets of derived assets in the form of .ply, .tet and .png files.216

The split of datasets is summarised in Table. 1.

Table 1: Summary of CT data of three datasets from which SARAMIS is derived. FBCT = Full Body
CT, CTCAP = chest-abdomen-pelvis CT, CTAP = abdomen-pelvis CT, ACT = Abdomen CT. Other
refers to a alternative CT scans, as described in the datasheet for [30].

Type of CT Scan

Dataset Initial FBCT CTCAP CTAP ACT Other Excluded No changes

Abdomen-1k 1063 10 366 71 592 0 15 526
Amos 600 0 72 220 0 0 321 140
TotalSegmentator 1200 169 197 110 0 724 0 1200

SARAMIS 2863 179 635 401 592 724 336 1866

217

Are relationships between individual instances made explicit (e.g., users’ movie218

ratings, social network links)? If so, please describe how these relationships are made219

explicit.220

Yes. We maintain the original population splits as defined by their parent datasets.221

Are there recommended data splits (e.g., training, development/validation, testing)? If222

so, please provide a description of these splits, explaining the rationale behind them.223

No.224

Are there any errors, sources of noise, or redundancies in the dataset? If so, please225

provide a description.226

Elements of the dataset were generated procedurally:227

1. Baked diffuse reflectance maps and normal maps: using Blender’s CYCLES ray-tracing228

engine, the properties of the shader nodes were baked into 2D images for ease of rendering229

in other platforms. The ray-tracing platform involves probabilistic sampling.230

Is the dataset self-contained, or does it link to or otherwise rely on external resources231

(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a)232

are there guarantees that they will exist, and remain constant, over time; b) are there official233

archival versions of the complete dataset (i.e., including the external resources as they234

existed at the time the dataset was created); c) are there any restrictions (e.g., licenses,235

fees) associated with any of the external resources that might apply to a future user? Please236

provide descriptions of all external resources and any restrictions associated with them, as237

well as links or other access points, as appropriate.238

The dataset was derived from the AMOS [12], Abdomen-1k [15] and TotalSegmentator [30] datasets.239

The TotalSegmentator dataset is available on Zenodo, the AMOS dataset is available on Zenodo, and240

the Abdomen-1k dataset is available on Zenodo.241
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Does the dataset contain data that might be considered confidential (e.g., data that is242

protected by legal privilege or by doctor-patient confidentiality, data that includes the243

content of individuals non-public communications)? If so, please provide a description.244

No.245

Does the dataset contain data that, if viewed directly, might be offensive, insulting,246

threatening, or might otherwise cause anxiety? If so, please describe why.247

No.248

Does the dataset relate to people? If not, you may skip the remaining questions in this249

section.250

Yes.251

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please252

describe how these subpopulations are identified and provide a description of their respective253

distributions within the dataset.254

No.255

Is it possible to identify individuals (i.e., one or more natural persons), either directly256

or indirectly (i.e., in combination with other data) from the dataset? If so, please257

describe how.258

No.259

Does the dataset contain data that might be considered sensitive in any way (e.g., data260

that reveals racial or ethnic origins, sexual orientations, religious beliefs, political261

opinions or union memberships, or locations; financial or health data; biometric or262

genetic data; forms of government identification, such as social security numbers;263

criminal history)? If so, please provide a description.264

No.265

Any other comments?266

Collection Process267

268

How was the data associated with each instance acquired? Was the data directly269

observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or270

indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses271

for age or language)? If data was reported by subjects or indirectly inferred/derived from272

other data, was the data validated/verified? If so, please describe how.273

1. The initial CT data was collected by compounding existing datasets of CT scans: Ab-274

domen1k, AMOS and TotalSegmentator.275

2. The data was preliminarily annotated using an open-source deep learning segmentation276

model [30] trained to predict 104 anatomical classes in CT scans. The open source model is277

available here. Given that the TotalSegmentator dataset contains the same labels, and was278

inspected by a clinical team, we exclude it from the revision process.279

3. All the preliminary annotations derived from the AMOS and Abdomen-1k dataset were280

inspected by a team of 7 trained annotators and 4 radiologists.281

4. Initially, all the preliminary annotations were inspected by trained annotators under the282

following protocol:283
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(a) Annotators were recruited from the host centre, and consist of 7 junior researchers in284

medical imaging, with at least 4 years of medical imaging expertise.285

(b) Annotators were instructed to visually inspect the veracity of the preliminary annota-286

tions by inspecting the 3D reconstructions of the preliminary annotations in 3DSlicer.287

Additionally, they were instructed to review the overlay of the annotations on the288

original CT scan slice by slice.289

(c) Annotators were instructed to: 1) Verify class homogeneity within an anatomical290

structure, 2) Flag topological errors (e.g., slices missing, holes within an anatomical291

structure), 3) Flag under- or over-segmentation, and 4) Flag potential pathology for292

each of the scans to be reviewed Annotators were requested to log the most superior293

and inferior vertebral body visible in the scan, as well as the type of CT scan from294

the set {full-body (FBCT), chest-abdomen-pelvis (CTCAP), abdomen-pelvis (CTAP),295

abdominal (ACT)}.296

(d) Annotators then received a 2h training session on the how to use the annotation297

software (3DSlicer), as well as jointly carrying out a reviewing task with the guidance298

of a clinician.299

(e) Annotators carried out the reviewing task under the supervision of a clinician, which300

could be consulted in cases where the individual annotator could not resolve the301

presence or not of an error.302

(f) Annotators were requested to fill in a spreadsheet with any errors as described above.303

5. Subsequent to the initial review phase, cases that were flagged were individually re-inspected.304

Under the supervision of a clinician, the segmentation errors were manually corrected.305

6. Post-review and correction, 450 scans were allocated to radiologists for review of segmenta-306

tion and correction quality. Review was carried out under the following protocol:307

(a) 4 radiologists were recruited from the host centre partner hospitals.308

(b) Radiologists were instructed to visually inspect the veracity of the corrected annotations,309

and note any significant errors (in the form of gross mistakes versus small pixel-wise310

deviations in segmentation veracity), as well as any pathology arising from the scan.311

