A PROOF OF PROPOSITION 1

To prove Proposition 1, we will use the following three Lemmas that follow directly from Albergo
et al. (2023) (Appendix A)

Lemma 1. Let a ~ p and z ~ N(0,1dy). The law of the interpolant I; = a2 + Bya coincides with
the law of the solution of the probability flow ODE

Bew - X
ai + o2

oy + UthBtX I at(atﬁ-t — &)
a? + o232 k a? + o232

X, = ptanh <h + ) . Xo~N(0,1dy)

15)
where h is such that e" /(e" + e=") = p.
Lemma 2. Let a ~ pN(x,1) + (1 — p)N(—k,1) and z ~ N(0,1). The law of the interpolant
I; = oz + Bia coincides with the law of the solution of the probability flow ODE. In
KB Xt
af + 57

vy + BifBi Ky (o By — cufBy)
2 2 Xi + 2 2
ai + B ai + B
where h is such that e /(e" + e~ ") = p.

Lemma 3. Let a ~ N (fp,0%ldy) and z ~ N(0,1dg). The law of the interpolant I; = oz + Sra
coincides with the law of the solution of the probability flow ODE

Xt:

mm@+ ) Xo~N(O0,1)  (16)

vy + a2 By (e — cufr)
of +o2B7 T af 0%

X, = 1, Xo ~ N(0,1dy). (17)

Proof of Proposition 1. First phase. We have 7, = “L since ¢ € [0,1]. Pluggingino, = 1 — 7

Vd
and B; = 7, into the velocity field from Lemma 1 yields
. K o Xt 1
Xy =— | —X; 4+ ptanh | h + Kt +O<>. 18)
= (e (it ) ) o G <
We then have, with v, = 1 - Xt/\/&,
. 1
vy = ktanh (h + ktvy) + O <\/&> . (19)

Taking d — oo yields the limiting ODE for v;. From Lemma 2, we get that this the 1-dimensional

velocity field associated to the interpolant Iy = /1 — t2z + ta that transports z ~ N'(0,1) at¢ = 0
toa ~ pN(k,1)+ (1 —p)N(—k,1) att = 1.

Let Xj" = X; — @u. We have from equation 18

d
. K
Xt=——Xx" (20)
t \/Zl t
Since this is a linear ODE with initial condition Gaussian, we have
Xt ~ N (0,081d4-1) - (1)

Further, equation 20 gives X;- = O(1/v/d) meaning that for ¢ € [0, 1]

fim =1, @)
Second phase. For ¢t € [1,2], we have 7, = ( — %) (2t —1)+ %. Again using Lemma 1, we
get
2~ f) tamh (b4 (Xt
v - 2=+ -1) (2= ¢)tanh { h+ ootz o1 ’
T2tz +02(t—1)2 ¢ (2—1)2 +o2(t —1)2 B+ (\/E) (23)
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Vd

(@t tot—1)  (2—t)Vdtanh (h+m%
PE I P 202 o2 - 1)

Let us calculate the initial condition for v, at ¢ = 1. Write @ = sm + z where p = P(s = 1) =
1—P(s=—1)and z ~ N(0,1d,). Then

Writing v, =

, this implies

) +04(1). (24)

v =

podioy (@ (1>
— =Z4+krs+0|—
Vd Vd

where Z ~ N(0,1). This means that for x large enough, then |h| < ’m% with high

probability. This implies v, will not change sign during its trajectory, since whenever v, = o(v/d),
the tanh term will dominate in equation 24. Hence, the following approximation is valid

2t — 1 \/8Vt KUt
tanh <h + 1(+ o )_ 1)(2;—_ 1)2> = tanh (\/gvt> = sgn(v;) (25)

We then use this approximation in the ODEs for X, to get
2
X, = (_2(32)5):; (it__lgxt 5 _(20;2?; ((tyt_) mah+ 0 < > . 26)
Let M; = i - X;/d. We get the induced equation
—(2—t)+0o2(t—1)
(2—1t)2+02(t —1)2
From the analysis of the first phase we had
v1 ~pN(k,1) + (1 — p)N(—k,1). (28)

We argued above that the sign of v, will be preserved for ¢ € [1, 2] with probability going to 1 as
tends to co. This means that

(2 —t)sgn(M,)
Mt+(2_t)2+02(t_1)2+0(>. Q7

M, =

U

My = p"61 + (1 —p")é_1 (29)

where p” is such that lim_, ., p" = p.

