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A PROOF OF PROPOSITION 1

To prove Proposition 1, we will use the following three Lemmas that follow directly from Albergo
et al. (2023) (Appendix A)

Lemma 1. Let a ∼ ρ and z ∼ N (0, Idd). The law of the interpolant It = αtz+ βta coincides with
the law of the solution of the probability flow ODE

Ẋt =
αtα̇t + σ2βtβ̇t

α2
t + σ2β2

t

Xt +
αt(αtβ̇t − α̇tβt)

α2
t + σ2β2

t

µ tanh

(
h+

βtµ ·Xt

α2
t + σ2β2

t

)
, X0 ∼ N (0, Idd)

(15)
where h is such that eh/(eh + e−h) = p.

Lemma 2. Let a ∼ pN (κ, 1) + (1 − p)N (−κ, 1) and z ∼ N (0, 1). The law of the interpolant
It = αtz + βta coincides with the law of the solution of the probability flow ODE. In

Ẋt =
αtα̇t + βtβ̇t

α2
t + β2

t

Xt +
καt(αtβ̇t − α̇tβt)

α2
t + β2

t

tanh

(
h+

κβtXt

α2
t + β2

t

)
, X0 ∼ N (0, 1) (16)

where h is such that eh/(eh + e−h) = p.

Lemma 3. Let a ∼ N (±µ, σ2Idd) and z ∼ N (0, Idd). The law of the interpolant It = αtz + βta
coincides with the law of the solution of the probability flow ODE

Ẋt =
αtα̇t + σ2βtβ̇t

α2
t + σ2β2

t

Xt ±
αt(αtβ̇t − α̇tβt)

α2
t + σ2β2

t

µ, X0 ∼ N (0, Idd). (17)

Proof of Proposition 1. First phase. We have τt = κt√
d

since t ∈ [0, 1]. Plugging in αt = 1 − τt
and βt = τt into the velocity field from Lemma 1 yields

Ẋt =
κ√
d

(
−Xt + µ tanh

(
h+ κt

µ ·Xt√
d

))
+O

(
1

d

)
. (18)

We then have, with νt = µ ·Xt/
√
d,

ν̇t = κ tanh (h+ κtνt) +O

(
1√
d

)
. (19)

Taking d → ∞ yields the limiting ODE for νt. From Lemma 2, we get that this the 1-dimensional
velocity field associated to the interpolant It =

√
1− t2z + ta that transports z ∼ N (0, 1) at t = 0

to a ∼ pN (κ, 1) + (1− p)N (−κ, 1) at t = 1.

Let X⊥
t = Xt − µ·Xt

d µ. We have from equation 18

Ẋ⊥
t = − κ√

d
X⊥

t . (20)

Since this is a linear ODE with initial condition Gaussian, we have

Ẋ⊥
t ∼ N

(
0, σ2

t Idd−1

)
. (21)

Further, equation 20 gives Ẋ⊥
t = O(1/

√
d) meaning that for t ∈ [0, 1]

lim
d→∞

σt = 1. (22)

Second phase. For t ∈ [1, 2], we have τt =
(
1− κ√

d

)
(2t − 1) + κ√

d
. Again using Lemma 1, we

get

Ẋt =
−(2− t) + σ2(t− 1)

(2− t)2 + σ2(t− 1)2
Xt +

(2− t) tanh

(
h+

(t−1)µ·Xt+κ
µ·Xt√

d

(2−t)2+σ2(t−1)2

)
(2− t)2 + σ2(t− 1)2

µ+O

(
1√
d

)
. (23)

12
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Writing νt =
µ·Xt√

d
, this implies

ν̇t =
−(2− t) + σ2(t− 1)

(2− t)2 + σ2(t− 1)2
νt +

(2− t)
√
d tanh

(
h+ (t−1)

√
dνt+κνt

(2−t)2+σ2(t−1)2

)
(2− t)2 + σ2(t− 1)2

+Od (1) . (24)

Let us calculate the initial condition for νt at t = 1. Write a = sm + z where p = P(s = 1) =
1− P(s = −1) and z ∼ N (0, Idd). Then

µ · It=1√
d

(d)
= Z + κs+O

(
1√
d

)
where Z ∼ N (0, 1). This means that for κ large enough, then |h| <

∣∣∣ (t−1)
√
dνt+κνt

(2−t)2+σ2(t−1)2

∣∣∣ with high

probability. This implies νt will not change sign during its trajectory, since whenever νt = o(
√
d),

the tanh term will dominate in equation 24. Hence, the following approximation is valid

tanh

(
h+

(2t− 1)
√
dνt + κνt

1 + (σ2 − 1)(2t− 1)2

)
= tanh

(√
dνt

)
= sgn(νt) (25)