(c) Radiologists received a brief training on using the segmentation platform 3DSlicer, and312

were requested to fill in a spreadsheet with errors noted in the scans.313

7. Once the review phase was concluded, the data was post-processed to obtain, firstly, the 3D314

meshes this consisted of the following steps:315

(a) Label cleanup: removal of noise in the verified segmentations, consisting of salt-and-316

pepper removal.317

(b) Meshing: following the label cleanup, the 3D volumes were converted into .ply files318

using the marching cubes algorithm (vtk.vtkMarchingCubes()).319

(c) Mesh decimation and smoothing: given the voxel resolution of the original CT scans320

could vary between 0.5-5+mm in each direction, the meshes are smoothed using Lapla-321

cian smoothing to better represent smooth surfaces. Additionally, a mesh decimation is322

performed; specifically, we perform a quadric edge collapse using an implementation323

from MeshLab.324

(d) Tetrahedral volume generation: the algorithm detailed in [10] through an open-source325

implementation. .msh files are converted into .vtk files using gmsh.326

8. The 3D meshes were then processed using Blender to obtain normal maps (to texture the327

surfaces) and diffuse maps (to add colour to the surfaces). The normal maps and diffuse328

maps were generated procedurally.329

(a) We design procedural textures and Principled Bi-directional Scattering Distribution330

Functions (BSDFs) for a number of anatomy groups using Blender’s shading node by331

referencing open-source datasets of intra-operative images [3, 29, 1], surgical journal332

papers [11, 28, 16], and open-source tutorials [21]. Final procedural materials were333

inspected and verified by a clinician.334
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• Bones: all vertebrae, all ribs, sacrum, all humerus, all tibia, all hips, all femur335

• Lungs: Lung segments, trachea336

• Stomach: stomach, urinary bladder337

• Pancreas: pancreas, adrenal gland338

• Bowels: duodenum, colon, small bowel, oesophagus339

• Gallbladder: gallbladder340

• Liver: liver, kidneys341

• Spleen: spleen342

• Vascular: all veins and arteries343

• Muscle: gluteus, autochthons, iliopsoas, all heart segments344

(b) A Shader node in Blender was created for each reference texture and diffuse map.345

(c) The associated organ meshes were procedurally unwrapped, and the textures and diffuse346

maps were baked using GPU Cycles in Blender (cycles=1).347

(d) Full shader nodes are provided open-source for the procedural simulation of textures, or348

modification of parameters. We refer the reader to the implementation at the associated349

SARAMIS repository.350

What mechanisms or procedures were used to collect the data (e.g., hardware appa-351

ratus or sensor, manual human curation, software program, software API)? How were352

these mechanisms or procedures validated?353

The data was collected through manual human curation of an open source dataset. The annotation354

was performed through the use of an Apple IPad (8th Gen) with an Apple Pencil (1st Gen) with an355

instance of 3DSlicer (5.2.2) mirrored onto the IPad. The meshing was performed using open-source356

tools, such as meshio, VTK, and MeshLab, and using Blender. All post-processing was performed357

on a desktop with an Intel Core i9 24-Core Processor i9-13900KF (3.0GHz) 36MB Cache, 64GB358

of RAM, and an NVIDIA 3090Ti 24GB GPU. The procedural texturing and creation of diffuse359

maps was performed through the use of shader nodes in Blender. The full software stack is released360

open-source with the dataset and associated paper.361

If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,362

deterministic, probabilistic with specific sampling probabilities)?363

Several of the original scans that were used to extract the data-points were excluded. From the initial364

2863 scans, a total of 336 were excluded from segmentation analysis for the following reasons: 194365

due to lack of availability of test set label, 15 due to significant pathology making organ differentiation366

difficult, 13 due to the presence of fluid in the abdomen (e.g. haemoperitoneum or ascites) occluding367

organs of interest, 100 due to alternative imaging modality (MRI), 2 due to metallic artefacts in368

the scan, 1 due to a poor quality scan, and 1 due to original file corruption leading to lack of a369

segmentation file. Overall, this results in 1048, 279, 1200 scans from the Abdomen-1k, AMOS,370

and TotalSegmentator datasets, respectively. We detail the excluded data in the metadata folder371

excluded.txt file.372

Who was involved in the data collection process (e.g., students, crowdworkers,373

contractors) and how were they compensated (e.g., how much were crowdworkers374

paid)?375

7 trained annotators (junior medical image researchers with 4+ years of experience in medical376

imaging) and 4 radiologists (specialty training levels 1-4, NHS England).377

Over what timeframe was the data collected? Does this timeframe match the creation378

timeframe of the data associated with the instances (e.g., recent crawl of old news379

articles)? If not, please describe the timeframe in which the data associated with the380

instances was created.381
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The SARAMIS was annotated and processed between Jan-Jun 2023. The original CT scans were382

published in 2021 (Abdomen-1k, collected between 2019 and 2021), 2022 (AMOS and TotalSegmen-383

tator).384

Were any ethical review processes conducted (e.g., by an institutional review board)?385

If so, please provide a description of these review processes, including the outcomes, as386

well as a link or other access point to any supporting documentation.387

No.388

Does the dataset relate to people? If not, you may skip the remaining questions in this389

section.390

Yes.391

Did you collect the data from the individuals in question directly, or obtain it via third392

parties or other sources (e.g., websites)?393

The data was collected from open-source medical imaging datasets.394

Were the individuals in question notified about the data collection? If so, please395

describe (or show with screenshots or other information) how notice was provided, and396

provide a link or other access point to, or otherwise reproduce, the exact language of the397

notification itself.398

The original datasets which were post-processed are provided under either CC-BY-4.0 or a CC-BY-399

NC-SA licenses, which allows for the redistribution of the material in any medium or format, as well400

as adaptation of the material for any purpose for non-commercial purposes under a similar license.401

The original individuals would have consented to such a license, and thus not notified of further402

amendments.403

Did the individuals in question consent to the collection and use of their data? If so,404

please describe (or show with screenshots or other information) how consent was requested405

and provided, and provide a link or other access point to, or otherwise reproduce, the exact406

language to which the individuals consented.407

See above.408

If consent was obtained, were the consenting individuals provided with a mechanism409

to revoke their consent in the future or for certain uses? If so, please provide a410

description, as well as a link or other access point to the mechanism (if appropriate).411

No further consent beyond that of the original datasets was obtained.412

Has an analysis of the potential impact of the dataset and its use on data subjects413