As in the first phase, we let X;* = X; — “'TXt 1. We have from equation 26 that
: —2—-t)+a%t—-1) 1
P Xt+o0(—=). 30
e PO\ VA G0

Since this is a linear ODE with initial condition Gaussian, we have
X" ~ N (0,071d4-1) . 31
Under the change of variables ¢(s) = s + 1 we get that the ODE becomes

oL —(1—8)+o%s |

—_ . 2
s (1—8)2+02s2" ° (32)

By taking one coordinate i € {1,---,d — 1} of X;- we get from Lemma 3 that this is the velocity

field associated with the interpolant I, = /1 — sz 4+ sa where z ~ N(0,1) is transported to
a ~ N(0,0?) as desired. O

B DERIVATIONS OF LEARNING RESULTS

B.1 DERIVATION OF FIRST PHASE

Let t € [0,1] so that
Kt Kkt
zf = (1 — \/g) z + —\/ax’l
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Consider a denoiser parametrized as

w-x
f(z) = cx + utanh <b+ \/E)

We introduce the following overlaps which we assume to be of order 1 in d

dow o pew el abew L stew pou
T YT g Tt wTY T meet mE g 4=

We note that

TR
p’r]_S

¢" = f(zf') = tanh (b + ktos"pl + ktws" + /1 Z" + 04(1))
where Z# ~ N(0,1). We now compute the loss

LS o p ) = 25 o eln — wtVaat + Gty —ur|

1 . 2
= =3 Nk = el = ue? |+ 0a(1)
I

= Z 1+o% 4+ %(qﬁ”f -2 ((us“ +02")(1 — ert/Vd) — cmg) . %qﬁ” + 04(1)
m

=Y 1+ +E +q(@") —2(m +og) — cqt)s" " + 04(1)
n

We follow the same style of calculation as Cui et al. (2024) to compute the partion function. First
we write the partition function

Z= /d&e’%m(g)

u 2 U-fL . u,zﬁ" L
_/dCdudwdbeyI(Z“l+g2+02+ 2ot ey ) B - ol

Next we introduce overlaps into the integral and their conjugates by Dirac-Fourier, which we will
denote as the vectors ¢ and ( to simplify notation, and rearrange to integrate u, w

z— / dedb d¢dé ed(3aatmmtgirtowt S0, (¢ ¢ +aya +p4p0)) =3 2, (1407 +¢?+a(#)* —2(mtoq; —cqf) s ¢*))

/ due™

Next we evaluate the u, w integrals to get

TN |2 — - (rioput STy Gewly +n2H) /dwe—”ﬂ|\w|\2—w~(ou+21::1mz“)

ed(% log(§+7vA)+3 1083(7”‘75)"‘% 3 llrnpt320 G g +a =" ||2+m 3 lop+320—q phz" Hz)
_ ed(% log(G+yA)+ 3 IOg(f’JF“/Z)JFm(m2+22:1(@g)2+(@$)2)+m(@2+22:1(ﬁ’ni)Q)Jro(l/\/a))
We now assume a sample-symmetry ansatz on the overlaps which means that ¢ = ¢, for ever
ple-sy ry p de qe Yy u

are all equal, and the same for (jg s 445 qly, ply, Pl We then take d — oo, rescale all conjugates with

v, change all conjugates signs except for ¢ and 7 for cleaner equations, and take v — co. This gives
us the following effective field (log partition function)

log Z(D) = extr{ _n (72(0% +m = cqe)ps + ¢ + ‘IE)