We then use this approximation in the ODEs for Xt to get

Ẋt =
−(2− t) + σ2(t− 1)

(2− t)2 + σ2(t− 1)2
Xt +

(2− t)sgn(νt)
(2− t)2 + σ2(t− 1)2

µ+O

(
1√
d

)
. (26)

Let Mt = µ ·Xt/d. We get the induced equation

Ṁt =
−(2− t) + σ2(t− 1)

(2− t)2 + σ2(t− 1)2
Mt +

(2− t)sgn(Mt)

(2− t)2 + σ2(t− 1)2
+O

(
1√
d

)
. (27)

From the analysis of the first phase we had

ν1 ∼ pN (κ, 1) + (1− p)N (−κ, 1). (28)

We argued above that the sign of νt will be preserved for t ∈ [1, 2] with probability going to 1 as κ
tends to ∞. This means that

M2 = pκδ1 + (1− pκ)δ−1 (29)

where pκ is such that limκ→∞ pκ = p.

As in the first phase, we let X⊥
t = Xt − µ·Xt

d µ. We have from equation 26 that

Ẋ⊥
t =

−(2− t) + σ2(t− 1)

(2− t)2 + σ2(t− 1)2
X⊥

t +O

(
1√
d

)
. (30)

Since this is a linear ODE with initial condition Gaussian, we have

Ẋ⊥
t ∼ N

(
0, σ2

t Idd−1

)
. (31)

Under the change of variables t(s) = s+ 1 we get that the ODE becomes

Ẋ⊥
s =

−(1− s) + σ2s

(1− s)2 + σ2s2
X⊥

s . (32)

By taking one coordinate i ∈ {1, · · · , d − 1} of X⊥
s we get from Lemma 3 that this is the velocity

field associated with the interpolant Is =
√
1− s2z + sa where z ∼ N (0, 1) is transported to

a ∼ N (0, σ2) as desired.

B DERIVATIONS OF LEARNING RESULTS

B.1 DERIVATION OF FIRST PHASE

Let t ∈ [0, 1] so that

xµ
t =

(
1− κt√

d

)
xµ
0 +

κt√
d
xµ
1

13
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Consider a denoiser parametrized as

f(x) = cx+ u tanh

(
b+

w · x√
d

)
We introduce the following overlaps which we assume to be of order 1 in d

pµη = sµ
zµ · w
d

, ω =
µ · w
d

, r =
∥w∥2

d
qµξ = sµ

xµ
0 · u
d

, qµη = sµ
zµ · u
d

, m =
µ · u
d

, q =
∥u∥2

d

We note that

ϕµ = f(xµ
t ) = tanh

(
b+ κtσsµpµη + κtωsµ +

√
rZµ + od(1)

)
where Zµ ∼ N (0, 1). We now compute the loss

1

d

∑
µ

∥xµ
1 − f(xµ

t )∥
2
=

1

d

∑
µ

∥∥∥xµ
1 − c((1− κt/

√
d)xµ

0 + (κt/
√
d)xµ

1 )− uϕµ
∥∥∥2

=
1

d

∑
µ

∥xµ
1 − cxµ

0 − uϕµ∥2 + od(1)

=
∑
µ

1 + σ2 + c2 +
∥u∥2

d
(ϕµ)2 − 2

(
(µsµ + σzµ)(1− cκt/

√
d)− cxµ

0

)
· u
d
ϕµ + od(1)

=
∑
µ

1 + σ2 + c2 + q(ϕµ)2 − 2(m+ σqµη − cqµξ )s
µϕµ + od(1)

We follow the same style of calculation as Cui et al. (2024) to compute the partion function. First
we write the partition function

Z =

∫
dθ e−

γ
2 R̂t(θ)

=

∫
dcdudwdb e

− γd
2

(∑
µ 1+σ2+c2+

∥u∥2
d (ϕµ)2−2(u·µ

d +σ u·zµ
d −c

u·xµ
0

d )sµϕµ

)
− γλ

2 ∥u∥2− γℓ
2 ∥w∥2

Next we introduce overlaps into the integral and their conjugates by Dirac-Fourier, which we will
denote as the vectors ζ and ζ̂ to simplify notation, and rearrange to integrate u,w