(e.g., a data protection impact analysis) been conducted? If so, please provide a414

description of this analysis, including the outcomes, as well as a link or other access point415

to any supporting documentation.416

No.417

Any other comments?418

Preprocessing/cleaning/labeling419

420

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or421

bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of422
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instances, processing of missing values)? If so, please provide a description. If not, you423

may skip the remainder of the questions in this section.424

• The automatic segmentations were manually corrected under the supervision of a clinician,425

and consisted in adding and removing pixels to adjust the segmentations as needed.426

• The corrected segmentations were filtered using binary morphological closing operation427

(cross kernel, size=1). Additionally, the intra-patient segmentations were verified against428

each other to ensure they did not intersect (as this is not anatomically plausible). Where429

intersection was found, the intersection of both classes were set to 0.430

• The extracted surface representations were smoothed using Laplacian smoothing.431

• The smoothed surfaces were decimated using mesh decimation.432

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,433

to support unanticipated future uses)? If so, please provide a link or other access point434

to the “raw” data.435

Yes - the original CT data, as well as the pre-corrected segmentations and post-corrected segmenta-436

tions are saved and provided.437

Is the software used to preprocess/clean/label the instances available? If so, please438

provide a link or other access point.439

Yes - see the associated SARAMIS repository.440

Any other comments?441

442

Uses443

444

Has the dataset been used for any tasks already? If so, please provide a description.445

Beyond the usage in the paper associated to the dataset, the data has not been used for other tasks.446

Is there a repository that links to any or all papers or systems that use the dataset? If447

so, please provide a link or other access point.448

N/A449

What (other) tasks could the dataset be used for?450

The uses for this dataset are multiple.451

• Synthetic data generation: the 3D models can be paired with a rendering environment to452

obtain 2D RGB images, 2D depth maps, 2D segmentation maps, and 2D optical flow images.453

• Deformation simulation: the tetrahedral volumes provided can be used for the simulation of454

deformation of organs in a surgical setting.455

• Generative 3D models: The 3D models could be used to create a 3D generative model of456

given organs.457

• Learning textures in surgery: the 3D models could be paired with real intra-operative video458

(2D RGB images) to learn how to texture different organs in the human body.459

• Camera-pose estimation: pose labels may be generated from a rendering environment, paired460

with a 2D image, to learn how to perform camera pose-estimation on different organs in461

surgery.462
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• Navigation: Like the exemplified case in the paper for this dataset, different organs could be463

used to design surgical scenes or scenarios, to teach reinforcement learning algorithms how464

to navigate to different targets, how to perform certain actions, or how to interact with the465

shapes in the environment.466

Is there anything about the composition of the dataset or the way it was collected467

and preprocessed/cleaned/labeled that might impact future uses? For example, is468

there anything that a future user might need to know to avoid uses that could result in unfair469

treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other470

undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is471

there anything a future user could do to mitigate these undesirable harms?472

No.473

Are there tasks for which the dataset should not be used? If so, please provide a474

description.475

Given that this dataset could be used to train autonomous agents for medical purposes, we would476

recommend careful validation of any autonomous systems prior to translational research.477

Any other comments?478

Distribution479

480

Will the dataset be distributed to third parties outside of the entity (e.g., company,481

institution, organization) on behalf of which the dataset was created? If so, please482

provide a description.483

Yes. The dataset will be provided by a CC BY-NC-SA to the wider public.484

How will the dataset will be distributed (e.g., tarball on website, API, GitHub) Does the485

dataset have a digital object identifier (DOI)?486

The full dataset will be released to the public further to review at a minted DOI within the UCL487

Research Data Repository.488

When will the dataset be distributed?489

The dataset is made publically available at the SARAMIS repository, with source code and links to490

download the data: https://github.com/NMontanaBrown/saramis.491

Will the dataset be distributed under a copyright or other intellectual property (IP)492

license, and/or under applicable terms of use (ToU)? If so, please describe this license493

and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant494

licensing terms or ToU, as well as any fees associated with these restrictions.495

The dataset is provided under a CC BY-NC-SA license. The dataset may be shared, re-used and496

re-mixed for any purpose, subject to the condition that the original dataset is credited. The dataset497

is provided "as-is" and "as-available", and makes no representations or warranties of any kind498

concerning the dataset, whether express, implied, statutory, or other. This includes, without limitation,499

warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of500

latent or other defects, accuracy, or the presence or absence of errors, whether or not known or501

discoverable. The dataset cannot be used for commercial purposes. The dataset or any adaptations502

and derivations must be licensed under a similar license.503

Have any third parties imposed IP-based or other restrictions on the data associated504

with the instances? If so, please describe these restrictions, and provide a link or other505
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access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees506

associated with these restrictions.507

The original datasets used to generate the SARAMIS dataset were provided by:508

1. Abdomen1k: CC BY 4.0 license509

2. AMOS: CC BY NC SA license510

3. TotalSegmentator: CC BY 4.0 license.511

As we derive from the AMOS dataset, we license the dataset entirely on a CC BY NC SA license.512

Do any export controls or other regulatory restrictions apply to the dataset or to513

individual instances? If so, please describe these restrictions, and provide a link or other514

access point to, or otherwise reproduce, any supporting documentation.515

No.516

Any other comments?517

518

Maintenance519

520

Who will be supporting/hosting/maintaining the dataset?521

The dataset will be hosted on UCL’s Research Data Repository, and it’s supporting repository at the522

associated SARAMIS repository. These will be maintained in part, but not limited to, Nina Montana-523

Brown and Matt Clarkson (first author, and principal investigator of the work, correspondingly), both524

at University College London, United Kingdom at the time of publication.525

How can the owner/curator/manager of the dataset be contacted (e.g., email ad-526

dress)?527

The curator can be contacted at: nina.brown.15@ucl.ac.uk, or alternatively m.clarkson@ucl.ac.uk.528

Is there an erratum? If so, please provide a link or other access point.529

Errata will be modified in this section.530

Errata: N/A531

Will the dataset be updated (e.g., to correct labeling errors, add new instances,532

delete instances)? If so, please describe how often, by whom, and how updates will be533

communicated to users (e.g., mailing list, GitHub)?534

Yes. Where errors are encountered, data is deleted, or more data is included into the dataset, the535

versioned data will be uploaded to the UCL Research Data Repository, with links to the original data.536