2
qq ~rf . . . . .
+ 5 g i — wo = n(gede + dydy + Pyby)

m? +n(q + ¢2) N w2 +nﬁ37}
20\ +§) 2(¢0 4 7)

Taking gradients we get the following saddle-point equations
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(0qy +m —cqe)d's — qp¢’ =0

c=—sqe by = (6)((0gy +m — cge)¢'s — q@/$) =0
Py = 2= @ = (nkt)((0qy +m — cqe) ' — q¢' ¢s)
w=% ) f:—n(ﬁqurm—cqg)%—qm)/ﬁ
r= e = W', & = —cfs

qe = A(qu* Gy = 03

I = A(ilq = ngs

m:};‘q o ¢ = ng?

g=2 k) —XJ(F(;&;(I”) =m® +ng + ng;

Combining the equations for ¢ and q: we get that ¢ = 0%2 /(A + n@) We now argue that ¢ = 0

almost surely, since otherwise ¢ = 0 on a non-zero measure, implying b = w = 0, which then
results in all overlaps being zero, giving a suboptimal log partition function. This can be seen more
explicitly by noting that the log partition function is zero for ¢ # 0, but for ¢ = 0 it is instead

n(bs (J -|—TL) —EEUJQ

log Z(D) = extr, p —
2 (/\ + n¢2>

which has positive values for example at w = 0,b # 0. The above formulation is also useful for
solving for the overlaps numerically.

B.1.1 ARGUMENT FOR COROLLARY 1

We now focus on . — oo and on verifying that w = xt,b = tanh™*(5) is a solution. We will need
the following preliminary claims.

Lemma 4. Let ¢* = tanh(b + ktws” + wZM). Ifw = kt and b = tanh ™" (3) then ¢ — s = 0

Proof. Let ¢'{ = ¢*|su—y1 and ¢y = p*

T 5=y D+ (1-PE_ D
=/dze-§{ﬁ<¢+—1>+<1—m<¢7+1>}

sn—0. Then

= [dee TS e plon - )4 e L= on + D} 22T ae

Finally note that the integrad is zero for all z if
EKtZT) _ e—fitz(l _ ﬁ)
emtzp + (1 _ Tg)efntz

Po = = tanh (tanh ™' (3) + xt2)

which occurs for w = xt and b = tanh ™' (3). O

Corollary 7. Let ¢ = tanh(b + ktws* + wZ"). If w = kt and b = tanh™'(3) then for any
Sfunction g where g(Z + kt)(¢ F 1) exist we have

9(Z + skt) (¢ —s) =0

In particular,

¢—s=0(¢—5)=¢(¢—s)=(Z+srt)d(¢—5)=0
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Solving for ¢,, m, q¢, ¢ and plugging into the equation for b we get
(A +n¢?) §'s = ngs 6¢’

Taking 7 — oo, to leading order in n the equality becomes (¢2)(¢'s) — (¢'®)(¢s) = 0 which holds
by Corollary 7.

Using the independence of s*, Z# and taking the limit of infinitely many Z#, we can use Stein’s
lemma to rewrite the 7 equation as

P =—n((ogy +m —cge)¢"s — q(¢¢')')
Plugging in g,, m, g¢, q in gives
P\ +nd%)° = —n((A +nd?)(0” +n)¢7s 63 —n(o” +n)ds (96'))
Plugging g,, m, q¢, g into equations for w and @ gives
WL+ )N+ nd?)? = (nst) (A + n62) (02 + 1) (@ G5) —n(o? +n)ds & ps)

For large n we get

—w((6)(@75)(65) — (&5 ) (60)) = () ((F)(

)(@5)) — () (b))

w = (kKt) () = (¢/65))
(@)~ (@)
(¢ — 50%s)
Kt)———
" =ty
Finally note that
(6= 36%) + (&~ 30255 = —5 (6 — 9] (snt + 2) =0

applying Corollary 7.
B.2 DERIVATION OF SECOND PHASE
We now consider times ¢ € [1, 2] which means we have
o =(2—1 (1—“)x“+<“+<1—“> t—1 >x“.
t ( ) \/Zl 0 \/3 \/a ( ) 1
We change variables to 7 = ¢t — 1 and consider 7 € [0, 1] so that

ot = (1—7’)(1—%)xé—l—(%—i—(l—%)r)x’f.