Z =

∫
dcdb dζdζ̂ ed(

1
2 q̂q+m̂m+ 1

2 r̂r+ω̂ω+
∑n

µ=1(q
µ
ξ q̂µξ +qµη q̂

µ
η+pµ

η p̂
µ
η ))−

γ
2

∑
µ(1+σ2+c2+q(ϕµ)2−2(m+σqµη−cqµξ )s

µϕµ))∫
due−

q̂+γλ
2 ∥u∥2−u·(m̂µ+

∑n
µ=1 q̂ξx

µ
0+q̂ηz

µ)
∫

dwe−
r̂+γℓ

2 ∥w∥2−w·(ω̂µ+
∑n

µ=1 p̂ηz
µ)

Next we evaluate the u,w integrals to get

ed(
1
2 log(q̂+γλ)+ 1

2 log(r̂+γℓ)+ 1
2(q̂+γλ)

1
d∥m̂µ+

∑n
µ=1 q̂µξ xµ

0+q̂µη zµ∥2+ 1
2(r̂+γℓ)

1
d∥ω̂µ+

∑n
µ=1 p̂µ

ηz
µ∥2)

= ed(
1
2 log(q̂+γλ)+ 1

2 log(r̂+γℓ)+ 1
2(q̂+γλ)

(m̂2+
∑n

µ=1(q̂
µ
ξ )2+(q̂µη )2)+ 1

2(r̂+γℓ)
(ω̂2+

∑n
µ=1(p̂

µ
η )

2)+O(1/
√
d))

We now assume a sample-symmetry ansatz on the overlaps which means that qµξ = qξ for every µ

are all equal, and the same for q̂µξ , q
µ
η , q̂

µ
η , p

µ
η , p̂

µ
η . We then take d → ∞, rescale all conjugates with

γ, change all conjugates signs except for q̂ and r̂ for cleaner equations, and take γ → ∞. This gives
us the following effective field (log partition function)

logZ(D) = extr
{
− n

2

(
−2(σqη +m− cqξ)ϕs+ c2 + qϕ2

)
+

qq̂

2
+

rr̂

2
−mm̂− ωω̂ − n(qξ q̂ξ + qη q̂η + pηp̂η)

+
m̂2 + n(q̂2ξ + q̂2η)

2(λ+ q̂)
+

ω̂2 + np̂2η
2(ℓ+ r̂)

}
Taking gradients we get the following saddle-point equations

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809



(σqη +m− cqξ)ϕ′s− qϕϕ′ = 0

c = −ϕsqξ

pη =
p̂η

ℓ+r̂

ω = ω̂
ℓ+r̂

r =
ω̂2+np̂2

η

(ℓ+r̂)2 = ω2 + np2η

qξ =
q̂ξ

λ+q̂

qη =
q̂η
λ+q̂

m = m̂
λ+q̂

q =
m̂2+n(q̂2ξ+q̂2η)

(λ+q̂)2 = m2 + nq2ξ + nq2η



p̂η = (κt)((σqη +m− cqξ)ϕ′s− qϕ′ϕ) = 0

ω̂ = (nκt)((σqη +m− cqξ)ϕ′ − qϕ′ϕs)

r̂ = −n((σqη +m− cqξ)Zϕ′s− qZϕϕ′)/
√
r

q̂ξ = −cϕs

q̂η = σϕs

m̂ = nϕs

q̂ = nϕ2

Combining the equations for c and qξ we get that c = cϕs
2
/(λ + nϕ2). We now argue that c = 0

almost surely, since otherwise ϕ = 0 on a non-zero measure, implying b = ω = 0, which then
results in all overlaps being zero, giving a suboptimal log partition function. This can be seen more
explicitly by noting that the log partition function is zero for c ̸= 0, but for c = 0 it is instead

logZ(D) = extrω,b

n
ϕs

2
(σ2 + n)

2
(
λ+ nϕ2

) − 1

2
ℓω2


which has positive values for example at ω = 0, b ̸= 0. The above formulation is also useful for
solving for the overlaps numerically.

B.1.1 ARGUMENT FOR COROLLARY 1

We now focus on n → ∞ and on verifying that ω = κt, b = tanh−1(s̄) is a solution. We will need
the following preliminary claims.

Lemma 4. Let ϕµ = tanh(b+ κtωsµ + ωZµ). If ω = κt and b = tanh−1(s) then ϕ− s = 0

Proof. Let ϕµ
± = ϕµ|sµ=±1 and ϕ0 = ϕµ|sµ=0. Then

ϕ− s = p(ϕ+ − 1) + (1− p)(ϕ− + 1)

=

∫
dz e−

z2

2 {p(ϕ+ − 1) + (1− p)(ϕ− + 1)}

=

∫
dz e−

z2+(κt)2

2

{
eκtzp(ϕ0 − 1) + e−κtz(1− p)(ϕ0 + 1)

}
z → z ∓ κt

Finally note that the integrad is zero for all z if

ϕ0 =
eκtzp− e−κtz(1− p)

eκtzp+ (1− p)e−κtz
= tanh

(
tanh−1(s) + κtz

)
which occurs for ω = κt and b = tanh−1(s).