Issues may be raised on the original SARAMIS repository, and errata will be appended to the arXiv537

version of the paper as well as the datasheet associated to the dataset.538

If the dataset relates to people, are there applicable limits on the retention of the data539

associated with the instances (e.g., were individuals in question told that their data540

would be retained for a fixed period of time and then deleted)? If so, please describe541

these limits and explain how they will be enforced.542

No.543
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Will older versions of the dataset continue to be supported/hosted/maintained? If so,544

please describe how. If not, please describe how its obsolescence will be communicated to545

users.546

Yes. The data will remain hosted on the UCL Research Data Repository.547

If others want to extend/augment/build on/contribute to the dataset, is there a mech-548

anism for them to do so? If so, please provide a description. Will these contributions549

be validated/verified? If so, please describe how. If not, why not? Is there a process550

for communicating/distributing these contributions to other users? If so, please provide a551

description.552

The dataset is originally released under a CC-BY-NC-SA license, so authors may extend, augment,553

or build on SARAMIS for non commercial purposes provided the data is shared under the same/similar554

license.555

If external parties wish to contribute directly to the dataset, we invite them to raise an issue on the556

SARAMIS dataset repository (https://github.com/NMontanaBrown/saramis) with their pro-557

posed contribution, steps to replicate, as well as a link to the contribution for review by the archivists558

of the dataset. The data will be manually reviewed by archivists of the dataset, and may involve559

third-parties associated to the archivists for speed of review. This will ensure contributions are560

open-source and open to the rest of the public.561

Any other comments?562

563
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C Procedural Generation of Colon Anatomy564

In this section we describe the details for the procedural generation of colon anatomy for the SARAMIS565

dataset.566

C.1 Matching Algorithm for Manually Extracted Colon Centerlines567

Firstly, we describe the matching algorithm relating to Section 3.1 “Mesh Generation" of the paper in568

Algo. 1.569

Data: N unordered, line segments L = {l1, l2, ..., ln}, each li a set of ordered points,
li = {p1, p2, ..., pm} pi ∈ R3 of variable length, and start coordinate P ∈ R3.

Result: N ordered line segments Lo

start← P ;
Lo← [] ;

while len (L) do
startPoints = [l[0] for l in L];
endPoints = [l[-1] for l in L];
closestStart = min(EuclideanDistance(start, startPoints)) ;
closestEnd = min(EuclideanDistance(start, endPoints)) ;
if closestStart > closestEnd then

lnext ← L[endPoints.index(next)] ▷ Corresponding segment match
lnext ← reverse(lnext)

end
else

lnext ← L[startPoints.index(next)]
end
Lo.insert(lnext) ;
start← lnext[−1] ;
L.pop(lnext);

end
Algorithm 1: Pseudocode to order sets of line segments to create a discontinous, ordered line
segment
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C.2 Procedural Generation of Colon Meshes570

Having obtained the ordered line segments in Lo, the curve is filtered for duplicate points, then571

filtered for points where the difference between subsequent points are larger than 2 times the median572

of points filtered using a 1D Gaussian (SD=5). Filtered points were subsequently used to fit a BSpline,573

and resampled to 1000 points.574

The resampled BSpline curve can be used as the centerline to extrude a closed mesh using Blender.575

Three different functions - implemented via Blender Geometry Nodes - are provided to vary the576

curve radius parameters in the generated mesh in order to replicate anatomical features in real577

colon’s: colonic folds and Haustra. The radius r ∈ R at each point p ∈ R3 on the centerline is578

generally parametrised by a function r(p, ·). We implement three functions as follows, a jitter radius579

function, rjitter(p, ·), parametrised by the values scale, detail, roughness, distortion, and a multiplier580

J = (s, d, r,m, l) ∈ R respectively, such that:581

rjitter(p,J ) = l · fperlin(s, d, r,m, p̄) (1)

where fperlin(.) evaluates the Perlin noise at the point p̄ with given parameters in J . This function582

was created to replicate smaller, internal colonic folds in the colon. The effects of different parameters583

are illustrated in Fig. 2. We further define a function rsin(p,S), with arguments S = (b, k, h) ∈ R,584

representing base radius b, amplitude k and frequency h, such that:585

rsin(p,S) = b · (1 + k · (0.5 · sin(p̄ · h) + 0.5)) (2)

This function aims to replicate the Haustra in the colon, which vary periodically along the length of586

the colon. The effects of different parameters are illustrated in Fig. 1.587

Finally, we combine rjitter and rsin to in the function rsin,jitter:588

rsin,jitter(p,S,J ) = rsin(p,S) + rjitter(p,J ) (3)

to combine both effects into one mesh. These are illustrated in Fig. 3.589

Figure 1: Example renders of procedurally generated colons with different parameters for sinusoidal
radius defined in Eqn. 2. Along the columns, the frequency parameter varies between 50-130Hz, and
along the rows, we showcase different combinations of amplitude and base radius parameters. In
these renders, the curve was re-sampled to 500 points.
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Figure 2: Example renders of procedurally generated colons with different parameters for the jitter
radius defined in Eqn. 1. Along the columns, the number of points on the curve is resampled between
100-500 points, and along the rows, we vary the multiplier l of the radius. We fix the other parameters
at: scale=6.2, detail=15.5, roughness=0, distortion=12.1

Figure 3: Example renders of procedurally generated colons with different parameters for the
combined radius defined in Eqn. 3. Along the columns, the number of points on the curve is resampled
between 100-500 points. Along the rows, we showcase different combinations of multiplication
values (k) and base radius parameters (b). We fix the other parameters at: scale=6.2, detail=15.5,
roughness=0, distortion=12.1

Blender files for the procedural simulation of meshes defined by input centerlines are provided590

open-source in the associated SARAMIS repository.591

C.3 Parameters Describing Autonomous Navigation Dataset592

For the experiments performed with SARAMIS centerlines, colon meshes were extruded with rjitter593

in Eqn. 1, J = (scale = 6.2, detail = 15.5, smoothness = 0, distortion = 12.1, l = 12.0) with594

curves resampled to 1000 points.595
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D Procedural Texturing of Meshes596

We design procedural textures and principled bi-directional scattering distribution functions (BSDFs)597

for a number of anatomy groups using Blender’s shading node implementation.598

D.1 Introduction to Blender Shader Nodes599

We illustrate a few examples of how procedural texturing nodes using Blender can generate different600

textures. Consider the function fperlin(., v) : Rn → R, which evaluates the fractal Perlin noise with601

parameters P = (s, d, r,m) ∈ R, representing scale, detail, roughness, and distortion, respectively602

for a given coordinate N-D coordinate, v ∈ Rn, where ns ∈ {1, 2, 3, 4}. A simple Blender graph can603

be constructed such that each texture coordinate t ∈ R2 of a given object can be mapped to certain604

parameters of the principal BSDF. The construction of the above Blender graph, and resulting renders605

for different Perlin noise parameters used to modify the base color of the material output is illustrated606

in Fig.4607

Figure 4: Example renders of procedurally generated textures using Perlin noise to calculate an
object’s base color. Row cubes are generated with d = [0, 1.5], columns are generated with scale =
[6.9, 17]. Roughness and distortion are kept at 1, 0 respectively.