We compute the loss for a single datapoint, defining v* = s#¢ (w - 2* + b)

xg‘—c<(1—r) (1—\';&>xg+(\';a+(1—\73>T)xl>—u¢(w )

1
== llzh —e((1 — 7)ah + 7)) — us“y“H2 + 04(1)

1
=~ ||(1 = er)(o2" + s'p) — c(1 — )zl — us"vH|* + 04(1)

d
ul|? sttt
=(1+cHA—-cr)?+2(1—1)? % - 2Tu (L =er)(oz" + s*p) — (1 — 7)xpy) + 04(1)

Jr
=(1+cHA—cr)? +E1-71)2+q—20*(1 - cr)(ogy +m) +2v'c(1 — 7)gf + o04(1)

1 2

where we defined the overlaps

[[ul® u- 2t
d )

q:



We also have

v = ¢ (sfw -zt + s*b) = tanh ((1 —7)stw - zh + (T + %) sfw - (o2t + stu) + s“b>

= tanh <d <(1 —T)pE + ( \f) (oply + w)> + s“b)

= sign (\/& ((1 —T)pg +7(opl +w) ) + K(op), —l—w))

This gives the following

log Z(D) = extr{ - g (1+*) (1 —er)?+ (1 —7)*+q—2(1 = cr)(ogy + M)V + 2¢(1 — 7)geV)

5 ~2 2 a2
qq R R _omS (g + )
+ 5 — mi n(qede + qndn) + 30+ )

Taking gradients we get the following saddle-point equations

_ G _ c(l-T)p
4¢ = Ag — " Mn G — o1 —
Gy = Gy _ (l—em)U Vi3 —C( _T)V
Il W H iy Wi . _
_ m _ n(l—cr)D Gy =0(l—cT)v
m_/\2+q_2 2)\+n m—n(l—CT)P
22 m(a24a =
g=" <Aﬁiqq7£>2 ) — m? 4 ng? + no’q? -
(1407 — T(oqn+m)v—(1— T)qgl/ g=n
¢= (A—7)2+(1+02)r2

(14 02)7(A+n) —21(0 +n)
A+n)((1=72) + (1 +02)72) + 72 ((1 = 7)2 — 72(0 + n))

CcC =

Corollary 3 simply follows from taking the n — oo limit of this equations.

Lastly, we now argue that we can take 7 = 1 without loss of generality. If we assume a sample
symmetric ansatz for p = p,, p? = p¢, then ¥ can either be 1 depending on the sign of argument.
Noting that g, ¢ are unchanged while q,, g¢, m, Gy, g¢, ™ flip sign, we can conclude that the log
partition function is invariant so 7 = 1.

The characterizations of the learned parameters can be used to evaluate the MSE as a function of ¢,
which we now describe, in the limit of d — oo and then n — oo. For the first and second phase we

obtain
MSE(rain = MSEegt = o+ (1-07) (o]
wn ST N 21 —er)2 + 21— 1) tell,2]

Att = 0, ¢ = tanh(b) = 2(p — 1/2) hence the MSE is 02 + 4p(1 — p). Att = 1 we have ¢ = 0
hence the MSE is 02, while at ¢t = 2 we have ¢ = 1 so the MSE is 0.

C ARGUMENTS FOR GENERATION

Combining equations 4 and 8 gives the exact velocity field

. 3 2 2 .
b(z) = <Bt_zzﬁt> <a?’f_t22ﬁt2x—|— % BQ,uta h( B ﬁQ,u .13+h)> Z—zx.
(33)

17



where oy = 1 — 7 and B; = 74 with 7y from equation 12. Let ét denote any overlap from the first
phase (see equation 13) in the limit of d — oo but for finite n, where 6, denotes the corresponding
overlap with d — oo and then n — co. From Results 1 and 2 and their Corollaries 1 and 3, we have

that |6, — 6, = O,,(1/n) for all overlaps.

