
A The Overall Workflow of EXPAND

Algorithm 1: Train - Interaction Loop
Result: Trained Eff. DQN agent M
Input: Eff. DQN agent M with randomly-initialized weights θ, replay buffer D, human feedback
buffer Dh, feedback frequency Nf , total episodes Ne, maximum number of environment steps per
episode T , update interval b
Begin
for i = 1 to Ne do

for t = 1 to T do
Observe state s;
Sample action from current policy π with ε-greedy, observe reward r and next state s′ and
store (s, a, r, s′) in D;
if t mod b == 0 then

Sample a mini-batch of transitions from D with prioritization;
Perform standard DQN update with sampled environment data;
Sample a mini-batch of human feedback from Dh;
Update Eff. DQN with human feedback data;

end if
end for
if i mod Nf == 0 then

Obtain the last trajectory τ from D;
Query τ to obtain feedbackHi;
AppendHi to buffer Dh;

end if
end for
End

B Settings of Gaussian Blurring in EXPAND

Figure 7: Learning curves of the variants of EXPAND with
different number of augmentations.

In EXPAND, we augment each human
evaluated state to 5 states. To verify
5 is sufficient, we also experimented
with the numbers of augmentations
required in each state to get the best
performance. Figure 7 shows a com-
parison when the number of augmen-
tations is varied among {1, 5, 12} for
Pixel Taxi and Pong using a synthetic
oracle. The plots suggest that increas-
ing augmentations only evoke slight
performance gains, and therefore set-
ting the number of perturbations to 5
for EXPAND is apt. The settings of
the Gaussian blurring filters are listed
below:

• 1 Augmentation:
◦ filter size: 5, σ: 5

• 5 Augmentations:
◦ filter size: 5, σ: 2
◦ filter size: 5, σ: 5
◦ filter size: 5, σ: 10
◦ filter size: 11, σ: 5
◦ filter size: 11, σ: 10

14



• 12 Augmentations:

◦ filter size: 5, σ: 2
◦ filter size: 5, σ: 5
◦ filter size: 5, σ: 10
◦ filter size: 7, σ: 3
◦ filter size: 7, σ: 5
◦ filter size: 7, σ: 10
◦ filter size: 9, σ: 3
◦ filter size: 9, σ: 5
◦ filter size: 9, σ: 10
◦ filter size: 11, σ: 3
◦ filter size: 11, σ: 5
◦ filter size: 11, σ: 10

C Implementation Details

C.1 Ex-AGIL

Figure 8: AGIL network architectures. The upper one is the attention prediction network, and the
bottom one is the policy network.

AGIL [50] was designed to utilize saliency map collected via human gaze. In this work, human
salient information is provided by annotated visual explanation. Though the source of explanatory
information is slightly different, we can expect that AGIL with some minor changes (called Ex-AGIL)
should also work well when the gaze input is replaced with visual explanation. Note that we don’t
aim to compare the two different ways to gather human salient information, but rather focus on which
method better utilizes human visual explanation. The network architectures are shown in Fig. 8.
Two modifications were made to AGIL: firstly, rather than training the attention network and policy
network sequentially as in supervised behavioral cloning, the attention network and policy network
are both updated on every DQN update step. Secondly, unlike human gaze, human annotated saliency
map (bounding boxes) doesn’t induce any probability distribution. Hence, we view the output of
attention network as the prediction of whether a pixel should be included in a human annotated
bounding box. Accordingly, to train the network, we applied a simple mean-squared error between
the predicted saliency maps and human visual explanations, similar to the explanation loss terms in
[34, 39]:

Lexplanation =
1

N

N∑
i=1

(Ai − ei)2 (9)

where ei is the predicted saliency mask for state si and Ai is the preprocessed (resized and stacked)
human explanation binary mask, in which 1 means the pixel is highlighted in human explanation. The
policy network is trained with the same losses as DQN-Feedback (standard DQN loss + advantage

15



feedback loss), except that the states are masked with the predicted saliency map in the way depicted
in Fig. 8.

C.2 Attention-Align

Different from Ex-AGIL, Attention-Align aims to leverage human visual explanation without training
a separate saliency prediction network. It uses the same mean-squared error loss in Ex-AGIL but
the ei is obtained with some interpretable reinforcement learning method. Here, we choose to use
the method FLS (Free Lunch Saliency) [30], which produces built-in saliency maps by adding a
self-attention module that only allows selective features to pass through. More specifically, to get the
agent explanation ei, FLS applies transposed convolution to the neuron activations of the attention
layer. This allows us to more efficiently compute the explanation loss compared to other methods
such as computing Jacobian of the input image or bilinear upscaling of the attention activations.