We can expand the above set of shader nodes by adding a color ramp node that modifies the output608

p = fperlin(P, v) linearly with the following equation values cmax, cmin ∈ R, and clamping it609

around the equation values:610

ylin =
p

cmax − cmin
+

cmin

cmin − cmax
(4)

yramp(x) =


0 if y(x) < 0

y(x) if 0 ≤ ylin(p) ≤ 1

1 if y(x) > 1

(5)

We demonstrate the use of color-ramp to modify the base color of a cube in Fig. 5.611

Additionally, the same original set of nodes may be used to modify other properties in the principal612

BSDF. In Fig. 6 we showcase using the metallic, roughness and clearcoat properties of the BSDF to613

modify the clamped Perlin texture on the render. These do not directly affect the base color of the614

object (which is set to black), but rather the way that light interacts with the material.615

The same functions can be used to generate different normal mappings on the texture coordinates,616

therefore modifying the texture appearance of the object without modifying the underlying geometry.617

In Fig. 7, we showcase how to use a Blender displacement node in order to modify the material618

displacement procedurally.619
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Figure 5: Example renders of procedurally generated textures using Perlin noise and a color ramp
node to calculate an object’s base color. Cubes are generated scale = [6.9, 17]. Roughness, distortion
and detail are kept at 1, 0, and 0, respectively.

Figure 6: Example renders of procedurally generated textures using Perlin noise and a color ramp
node to calculate an object’s different properties, with the same base color. Top, middle, and bottom
renders are generated using the metallic, roughness, and clearcoat parameters, respectively. Cubes
are generated scale = [6.9, 17]. Roughness, distortion and detail are kept at 1, 0, and 0, respectively.

Furthermore, combinations of functions may be used in order to generate more complex textures.620

For example, we may generate a novel texture with two different P , and multiplying their output.621

Let P1 = [0.6, 1.8, 1.0, 2.6] and P2 = [2.8, 1.8, 1.0, 2.2]. The material normal displacement output622

is defined by the function tdisplacement(., v) : R2 → R:623

tdisplacement(P1,P2, v) = fperlin(P1, v)× fperlin(P2, v) (6)

and is described in Fig.8.624
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Figure 7: Example renders of procedurally generated textures using Perlin noise and a displacement
node, with the same base color. Cubes are generated scale = [6.9, 17]. Roughness, distortion
and detail are kept at 1, 0, and 0, respectively, as well as displacement parameters [midlevel=2.4,
displacement=0.2].

Figure 8: Example renders of procedurally generated textures using combination of Perlin noise,
displacement node and vector math nodes, with the same base color. The textures are generated
with P1 = [0.6, 1.8, 1.0, 2.6] and P2 = [2.8, 1.8, 1.0, 2.2], respectively. We showcase the individual
Blender shader nodes on the left, with the top panel representing the individual configuration, and the
combined configuration on the bottom. The three renders represent the different parametrisations,
with the bottom representing the combined parametrisation.

D.2 Generation of SARAMIS Textures625

We use the basic principles described in Sec. D.1 to iteratively create textures to describe the626

appearance of different organs and organ groups in the human body. To replicate the materials,627

we reference open-source datasets of intra-operative images [3, 29, 1], surgical journal papers628

[11, 28, 16], and open-source tutorials [21]. The materials were generated under the supervision of a629

clinician with surgical experience, and final procedural materials were inspected and verified by a630

clinician.631

Due to the complexity of the generated textures, we provide screenshots of each of the reported632

textures, as well as example renders resulting from the Blender shader nodes. We additionally point633

the readers to the open-source implementation of the full shading graph that is provided for each634

texture in the SARAMIS repository: https://github.com/NMontanaBrown/saramis.635
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D.2.1 Bowels636

We consider the stomach, oesophagus, small bowel, duodenum, and the colon as the bowels. We637

texture the small bowel, duodenum, oesophagus and colon with the same texture, whilst maintaining638

a different texture for the stomach.639

Summary of Blender shading node for the stomach is displayed in Fig.9. Due to the complexity of640

this graph, we refer the reader to the implementation provided in Blender in the SARAMIS for full641

detail.642

Figure 9: Summary of Blender shading graph generated with stomach material

We showcase renders of the stomach in Fig. 11.643

Summary of Blender shading node for the colon and bowels is displayed in Fig.10. Due to the644

complexity of this graph, we refer the reader to the implementation provided in Blender in the645

SARAMIS for full detail.646

We showcase renders of the colon in Fig. 12.647

D.2.2 Liver, Pancreas, Gallbladder, Spleen, Kidneys, Adrenal Glands648

The liver, pancreas, gallbladder and spleen have a reference textures derived from the Dresden649

Anatomy Dataset [3] and the Cholec80k dataset [29]. The adrenal glands were textured using the650

pancreas texture, due to similarity of found reference image of healthy adrenal glands[16] to the651

pancreas reference images. The kidneys were textured using the liver texture, again due to similarity652

between liver and kidney textures.653

The liver shader graph is split across two figures (Fig.13 - 14),654

The gallbladder shader graph is split across two figures (Fig.15 - 16).655

We showcase example renders of the liver and gallbladder in Fig. 21.656

The pancreas shader graph is described in Figs.17 - 18.657

We showcase example renders of the pancreas in Fig. 23.658

The pancreas shader graph is described in Figs.19 - 20.659

We showcase example renders of the spleen in Fig. 22.660
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Figure 10: Summary of Blender shading graph generated with colon material

Figure 11: Reference images for stomach, alongside Blender renders of procedural texturing and
shading of a stomach. Panel A) shows reference images from the Dresden Surgical Dataset [3] used
to generate the procedural nodes, panel B) showcases a Blender render of the procedural textures on
a SARAMIS stomach.