Corollary 7. Let ϕµ = tanh(b + κtωsµ + ωZµ). If ω = κt and b = tanh−1(s) then for any
function g where g(Z ± κt)(ϕ∓ 1) exist we have

g(Z + sκt)(ϕ− s) = 0

In particular,
ϕ− s = ϕ(ϕ− s) = ϕ′(ϕ− s) = (Z + sκt)ϕ′(ϕ− s) = 0
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Solving for qη,m, qξ, q and plugging into the equation for b we get

(λ+ nϕ2)ϕ′s = nϕsϕϕ′

Taking n → ∞, to leading order in n the equality becomes (ϕ2)(ϕ′s)− (ϕ′ϕ)(ϕs) = 0 which holds
by Corollary 7.

Using the independence of sµ, Zµ and taking the limit of infinitely many Zµ, we can use Stein’s
lemma to rewrite the r̂ equation as

r̂ = −n((σqη +m− cqξ)ϕ′′s− q(ϕϕ′)′)

Plugging in qη,m, qξ, q in gives

r̂(λ+ nϕ2)2 = −n((λ+ nϕ2)(σ2 + n)ϕ′′s ϕs− n(σ2 + n)ϕs
2
(ϕϕ′)′)

Plugging qη,m, qξ, q into equations for ω and ω̂ gives

ω(ℓ+ r̂)(λ+ nϕ2)2 = (nκt)((λ+ nϕ2)(σ2 + n)(ϕ′ ϕs)− n(σ2 + n)ϕs
2
ϕ′ϕs)

For large n we get

−ω((ϕ2)(ϕ′′s)(ϕs)− (ϕs
2
)((ϕϕ′)′) = (κt)((ϕ2)(ϕ′)(ϕs))− (ϕs

2
)(ϕ′ϕs))

ω = (κt)
((ϕ′)− (ϕ′ϕs))

−((ϕ′′s)− ((ϕϕ′)′))

= (κt)
(ϕ− 1

2ϕ
2s)′

−(ϕ− 1
2ϕ

2s)′′s

Finally note that

(ϕ− 1
2ϕ

2s)′ + (ϕ− 1
2ϕ

2s)′′s = − 1

2κt
[(ϕ− s)2]

′
(sκt+ Z) = 0

applying Corollary 7.

B.2 DERIVATION OF SECOND PHASE

We now consider times t ∈ [1, 2] which means we have

xµ
t = (2− t)

(
1− κ√

d

)
xµ
0 +

(
κ√
d
+

(
1− κ√

d

)
(t− 1)

)
xµ
1 .

We change variables to τ = t− 1 and consider τ ∈ [0, 1] so that

xµ
τ = (1− τ)

(
1− κ√

d

)
xµ
0 +

(
κ√
d
+

(
1− κ√

d

)
τ

)
xµ
1 .

We compute the loss for a single datapoint, defining νµ = sµϕ (w · xµ
τ + b)

1

d

∥∥∥∥xµ
1 − c

(
(1− τ)

(
1− κ√

d

)
xµ
0 +

(
κ√
d
+

(
1− κ√

d

)
τ

)
xµ
1

)
− uϕ (w · xµ

τ + b)

∥∥∥∥2
=

1

d
∥xµ

1 − c((1− τ)xµ
0 + τxµ

1 )− usµνµ∥2 + od(1)

=
1

d
∥(1− cτ)(σzµ + sµµ)− c(1− τ)xµ

0 − usµνµ∥2 + od(1)

= (1 + σ2)(1− cτ)2 + c2(1− τ)2 +
∥u∥2

d
− 2sµνµ

d
u · ((1− cτ)(σzµ + sµµ)− c(1− τ)xµ

0 ) + od(1)

= (1 + σ2)(1− cτ)2 + c2(1− τ)2 + q − 2νµ(1− cτ)(σqµη +m) + 2νµc(1− τ)qµξ + od(1)

where we defined the overlaps

q =
∥u∥2

d
, qµη = sµ

u · zµ

d
, qµξ = sµ

u · xµ
0

d
, m =

u · µ
d
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pµη = sµ
w · zµ

d
, pµξ = sµ

w · xµ
0

d
, ω =

w · µ
d

.