Since X; — X, is contained in span(u,n) which is in turn contained in span(y, 7, ), it suffices to
show that, after dividing by d, the projections of X; — X; onto p, 7, and £ are O(1/n) to show that
2l Xe = Xellis O(1/n).

C.1 ARGUMENT FOR RESULT 3

First, we note that as described in the paragraph above the statement of Result 3, we have that since
in the first phase ¢ = m® + ng;, from Result 1 we get for ¢ € [0, 1]

N 771 - (u~Ut)2 (n-Ut)2
dli}IIc}c d dlggo d + d
also since ¢ = m? + nqg + an7 in the second phase, we get that for ¢ € [1, 2]
[ (e ug\? s ug 2 £\
fim =5 = Jim (57) + (1)
i 4 iV ) U ) T g

where n = UZZ:l ztand £ = ), stz which implies that for any w € span(yu,n,&)" with
|lwl]l2 = 1 we have

lim M -0.
d—o0 \/g
C.1.1 FIRST PHASE
We focus on ¢ € [0, 1] and define
1 . 1 N
mo (X, - X)), €= (X, — X)),
€ \/EM (X 1), € GQn\/gﬁ (Xi t)
s B et
t Oét2+0'25t2’ Yt Oé?+0'251527
,LL'Xt fr].Xt
M, = . QU= :
t \/g Qt 02n\/&
‘We have
1 . X
€' = ﬁﬂ'(Xt - Xy)
1 I
:ﬁﬂ < (be(Xt) = be(Xy))
1 o .
:ﬁﬂ' (5 - aﬁ) <025t(Xt — X)) 4 (et — 0%8) Xy + (yep — ue) tanh (S - Xy + D)
a1 N
tanh(d; 0 - Xy + h) — tanh - X;+ b ——u- (X — X
+ ug (tanh(Spp - Xy + h) — tanh(w, - Xy + t))>+a\/&“ ( t t)

= <5 - Zﬂ) (025te?’ + (s — 028,) My + Vd(y, — my) tanh (S, - X; + h)
+ Vdmy (tanh(&t,u - Xy + h) — tanh(wy - )A(t/\/;i + bt)) ) + ge;n
&\ [ 6 M,
=K <1 - ta) (\/taet + (e — 026t)7é + (v — my) tanh(dpp - Xt + h)
+ my (tanh(&tu - Xy + h) — tanh(w; - X;/Vd + bt)) > + ge;”

18



‘We now focus on the tanh

‘tanh(étu . Xt + h) — tanh(wt . Xt/\/g + bt)

< [sn-25) n |2 55

T T
wy ((pp” 3
“(M ﬁ)( ot 2d>X i f( +02n2d) (Ko=)
< | (VA —w0) M|+ (0iZ = p1) Qul + ey + e + b~ b

<wle|+0 (n> 40 (&) |

Coming back to the ODE for €;*, we get with high probability

1
el =il +0 (1) +0(75).
Since kyw = Oy, 4(1) for ¢ € [0, 1], we get that with high probability

-oD) o)

By performing a similar computation for the ODE for €], we get that with high probability

-o(D) o ()

We now turn to ¢ € [1, 2] and define

1

Ctm:E,U'(Xt_Xt)) ¢

+ |h — by

C.1.2 SECOND PHASE

X 1 X
_ £ _
—-Jgndn'(ﬁQ‘—)(ﬂ Q;—-ﬁaf'()é'—}(ﬁ-

With high probability, we have the following ODEs hold

Ca-asm)emro(L),
t

G
don (6( Yoo 8(1 — bt ))) "+ 0 (i) »
(1)

= (5< et 2 (1= ctﬁm)) ¢+0 (i) .