D.2.3 Lungs, Bone, and Muscle661

The lungs, bone and muscle were textured by referencing a surgical journal [11], an open source662

tutorial [21], and a surgical journal respectively [28]; we showcase renders in Fig. 24. Bone shader663

graph is included in Fig. 25 and muscle shader graph is included in Fig. 26. Due to complexity, the664

lung shader graph is split across three figures (Figs. 27 - 29).665
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Figure 12: Reference images for the colon, alongside Blender renders of procedural texturing and
shading of a colon. Panel A) shows reference images from the HyperKvasir dataset [1] used to
generate the procedural nodes, panel B) showcases a Blender render of the procedural textures on a
SARAMIS procedurally generated colon.

Figure 13: 1st half of Blender shading graph generated with liver material, outlining mainly the color
mapping.
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Figure 14: 2nd half of Blender shading graph generated with liver material, outlining mainly the
bump map generation of the BSDF.

Figure 15: 1st half of Blender shading graph generated with gallbladder material, outlining mainly
the color mapping.

Figure 16: 2nd half of Blender shading graph generated with galbladder material, outlining mainly
the bump map generation of the BSDF.
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Figure 17: 1st half of Blender shading graph generated with pancreas material, outlining mainly the
color mapping.

Figure 18: 2nd half of Blender shading graph generated with pancreas material, outlining mainly the
bump map generation of the BSDF.
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Figure 19: 1st half of Blender shading graph generated with spleen material, outlining mainly the
color mapping.

Figure 20: 2nd half of Blender shading graph generated with spleen material, outlining mainly the
bump map generation of the BSDF.
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Figure 21: Reference images for liver and gallbladder, alongside Blender renders of procedural
texturing and shading of the same structures. Panel A) shows reference images used to generate the
procedural nodes (top row: liver, from the Dresden Anatomy dataset [3], bottom row: liver signalled
with a pink arrow, gallbladder with a purple arrow, from the Cholec80k [29] dataset). Panel B)
showcases Blender renders of the procedural textures, top showing the liver and bottom showing the
gallbladder.

Figure 22: Reference image for the spleen with a Blender render of a SARAMIS spleen. Panel A)
shows reference images used to generate the procedural nodes from the Dresden Anatomy dataset [3].
Panel B) showcases Blender renders of the procedural textures on a SARAMIS spleen.
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Figure 23: Reference images for pancreas, alongside Blender renders of procedural texturing and
shading of a pancreas. Panel A) shows reference images from the Dresden Surgical Dataset [3] used
to generate the procedural nodes, panel B) showcases a Blender render of the procedural textures on
a SARAMIS pancreas.

Figure 24: Blender renders for bone (left), lungs (center), and muscle (right). Bone material was
generated with reference to [21], lungs with reference to [11], and muscle with reference to [28]

Figure 25: Blender shading graph generated with reference to [21] for bone material
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Figure 26: Blender shading graph generated with reference to [28] for muscle material

Figure 27: 1st 3rd of Blender shading graph generated with reference to [11] for lung material

Figure 28: 2nd shading graph generated with reference to [11] for lung material. The output of the
mix shader node from Fig.27 (lower furthest right green node) is connected to the mix shader node
on the far right of this figure. The output of the vector math node (purple, furthest right node) is
connected to an add math node in Fig.29.
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Figure 29: 3rd shading graph generated with reference to [11] for lung material, which combines
outputs from the previous two portions of the graph to the final texture output.
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E Trajectory Comparison Between Human and RL Agent666

We compare human and RL performance by plotting five trajectories obtained on test cases of667

the TotalSegmentator sub-test set in Fig. 30. To better represent the colonoscopy case, we set the668

navigation target to the caecum and initialise navigation from the rectum (highlighted in blue and669

green bounding boxes, respectively). Human trajectories are qualitatively found to be smoother than670

RL trajectories.671
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Figure 30: Comparison of trajectories between Human and RL agent to navigate from the rectum to
the caecum for 5 cases in the held-out test set. Human and RL trajectories are plotted in red and navy
dashed lines, respectively. We additionally designate the bounding box of the navigation target in
green and blue for the rectum and caecum, respectively.
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F Mechanical Properties of Human Tissue672

We collate the values reported in [23] for the majority of soft tissue, [19] for bone, and [26] for the673

pancreas as a dictionary in the SARAMIS source code. We summarise said values in the following674

table.675

Organ Elastic Modulus (MPa) Standard Deviation (MPa) Reference
muscle 1.58 0.64 [23]
brain 0.00366 0.00012 [23]
oesophagus 0.004 0.014 [23]
lung 0.0034 0.002 [23]
liver 0.006 0.002 [23]
galbladder 0.641 0.028 [23]
stomach 0.005 - [23]
spleen 0.0245 0.006 [23]
pancreas 0.002 0.004 [26]
colon 1.19 1.23 [23]
small bowel 2.69 0.37 [23]
kidney 41.5 - [23]
urinary bladder 1.9 0.2 [23]
bone 179000 3900 [19]

676

G Mesh Analysis and Resolution677

To better quantify the resolution for the meshes, we report the additional analyses:678

• Number of vertices per mesh: We report the average number of vertices per mesh, split by679

organ.680

• Surface area of meshes: in mm2 units, we calculate the mesh surface area as the sum of681

triangular face areas through the area of each triangle.682

• Average vertex density over the surface of the mesh: we additionally report the mesh density683

as vertices per 1mm2 by dividing the total mesh surface area by the number of vertices.684

We report the mean number of vertices per mesh, total surface area of meshes, sorted by number of685

vertices and by surface area, and mean vertex density in Figs. 31 - 34.686

Figure 31: Mean surface area per organ sorted in descending order, split by dataset.

We find that the surface area shows a large level of variation, whilst the number of vertices per687

organ is more homogenous. Fig. 31 shows the surface area is not necessarily correlated with size,688

as the second, third, and fourth largest organs on average across datasets are the pancreas, and two689

vertebral bodies (L5, and L2), which are comparatively small structures volumetrically compared690

to, for example, the liver (ranked 11th), which is one of the largest internal organs of the human691
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Figure 32: Mean number of vertices per organ sorted in order of largest to smallest mean surface
area, split by dataset.