We also have

νµ = ϕ (sµw · xµ
τ + sµb) = tanh

(
(1− τ)sµw · xµ

0 +

(
τ +

κ√
d

)
sµw · (σzµ + sµµ) + sµb

)
= tanh

(
d

(
(1− τ)pµξ +

(
τ +

κ√
d

)
(σpµη + ω)

)
+ sµb

)
≍ sign

(√
d
(
(1− τ)pµξ + τ(σpµη + ω)

)
+ κ(σpµη + ω)

)
This gives the following

logZ(D) = extr

{
− n

2

(
(1 + σ2)(1− cτ)2 + c2(1− τ)2 + q − 2(1− cτ)(σqη +m)ν + 2c(1− τ)qξν

)
+

qq̂

2
−mm̂− n(qξ q̂ξ + qη q̂η) +

m̂2 + n(q̂2ξ + q̂2η)

2(λ+ q̂)

}
Taking gradients we get the following saddle-point equations

qξ =
q̂ξ

λ+q̂ = c(1−τ)ν
λ+n

qη =
q̂η
λ+q̂ = (1−cτ)ν

λ+n

m = m̂
λ+q̂ = n(1−cτ)ν

λ+n

q =
m̂2+n(q̂2ξ+q̂2η)

(λ+q̂)2 = m2 + nq2ξ + nσ2q2η

c =
(1+σ2)τ−τ(σqη+m)ν−(1−τ)qξν

(1−τ)2+(1+σ2)τ2


q̂ξ = c(1− τ)ν

q̂η = σ(1− cτ)ν

m̂ = n(1− cτ)ν

q̂ = n

c =
(1 + σ2)τ(λ+ n)− ν2τ(σ + n)

(λ+ n)((1− τ2) + (1 + σ2)τ2) + ν2 ((1− τ)2 − τ2(σ + n))

Corollary 3 simply follows from taking the n → ∞ limit of this equations.

Lastly, we now argue that we can take ν = 1 without loss of generality. If we assume a sample
symmetric ansatz for pµη = pη, p

µ
ξ = pξ, then ν can either be ±1 depending on the sign of argument.

Noting that q, c are unchanged while qη, qξ,m, q̂η, q̂ξ, m̂ flip sign, we can conclude that the log
partition function is invariant so ν = 1.

The characterizations of the learned parameters can be used to evaluate the MSE as a function of t,
which we now describe, in the limit of d → ∞ and then n → ∞. For the first and second phase we
obtain

msetrain = msetest =

{
σ2 + (1− ϕ2) t ∈ [0, 1]

σ2(1− cτ)2 + c2(1− τ)2 t ∈ [1, 2]

At t = 0, ϕ = tanh(b) = 2(p − 1/2) hence the MSE is σ2 + 4p(1 − p). At t = 1 we have c = 0
hence the MSE is σ2, while at t = 2 we have c = 1 so the MSE is 0.

C ARGUMENTS FOR GENERATION

Combining equations 4 and 8 gives the exact velocity field

bt(x) =

(
β̇t −

α̇t

αt
βt

)(
βtσ

2

α2
t + σ2β2

t

x+
α2
t

α2
t + σ2β2

t

µ tanh

(
βt

α2
t + σ2β2

t

µ · x+ h

))
+

α̇t

αt
x.

(33)
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where αt = 1 − τt and βt = τt with τt from equation 12. Let θ̂t denote any overlap from the first
phase (see equation 13) in the limit of d → ∞ but for finite n, where θt denotes the corresponding
overlap with d → ∞ and then n → ∞. From Results 1 and 2 and their Corollaries 1 and 3, we have
that |θ̂t − θt| = On(1/n) for all overlaps.

Since Xt − X̂t is contained in span(ut, η) which is in turn contained in span(µ, η, ξ), it suffices to
show that, after dividing by d, the projections of Xt − X̂t onto µ, η, and ξ are O(1/n) to show that
1
d∥Xt − X̂t∥ is O(1/n).

C.1 ARGUMENT FOR RESULT 3

First, we note that as described in the paragraph above the statement of Result 3, we have that since
in the first phase q = m2 + nq2η from Result 1 we get for t ∈ [0, 1]

lim
d→∞

∥ut∥2

d
= lim

d→∞

(µ · ut

d

)2
+
(η · ut

d

)2
also since q = m2 + nq2ξ + nq2η in the second phase, we get that for t ∈ [1, 2]

lim
d→∞

∥ut∥2

d
= lim

d→∞

(µ · ut

d

)2
+
(η · ut

d

)2
+

(
ξ · ut

d

)2

where η = σ
∑n

µ=1 z
µ and ξ =

∑
µ s

µxµ
0 which implies that for any w ∈ span(µ, η, ξ)⊥ with

∥w∥2 = 1 we have

lim
d→∞

w · (X2 − X̂2)√
d

= 0.