The Eff. DQN is then jointly trained with standard DQN loss, feedback loss (advantage loss), and the
explanation loss. Note that the weight of explanation loss is set to 0.1 as suggested in previous works
[34, 39].

C.3 Context-Agnostic Data Augmentation

We compared EXPAND to two context-agnostic data augmentations, namely random cropping and
Gaussian blurring. Random cropping pads the four sides of each 84 × 84 frame by 4 pixels and then
crop back to the original 84 × 84 size. Gaussian blurring applies a 23 × 23 square Gaussian kernel
with standard deviation sampled uniformly in (2, 10). Note that in EXPAND we use a fixed set of
Gaussian filters, which can be more efficient with respect to wall-clock time. We also experimented
with context-agnostic Gaussian blurring with fixed filters. Our result shows there is no significant
performance difference between fixed filters and randomly sampled filters.

D Synthetic Feedback and Explanation

Figure 9: Examples of visual explanations for (left to right) Pixel-Taxi, Pong, Asterix, Enduro-1000,
and MR Level 1.

We evaluated EXPAND against the baselines using an oracle. To get the synthetic visual explanation,
we use hard-coded program to highlight the relevant regions. In Pixel Taxi, the relevant objects
are the agent (gray block), passenger (red block) and the destination (black block). In Pong, we
highlight the ball and the two paddles. In Asterix, the closest target(s) and the enemies in nearby
lane(s) are highlighted. In Enduro-1000, we highlight the lanes, the player car, and cars in front of
the player. In MR, candidate regions/objects include the agent, monster, key, platforms, and ladders.
Certain regions will be highlighted depending on the agent’s location. Examples of synthetic visual
explanations can be found in the Fig. 9.

E Hyper-parameters

• Convolutional channels per layer: [32, 64, 64]
• Convolutional kernel sizes per layer: [8, 4, 3]
• Convolutional strides per layer: [4, 2, 1]
• Convolutional padding per layer: [0, 0, 0]
• Fully connected layer hidden units: [512, number of actions]
• Update interval: 4

16



• Discount factor: 0.99
• Replay buffer size: 50,000
• Batch size: 64
• Feedback buffer size: 50,000
• Feedback batch size: 64
• Learning Rate: 0.0001
• Optimizer: Adam
• Prioritized replay exponent α = 0.6

• Prioritized replay importance sampling exponent β = 0.4

• Advantage loss margin lm = 0.05

• Rewards: clip to [-1, 1]
• Multi-step returns: n = 5

• ε episodic decay factor λε: 0.99 in Pixel Taxi, 0.9 in Atari games

F User Study

Figure 10: Web Interface to collect saliency and binary feedback from human trainers. This example
uses a frame from Pong.

Fig 10 shows the web-interface used to conduct the user experiment with three graduate students as
the human subjects. Before the experiment began, the trainers were briefed about the usage of this
interface. The trainers were asked to provide their consent to use any information they provide for
any analysis and experiments.

The feedback interface, Fig 10, is divided into two columns, the information pane (left) and the control
pane. (right). On the information pane, users were able to adjust the frame rate at which they would
want to view the "video" made using the state transitions. Users could also view bounding-box related
information, such as which ones were the drawn boxes and the boxes suggested by the implemented
object tracker. On the right pane, users could view the frame upon which they would give their
saliency feedback. Users could see the agent’s current action in the information pane. For their ease,
we provided controls like Pause, Play, skip to Next Frame, go to Previous Frame, Clear all bounding
boxes on the frame, Save feedback and finally Finish the current feedback session. To provide a binary
feedback on agents’ actions, users were required to press keyboard keys "A" for a good-feedback, "S"
for a bad-feedback, and "D" for no feedback. They could provide saliency explanations via clicking
at the required position on the image frame and dragging to create a rectangular selection.

17


	The Overall Workflow of EXPAND
	Settings of Gaussian Blurring in EXPAND
	Implementation Details
	Ex-AGIL
	Attention-Align
	Context-Agnostic Data Augmentation

	Synthetic Feedback and Explanation
	Hyper-parameters
	User Study