Figure 33: Mean number of vertices per organ sorted in descending order, split by dataset.

Figure 34: Mean vertex density per mm2 per organ sorted in descending order, split by dataset. For
the sake of comparison, the y-axis is plotted on a log-scale.

anatomy. The surface area per organ is consistent amongst organ types across datasets, whilst the692

number of vertices is more variant amongst datasets (Fig. 33. However, the number of vertices is693

more intuitively correlated to organ size, as the small bowel, liver, colon, and gluteus are amongst694

the organs with most vertices (Fig.32). We find no significant trend in the mean vertex density as695

reported in Fig. 34. We find that the Abdomen-1k is the most homogenous in terms of mesh density696

across organs, with the TotalSegmentator the least homogenous.697

We recommend that future users of the dataset take care to resample the provided meshes to best suit698

their use, as this may impact performance in graph-type deep learning methods or otherwise.699
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H Labelling Analysis of Registered Colons700

In order to evaluate the label quality for the colon landmarking annotation, we perform a sub-analysis701

of the resulting registered classification of colon centerlines with respect to manual labelling of702

anatomical landmarks. We manually annotate a random sub-sample of 30 centerlines from the initial703

155 colon TotalSegmentator colon subset using the same protocol as the labelling procedure for the704

first template colon reported in the paper. We then compare the resulting registered indices obtained705

from the deformeable registration of the template for the given colons to the manual labels.706

Figure 35: Confusion matrix comparing manual labelling and registration-procedure labelling for the
landmark identification for colon experiments. Values for each cell are row-normalised to represent
percentage of manual labels classified with a given registration label.

Fig. 35 shows that, for every class bar the caecum, there is a majority correct classification of the labels707

from registration. Additionally, all registered landmark locations have the most class confusion with708

the no-label category. This impacts the caecum most highly. The caecum landmark designates the709

beginning of the large colon - however, authors chose to empirically assign a larger area from the start710

of the colon towards the hepatic flexure in order to generate more general navigation targets for the711

navigation task. In particular, the specific task of colonoscopy involves navigation of the endoscope712

up to the visualisation of the caecum landmark, with subsequent withdrawal of the endoscope from713

the colon.714

The more significant mis-classification in this case could be attributed to the template labelling being715

under-labelled in comparison to the subsequent labelled colons. The authors also note the high levels716

of empirically observed anatomical variability, showcased qualitatively in Fig. 36. This, coupled with717

the anatomical proximity of the caecum and hepatic flexure area(see Fig. 3A in the manuscript for718

anatomical description of colon and Fig. 36 for further description), could additionally explain class719

confusion between these labels.720
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Figure 36: Comparison of labels obtained for navigation targets from manual labelling process and
from template registration to case s0014 (upper panel).36



I Analysis of Organ Changes per Dataset721

We report the number of organs changed over the AMOS and Abdomen-1k datasets in Fig. 37, the722

absolute mean number of pixels changed per anatomical structure in Fig. 38. as well as mean and723

inter-quartile ranges for absolute number of pixels changed for all the organs split by dataset in724

Tabs. 2 and 3.725

Figure 37: Number of organs changed sorted from most unique organs changed overall to least organs
changed overall. We additionally split the organs by dataset.

Figure 38: Absolute mean value of pixels changed per anatomical structure on a log scale for the
Abdomen-1k and AMOS sub-datasets
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Organ AMOS Abdomen-1k
spleen 40254 [13726, 207] 107077 [169263, 713]

kidney right 19658 [28691, 2089] 97264 [115416, 4785]
kidney left 62477 [28905, 4720] 131244 [144595, 8090]
gallbladder 16814 [16738, 1621] 16029 [26273, 2714]

liver 45368 [12832, 55] 282409 [51956, 57]
stomach 37894 [28636, 1168] 181320 [262508, 1258]

aorta 4743 [2675, 4] 50423 [78268, 159]
inferior vena cava 2044 [2313, 7] 49785 [73094, 100]

portal vein and splenic vein 1421 [943, 118] 22245 [29468, 7968]
pancreas 2852 [2330, 45] 40363 [59134, 1220]

adrenal gland right 336 [600, 48] 3129 [4296, 2148]
adrenal gland left 530 [582, 250] 3691 [4899, 2263]

lung upper lobe left 34737 [172, 16] 29645 [30260, 25]
lung lower lobe left 17482 [2431, 38] 119883 [135844, 34]

lung upper lobe right 614 [164, 6] 9457 [220, 21]
lung middle lobe right 5086 [226, 26] 47317 [81134, 27]
lung lower lobe right 7288 [337, 9] 137421 [91826, 16]

vertebrae L6 60114 [69702, 50527] 24304 [26251, 22358]
vertebrae L5 14911 [12573, 991] 20360 [24284, 1286]
vertebrae L4 2931 [3264, 345] 22896 [34428, 1674]
vertebrae L3 13693 [18277, 2818] 29953 [40274, 3182]
vertebrae L2 8165 [10166, 792] 22827 [32399, 2431]
vertebrae L1 5884 [6392, 574] 21508 [30514, 1888]

vertebrae T13 46418 [54553, 43623] 53719 [74064, 19380]
vertebrae T12 4463 [6206, 916] 23546 [28126, 3992]
vertebrae T11 4949 [7386, 918] 18956 [26029, 1496]
vertebrae T10 4957 [5315, 742] 16774 [22854, 1681]
vertebrae T9 4295 [6719, 623] 10655 [17207, 1355]
vertebrae T8 4652 [5910, 570] 10156 [10454, 550]
vertebrae T7 3106 [3003, 343] 6360 [8371, 231]
vertebrae T6 1911 [1932, 134] 5572 [8153, 336]
vertebrae T5 1659 [964, 173] 5863 [7353, 518]
vertebrae T4 509 [605, 80] 4196 [7665, 781]
vertebrae T3 862 [816, 407] 2140 [1349, 221]
vertebrae T2 1339 [2154, 472] 4409 [10900, 41]
vertebrae T1 2623 [4109, 868] 4119 [6546, 1092]
vertebrae C7 2569 [5040, 90] 9632 [11294, 5442]
vertebrae C6 2416 [3533, 1298] 4649 [7724, 249]
vertebrae C5 72 [72, 72] 6502 [7568, 5313]
vertebrae C4 56 [56, 56] 5303 [5303, 5303]
vertebrae C3 0 [0, 0] 8519 [8519, 8519]
vertebrae C2 0 [0, 0] 8021 [8021, 8021]
vertebrae C1 0 [0, 0] 5017 [5017, 5017]
esophagus 1921 [2885, 576] 9182 [12522, 5390]