C.1.1 FIRST PHASE

We focus on t ∈ [0, 1] and define

ϵmt =
1√
d
µ · (Xt − X̂t), ϵηt =

1

σ2n
√
d
η · (Xt − X̂t),

δt =
βt

α2
t + σ2β2

t

, γt =
α2
t

α2
t + σ2β2

t

,

Mt =
µ ·Xt√

d
, Qη

t =
η ·Xt

σ2n
√
d
.

We have

ϵ̇mt =
1√
d
µ · (Ẋt − ˙̂

Xt)

=
1√
d
µ · (bt(Xt)− b̂t(X̂t))

=
1√
d
µ ·
(
β̇ − α̇

α
β

)(
σ2δt(Xt − X̂t) + (ct − σ2δt)Xt + (γtµ− ut) tanh(δtµ ·Xt + h)

+ ut (tanh(δtµ ·Xt + h)− tanh(wt ·Xt + bt))

)
+

α̇

α

1√
d
µ ·
(
Xt − X̂t

)
=

(
β̇ − α̇

α
β

)(
σ2δtϵ

m
t + (ct − σ2δt)Mt +

√
d(γt −mt) tanh(δtµ ·Xt + h)

+
√
dmt

(
tanh(δtµ ·Xt + h)− tanh(wt · X̂t/

√
d+ bt)

))
+

α̇

α
ϵmt

=κ

(
1− t

α̇

α

)(
δt√
d
ϵmt + (ct − σ2δt)

Mt√
d
+ (γt −mt) tanh(δtµ ·Xt + h)

+mt

(
tanh(δtµ ·Xt + h)− tanh(wt · X̂t/

√
d+ bt)

))
+

α̇

α
ϵmt
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We now focus on the tanh∣∣∣tanh(δtµ ·Xt + h)− tanh(wt · X̂t/
√
d+ bt)

∣∣∣
≤
∣∣∣∣(δtµ− wt√

d

)
·Xt

∣∣∣∣+ ∣∣∣∣ wt√
d
· (Xt − X̂t)

∣∣∣∣+ |h− bt|

≤
∣∣∣∣(δtµ− wt√

d

)(
µµT

d
+

ηηT

σ2n2d

)
Xt

∣∣∣∣+ ∣∣∣∣ wt√
d

(
µµT

d
+

ηηT

σ2n2d

)
(Xt − X̂t)

∣∣∣∣+ |h− bt|

≤ |
(√

dδt − ωt

)
Mt|+ | (δtZ − pηt )Qt|+ |ωtϵ

m
t |+ |pηt ϵ

η
t |+ |h− bt|

≤ ωt|ϵmt |+O

(
1

n

)
+O

(
1√
d

)
.

Coming back to the ODE for ϵ̇mt , we get with high probability

|ϵ̇mt | = κγtωt|ϵmt |+O

(
1

n

)
+O

(
1√
d

)
.

Since κγtωt = Θn,d(1) for t ∈ [0, 1], we get that with high probability

ϵmt=1 = O

(
1

n

)
+O

(
1√
d

)
.

By performing a similar computation for the ODE for ϵηt , we get that with high probability

ϵηt=1 = O

(
1

n

)
+O

(
1√
d

)
.

C.1.2 SECOND PHASE

We now turn to t ∈ [1, 2] and define

ζmt =
1

d
µ · (Xt − X̂t), ζηt =

1

σ2nd
η · (Xt − X̂t) ζξt =

1

nd
ξ · (Xt − X̂t).

With high probability, we have the following ODEs hold

d

dt
ζm =

(
β(t)ct +

α̇(t)

α(t)
(1− ctβ(t))

)
ζm +O

(
1

n

)
, (34)

d

dt
ζη =

(
β(t)ct +

α̇(t)

α(t)
(1− ctβ(t))

)
ζη +O

(
1

n

)
, (35)

d

dt
ζξ =

(
β(t)ct +

α̇(t)

α(t)
(1− ctβ(t))

)
ζξ +O

(
1

n

)
. (36)

from the initial condition ζm1 , ζη1 = O( 1√
d
) +O( 1n ), ζ

ξ
1 = 0. This yields

ζm2 , ζη2 , ζ
ξ
2 = O( 1n ) +O( 1√

d
)

C.2 ARGUMENT FOR COROLLARY 6

By Proposition 1, we know that

lim
κ→∞

lim
d→∞

µ ·X2

d
∼ pδ1 + (1− p)δ−1.