d .,
%C —(5( Jer +

Q

Q

2 SD

t)

from the initial condition (7", {{ = O(ﬁ) +0(2), Cf = 0. This yields

", ¢3,6 = O(%) +O()
C.2 ARGUMENT FOR COROLLARY 6

By Proposition 1, we know that

peXo _
Jm fim o e+ (L)
By Result 3, we get that
lim lim pide = A2) (X2 — X5)
n—00 d— oo d

=0.
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(a) Training times with (b) Training times with
prob. 1/2 on [.2, .6] prob. 1/2 on [.3,.5]
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(c) Training times
uniform on [0, 1]

Figure 3: Non-cherry-picked samples from the three generative models considered. (a) Samples
from the VP SDE, where the times for training are drawn with probability 1/2 uniformly from [.2, .6)
and with probability 1/2 uniformly outside. (b) Same as left panel except that with probability 1/2
training times are sampled from [.3,.5]. (¢) Samples from the VP SDE with training times that are
uniform in [0, 1].

Combining the last two equations gives the first claim from the Corollary.
Fix w L p, ||w|| = 1. Again by Proposition 1, we have that
w - X 2

li ~ 2).
g N
Also, Result 3 gives that
lim lim M —0.

n—00 d— 00 \/g

which combined with the previous equation gives the second claim from the Corollary.

D EXPERIMENTAL DETAILS

The model used for the MNIST experiment consists of a U-Net architecture (Ronneberger et al.
(2015)), consisting of four downsampling and four upsampling blocks with two layers per block and
output channels of 128, 128, 256, and 512, respectively. Attention mechanisms are integrated into
the third downsampling block and the second upsampling block to enhance feature representation at
multiple scales. The training of the denoiser is described in the main text. We then use this denoiser
to estimate the score and run the Variance Preserving SDE (see equation (11) in Song et al. (2021).)

For the discriminative model, we use the MNIST digit classification model by Knight (2022) avail-
able on Hugging Face which achieves an accuracy of 99.1% on MNIST classification.

As a sanity check, we show non-cherry-picked samples generated by the three models we considered
in Figure 3.

E GENERAL TIME DILATION FORMULA

In this section, we generalize the time dilation formula from equation 12 for a Gaussian mixture
with more than two modes. Although the arguments in Results 1 and 2 only hold for the two-mode
GM, the fact that a more general time dilation formula exists suggests that these results could be
extended to the GM with more than two modes.
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Consider 1 = Y. piN (r;,01) where r; € R? and |r;| goes to infinity with d,but m, p;, o2
are constant with respect to d. If X; is the generative model associated with the interpolant I; =
(1 —t)z + ta where z ~ N(0,I) and a ~ 1 (as we do in equation equation 3 in the main text) then
X estimates p; at times of the order 1/|r;|. We show this in Proposition 2 below by arguing that it
is only at times of order 1/|r;| that the denoiser associated to r; - X;/|r;| is nontrivial. Hence, to
estimate p; we require a time dilation 7; such that there exists a and b with b — a = ©4(1) where

7 = Oy (1|) for t € [a,b]. (37)

|r

We specify next a time dilation that for every ¢ would ensure that Equation 37 is fulfilled. Assume
[ri] <lro] <+ <|rml,letn = m + 1 andlet k > 0. Then

st it € [0,1/n]
sl s ift € [1/n,2/n]

=l (38)
st g (o ) it t e [(m—1)/n,m/n]
(1_5(ﬁﬁ+.”+F%O)t+ﬁ(ﬁT+”.+Fﬁ) if ¢ € [m/n, 1]

Then we have that p; is learned when ¢t € [(m — i)/n, (m — i + 1)/n] and the o will be learned
when ¢t € [m/n, 1], giving rise to m + 1 different phases. In the special case of |r;| = |r;+1], both
p; and p; 1 will already be learned in [(m — i) /n, (m — i 4+ 1)/n] so that the phase on the interval
[(m —i41)/n,(m — i + 2)/n] is unnecessary. Taking this consideration into account when using
the general formula in equation 38 for the two-mode GM gives the time dilation formula from
equation 12. The only difference is that the time dilation here maps [0, 1] to [0, 1] and the one in
equation 12 maps [0, 1] to [0, 2].