trachea 0 [0, 0] 7656 [10682, 4630]
heart myocardium 8446 [10273, 94] 60413 [82100, 41478]
heart atrium left 3350 [4782, 485] 20086 [36033, 3443]

heart ventricle left 7722 [10418, 1099] 47734 [66295, 26855]
heart atrium right 4892 [8447, 395] 29474 [46517, 11613]

heart ventricle right 9008 [12538, 2281] 69065 [91937, 44546]
pulmonary artery 191 [191, 191] 7588 [10412, 212]

brain 0 [0, 0] 216214 [216214, 216214]
iliac artery left 585 [1083, 12] 2623 [1942, 92]

Table 2: Mean [IQR:75, IQR:25] absolute pixel changes for each organ in the AMOS and Abdomen-
1k subsets.
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Organ AMOS Abdomen-1k
iliac artery right 3365 [5231, 2062] 3366 [2833, 121]

iliac vena left 1794 [2564, 268] 5489 [2733, 29]
iliac vena right 2773 [4005, 164] 4623 [2656, 108]

small bowel 31206 [8907, 624] 299051 [435509, 1652]
duodenum 2546 [2394, 24] 32777 [49035, 298]

colon 13696 [6763, 68] 274284 [392699, 66]
rib left 1 1246 [1556, 544] 3725 [4580, 3149]
rib left 2 1676 [1156, 667] 2597 [3174, 1409]
rib left 3 2149 [1365, 266] 1874 [3145, 259]
rib left 4 2673 [2994, 213] 1594 [1970, 332]
rib left 5 2528 [2367, 656] 3279 [3031, 712]
rib left 6 2653 [4012, 609] 3005 [3780, 713]
rib left 7 2459 [2278, 201] 3927 [5692, 857]
rib left 8 1729 [1620, 358] 4560 [5656, 950]
rib left 9 2111 [2796, 292] 4986 [6648, 942]

rib left 10 1986 [3337, 222] 4778 [6532, 799]
rib left 11 2089 [2948, 595] 4097 [6350, 748]
rib left 12 1344 [1756, 356] 2614 [3305, 925]
rib right 1 850 [1090, 631] 3078 [3790, 2210]
rib right 2 699 [813, 603] 3152 [4710, 1852]
rib right 3 1366 [808, 363] 1353 [1755, 566]
rib right 4 1906 [3596, 307] 1406 [2105, 247]
rib right 5 1525 [2240, 368] 2248 [3100, 750]
rib right 6 1825 [2680, 701] 3484 [4009, 873]
rib right 7 1672 [2864, 464] 4279 [5847, 764]
rib right 8 1719 [2349, 400] 5067 [7190, 1008]
rib right 9 1919 [2322, 495] 5715 [8588, 941]
rib right 10 1588 [2900, 83] 5383 [8037, 648]
rib right 11 1817 [2271, 280] 4514 [6433, 656]
rib right 12 1432 [1678, 344] 3002 [3400, 928]

humerus left 26854 [30282, 23425] 15797 [23688, 970]
humerus right 25 [29, 14] 18858 [28272, 2188]

scapula left 32167 [46963, 17] 9068 [10483, 936]
scapula right 1293 [1552, 924] 7481 [6704, 204]
clavicula left 2162 [3236, 94] 11974 [11974, 11974]

clavicula right 0 [0, 0] 6196 [9209, 3184]
femur left 42400 [85472, 3962] 180016 [227985, 106850]

femur right 26289 [36045, 19586] 145451 [193543, 102826]
hip left 29813 [35163, 3772] 71961 [27042, 3071]

hip right 39340 [76328, 690] 70342 [29356, 1914]
sacrum 21541 [36350, 986] 35899 [23639, 1036]

face 0 [0, 0] 144310 [216377, 446]
gluteus maximus left 54101 [99168, 5099] 271042 [466883, 589]

gluteus maximus right 70083 [104624, 15570] 358701 [590127, 66084]
gluteus medius left 85769 [160655, 14631] 64736 [45730, 377]

gluteus medius right 37802 [48854, 30561] 57151 [33615, 183]
gluteus minimus left 24065 [56203, 1229] 67576 [94469, 31866]

gluteus minimus right 8872 [12980, 6596] 74194 [105394, 35438]
autochthon left 3668 [47, 7] 109548 [188674, 6]

autochthon right 4593 [48, 8] 107824 [180978, 12]
iliopsoas left 12756 [9840, 6] 52243 [59470, 8]

iliopsoas right 10963 [850, 19] 47540 [61348, 11]
urinary bladder 23455 [20369, 3434] 131854 [121914, 275]

Table 3: Mean [IQR:75, IQR:25] absolute pixel changes for each organ in the AMOS and Abdomen-
1k subsets.
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J Reinforcement Learning Training Algorithm726

The training procedure to obtain an optimised policy πθ∗ which maximises the cumulative reward,727

representative of navigation performance, is summarised in Algo. 2. After training, this policy may728

be used to perform navigation intraoperatively.729

Data: Patient volumes from which to sample camera images st ∈ S
Result: Trained RL policy πθ∗ .

while not converged do
Randomly sample a patient volume;
Start at t = 0;
Randomly sample a camera pose c0 ∈ R6 within the volume;
Render the camera image s0 at pose c0;
Sample the action a0 according to the policy a0 ∼ πθ(a0|s0);
Compute target-presence-based reward R0 = r(s0, a0);

for t← 1 to T do
Note: t is now iterating starting at t = 1;
Update the camera pose ct = ct−1 + at−1;
Render the camera image st at pose ct;
Sample the action at according to the policy at ∼ πθ(at|st);
Compute target-presence-based reward Rt = r(st, at);
End if target presence detected i.e., at tend;

end
Once Rt=1:T or Rt=1:tend

collected, update RL function using gradient ascent
end

Algorithm 2: Training procedure to train a navigation policy using reinforcement learning.
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