By Result 3, we get that

lim
n→∞

lim
d→∞

µ · (X̂2 −X2)

d
= 0.
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(a) Training times with
prob. 1/2 on [.2, .6]

(b) Training times with
prob. 1/2 on [.3, .5]

(c) Training times
uniform on [0, 1]

Figure 3: Non-cherry-picked samples from the three generative models considered. (a) Samples
from the VP SDE, where the times for training are drawn with probability 1/2 uniformly from [.2, .6]
and with probability 1/2 uniformly outside. (b) Same as left panel except that with probability 1/2
training times are sampled from [.3, .5]. (c) Samples from the VP SDE with training times that are
uniform in [0, 1].

Combining the last two equations gives the first claim from the Corollary.

Fix w ⊥ µ, ∥w∥ = 1. Again by Proposition 1, we have that

lim
d→∞

w ·X2√
d

∼ N (0, σ2).

Also, Result 3 gives that

lim
n→∞

lim
d→∞

w · (X̂2 −X2)√
d

= 0.

which combined with the previous equation gives the second claim from the Corollary.

D EXPERIMENTAL DETAILS

The model used for the MNIST experiment consists of a U-Net architecture (Ronneberger et al.
(2015)), consisting of four downsampling and four upsampling blocks with two layers per block and
output channels of 128, 128, 256, and 512, respectively. Attention mechanisms are integrated into
the third downsampling block and the second upsampling block to enhance feature representation at
multiple scales. The training of the denoiser is described in the main text. We then use this denoiser
to estimate the score and run the Variance Preserving SDE (see equation (11) in Song et al. (2021).)

For the discriminative model, we use the MNIST digit classification model by Knight (2022) avail-
able on Hugging Face which achieves an accuracy of 99.1% on MNIST classification.

As a sanity check, we show non-cherry-picked samples generated by the three models we considered
in Figure 3.

E GENERAL TIME DILATION FORMULA

In this section, we generalize the time dilation formula from equation 12 for a Gaussian mixture
with more than two modes. Although the arguments in Results 1 and 2 only hold for the two-mode
GM, the fact that a more general time dilation formula exists suggests that these results could be
extended to the GM with more than two modes.
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Consider µ =
∑m

i=1 piN
(
ri, σ

2I
)

where ri ∈ Rd and |ri| goes to infinity with d,but m, pi, σ
2

are constant with respect to d. If Xt is the generative model associated with the interpolant It =
(1− t)z + ta where z ∼ N (0, I) and a ∼ µ (as we do in equation equation 3 in the main text) then
Xt estimates pi at times of the order 1/|ri|. We show this in Proposition 2 below by arguing that it
is only at times of order 1/|ri| that the denoiser associated to ri · Xt/|ri| is nontrivial. Hence, to
estimate pi we require a time dilation τt such that there exists a and b with b− a = Θd(1) where

τt = Θd

(
1

|ri|

)
for t ∈ [a, b]. (37)

We specify next a time dilation that for every i would ensure that Equation 37 is fulfilled. Assume
|r1| ≤ |r2| ≤ · · · ≤ |rm|, let n = m+ 1 and let κ > 0. Then

τt =



κnt
|rm| if t ∈ [0, 1/n]
κ(nt−1)
|rm−1| + κ

|rm| if t ∈ [1/n, 2/n]

· · ·
κ(nt−(m−1))

|r1| + κ
(

1
|r2| + · · ·+ 1

|rm|

)
if t ∈ [(m− 1)/n,m/n](

1− κ
(

1
|r1| + · · ·+ 1

|rm|

))
t+ κ

(
1

|r1| + · · ·+ 1
|rm|

)
if t ∈ [m/n, 1]

(38)

Then we have that pi is learned when t ∈ [(m − i)/n, (m − i + 1)/n] and the σ2 will be learned
when t ∈ [m/n, 1], giving rise to m + 1 different phases. In the special case of |ri| = |ri+1|, both
pi and pi+1 will already be learned in [(m− i)/n, (m− i+ 1)/n] so that the phase on the interval
[(m− i+ 1)/n, (m− i+ 2)/n] is unnecessary. Taking this consideration into account when using
the general formula in equation 38 for the two-mode GM gives the time dilation formula from
equation 12. The only difference is that the time dilation here maps [0, 1] to [0, 1] and the one in
equation 12 maps [0, 1] to [0, 2].