Proposition 2. Ler p =" pN (ri, 021) where r; € R and |r;| = wq(1). Consider the inter-
polant Iy = (1—t)z+ta where z ~ N (0,1d) and a ~ . Let Xy be the generative model associated
to I, as in equation equation 3. Then Xy learns the p; at times ©4 (1/|r;]) .

Proof. Fix i. Let my = r; - It/|r;|. We have my < (1 —t)Z + t|r;|m where Z ~ N(0,1) and
m =r;-a/lr;|> = ©4(1). Let vy = 7; - X;/|r;|. By Lemma 5, 1; obeys the self-consistent ODE

ve  mi()
= 39
t= n (39)
where 1, (v) is the denoiser for v;
ne(v) = E[Z|my = v] = E[Z|(1 — ) Z + t|r;|m = v].
By Lemma 6, since |r;|] = wgq(1), the only times where this denoiser is nontrivial are ¢ =

O4 (1/]r;]) . We note that to estimate p; we need to estimate v, which requires spending a con-
stant length of time in the nontrivial times of the ODE in equation 39, which are the nontrivial times
for the denoiser. Indeed, p; is learned on that interval, and if the length of that interval goes to 0 as
d goes to infinity, we cannot estimate p;.

O

Lemma5. Let =Y . pN (ri, 021) where r; € R?. Consider the interpolant I; = (1—t)z+ta
where z ~ N(0,Id) and a ~ . Let X, be the generative model associated to Iy from Lemma 5. Fix
tandletmy = r; - It /|r;| and vy = r; - Xy /|r;|. Then with n,(v) = E[Z|m; = v] we have

%:@_mm
t t
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Proof. We have from Appendix A, Albergo et al. (2023) that the velocity field b;(x) associated with
I = (1 —t)z + tawhere a ~ y_." | p;N (r;,1d) can be written explicitly as

. . 2tri~a:7t2|ri\2
Sy (i gt @ — ) )N L al) S0 i (ri+ (o = try) ) e 20073y
m . . = 2tr; x—t2|r; |2
i PiN (x| tri, e S pre 0T
m . 2t'r'i-m7t2\'r'i|2
C )2 2
¢ Do Di (1 — ﬁt) e 2((1-2+t2)

= —x+ T
2¢y 2trya—t2|r; |2 ?

S pie 2=07H3)

where ¢; = (1 — t)? + t2. The denoiser 7, (z) = E[z|I; = ] is

¢y 221 Pi (t — 2%152) e 2((1—-1)2+12)
n(x) =z —th(x)=(1— — |z —

QCt

ri. (40)

2tr;a—t2|r; |2
Z;’ll pie 2(=0Z+e%)

Fix ¢ and let m; = r; - I;/|r;| and vy = r; - X /|r;]. Since X, = b(X}), we get that
ri b(Xy) v lriem(Xey)  ow m(n)

S T R o

)

where the denoiser for the v is defined as 7;(v) = E[Z|m; = v]. The last step in the displayed
equality follows since from equation 40 we get that r; - 1), (x) /|r;| depends on x only through v;. [

Lemma 6. Let Z ~ N(0,1) and M ~ p. Then for fixed v > 0 we have that as d — oo

ElZ|Z+d "M =z] =z
E[Z|Z +d'M = 2] - E[Z] =0

Proof. Let fz x(z,x) be the joint density of Z and X = Z + d~"M and fz (2, m) the joint
density of Z and M. We note that [z x(z,2) = fz m(2,d(x — 2)) = fz(2) fm(d(z — 2))

_ S z2fz(2) fau(d(x — z))dz
J f2(2) far(dY(z = 2))dz

_ J2fz()d fu(d (x — 2))dz
[ fz(2)d fu(d (2 — 2))dz

— T

where the last step follows since d” fa;(d”z) is an approximation to the identity. The other limit
follows similarly. O
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