Proposition 2. Let µ =
∑m

i=1 piN
(
ri, σ

2I
)

where ri ∈ Rd and |ri| = ωd(1). Consider the inter-
polant It = (1−t)z+ta where z ∼ N (0, Id) and a ∼ µ. Let Xt be the generative model associated
to It as in equation equation 3. Then Xt learns the pi at times Θd (1/|ri|) .

Proof. Fix i. Let mt = ri · It/|ri|. We have mt
d
= (1 − t)Z + t|ri|m where Z ∼ N (0, 1) and

m = ri · a/|ri|2 = Θd(1). Let νt = ri ·Xt/|ri|. By Lemma 5, νt obeys the self-consistent ODE

ν̇t =
νt
t
− ηt(νt)

t
(39)

where ηt(ν) is the denoiser for νt

ηt(ν) = E[Z|mt = ν] = E[Z|(1− t)Z + t|ri|m = ν].

By Lemma 6, since |ri| = ωd(1), the only times where this denoiser is nontrivial are t =
Θd (1/|ri|) . We note that to estimate pi we need to estimate νt, which requires spending a con-
stant length of time in the nontrivial times of the ODE in equation 39, which are the nontrivial times
for the denoiser. Indeed, pi is learned on that interval, and if the length of that interval goes to 0 as
d goes to infinity, we cannot estimate pi.

Lemma 5. Let µ =
∑m

i=1 piN
(
ri, σ

2I
)

where ri ∈ Rd. Consider the interpolant It = (1−t)z+ta
where z ∼ N (0, Id) and a ∼ µ. Let Xt be the generative model associated to It from Lemma 5. Fix
i and let mt = ri · It/|ri| and νt = ri ·Xt/|ri|. Then with ηt(ν) = E[Z|mt = ν] we have

ν̇t =
νt
t
− ηt(νt)

t
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Proof. We have from Appendix A, Albergo et al. (2023) that the velocity field bt(x) associated with
It = (1− t)z + ta where a ∼

∑m
i=1 piN (ri, Id) can be written explicitly as∑m

i=1 pi

(
ri +

ċt
2ct

(x− tri)
)
N (x | tri, ctI)∑m

i=1 piN (x | tri, ctI)
=

∑m
i=1 pi

(
ri +

ċt
2ct

(x− tri)
)
e

2tri·x−t2|ri|
2

2((1−t)2+t2)∑m
i=1 pie

2tri·x−t2|ri|2

2((1−t)2+t2)

=
ċt
2ct

x+

∑m
i=1 pi

(
1− ċt

2ct
t
)
e

2tri·x−t2|ri|
2

2((1−t)2+t2)∑m
i=1 pie

2tri·x−t2|ri|2

2((1−t)2+t2)

ri

where ct = (1− t)2 + t2. The denoiser ηt(x) = E[z|It = x] is

ηt(x) = x− tbt(x) =

(
1− ċt

2ct

)
x−

∑m
i=1 pi

(
t− ċt

2ct
t2
)
e

2tri·x−t2|ri|
2

2((1−t)2+t2)∑m
i=1 pie

2tri·x−t2|ri|2

2((1−t)2+t2)

ri. (40)

Fix i and let mt = ri · It/|ri| and νt = ri ·Xt/|ri|. Since Ẋt = b(Xt), we get that

ν̇t =
ri · b(Xt)

|ri|
=

νt
t
− 1

t

ri · ηt(Xt)

|ri|
=

νt
t
− ηt(νt)

t
,

where the denoiser for the νt is defined as ηt(ν) = E[Z|mt = ν]. The last step in the displayed
equality follows since from equation 40 we get that ri ·ηt(x)/|ri| depends on x only through νt.

Lemma 6. Let Z ∼ N (0, 1) and M ∼ µ. Then for fixed γ > 0 we have that as d → ∞

E[Z|Z + d−γM = x] → x

E[Z|Z + dγM = x] → E[Z] = 0

Proof. Let fZ,X(z, x) be the joint density of Z and X = Z + d−γM and fZ,M (z,m) the joint
density of Z and M. We note that fZ,X(z, x) = fZ,M (z, dγ(x− z)) = fZ(z)fM (dγ(x− z))

E[Z|Z + d−γM = x] =

∫
zfZ,X(z, x)dz∫
fZ,X(z, x)dz

=

∫
zfZ(z)fM (dγ(x− z))dz∫
fZ(z)fM (dγ(x− z))dz

=

∫
zfZ(z)d

γfM (dγ(x− z))dz∫
fZ(z)dγfM (dγ(x− z))dz

→ x

where the last step follows since dγfM (dγz) is an approximation to the identity. The other limit
follows similarly.
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