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ABSTRACT

The development of large language models (LLMs) has been instrumental in ad-
vancing state-of-the-art natural language processing applications. Training LLMs
with billions of parameters and trillions of tokens require sophisticated distributed
systems that enable composing and comparing several state-of-the-art techniques
in order to efficiently scale across thousands of accelerators. However, existing
solutions are complex, scattered across multiple libraries/repositories, lack inter-
operability, and are cumbersome to maintain. Thus, curating and empirically com-
paring training recipes require non-trivial engineering effort.
This paper introduces TORCHTITAN, an open-source1, PyTorch-native distributed
training system that unifies and advances state-of-the-art techniques, streamlining
integration and reducing engineering overhead. TORCHTITAN enables seamless
application of 4D parallelism in a modular and composable manner, while featur-
ing elastic scaling to adapt to changing computational requirements. The system
provides comprehensive logging, efficient checkpointing, and debugging tools,
ensuring production-ready training. Moreover, TORCHTITAN incorporates inno-
vative hardware-software co-designed solutions, leveraging cutting-edge features
like Float8 training and SymmetricMemory to maximize hardware utilization. As
a flexible experimental test bed, TORCHTITAN facilitates the curation and compar-
ison of custom recipes for diverse training contexts. By leveraging TORCHTITAN,
we developed optimized training recipes for the Llama 3.1 family and provide ac-
tionable guidance on selecting and combining distributed training techniques to
maximize training efficiency, based on our hands-on experiences.
We thoroughly assess TORCHTITAN on the Llama 3.1 family of LLMs, spanning
8 billion to 405 billion parameters, and showcase its exceptional performance,
modular composability, and elastic scalability. By stacking training optimizations,
we demonstrate accelerations ranging from 65.08% on Llama 3.1 8B at 128 GPU
scale (1D), 12.59% on Llama 3.1 70B at 256 GPU scale (2D), to 30% on Llama 3.1
405B at 512 GPU scale (3D) on NVIDIA H100 GPUs over optimized baselines.
We also demonstrate the effectiveness of 4D parallelism in enabling long context
training.

1 INTRODUCTION

Large Language Models (LLMs) (Devlin, 2018; Liu et al., 2019; Radford et al., 2019; Chowdhery
et al., 2023; Anil et al., 2023; Achiam et al., 2023; Dubey et al., 2024; Jiang et al., 2024; Abdin
et al., 2024) have been the driving force behind the advancement of natural language processing
(NLP) applications spanning language translation, content/code generation, conversational AI, text
data analysis, creative writing and art, education, and research, etc.

Achieving state-of-the-art LLM performance requires massive scale, exemplified by top-performing
models like Llama 3.1 (405B parameters, 15T tokens, 30.84M GPU hours, 16K H100 GPUs) (Dubey
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et al., 2024) and Google’s PaLM (540B parameters, 0.8T tokens, 9.4M TPU hours, 6144 TPUv4
chips) (Chowdhery et al., 2023). These models demonstrate exceptional natural language under-
standing and generation capabilities, but at the same time necessitate substantial computational
resources, memory, and time to train, highlighting the significant investment required to advance
natural language processing.

Training large language models (LLMs) at scale is a daunting task that requires a delicate balance
of parallelism, computation, and communication, all while navigating intricate memory and com-
putation trade-offs. The massive resources required for training make it prone to GPU failures,
underscoring the need for efficient recovery mechanisms and checkpointing strategies to minimize
downtime (Eisenman et al., 2022; Wang et al., 2023; Gupta et al., 2024; Maurya et al., 2024; Wan
et al., 2024). To optimize resource utilization and achieve elastic scalability, it is crucial to combine
multiple parallelism techniques, including Data Parallel (Li et al., 2020; Rajbhandari et al., 2020;
Zhang et al., 2022; Zhao et al., 2023), Tensor Parallel (Narayanan et al., 2021; Wang et al., 2022; Ko-
rthikanti et al., 2023), Context Parallel (Liu et al., 2023; Liu & Abbeel, 2024; NVIDIA, 2023; Fang
& Zhao, 2024), and Pipeline Parallel (Huang et al., 2019; Narayanan et al., 2019; 2021; Qi et al.,
2023). By stacking these parallelisms with memory and computation optimization techniques, such
as activation recomputation (Chen et al., 2016; Korthikanti et al., 2023; He & Yu, 2023; Purandare
et al., 2023), mixed precision training (Micikevicius et al., 2018; 2022), and deep learning com-
pilers (Bradbury et al., 2018; Yu et al., 2023; Li et al., 2024; Ansel et al., 2024), it is possible to
maximize hardware utilization.

While state-of-the-art distributed training techniques have significantly advanced the field, exist-
ing systems that incorporate them still fall short in addressing critical challenges that hinder their
usability, adoption and effectiveness for researchers and industry practitioners.

1. Non-composable: Existing systems struggle to integrate and stack parallelism techniques,
limiting multi-dimensional exploration and integration with memory and computation op-
timizations, thereby reducing training efficiency.

2. Inflexible Architecture: Lack of modularity and extensibility hampers the integration of new
techniques, optimizations, and hardware, limiting adaptability to evolving ML landscapes.

3. Inefficient Hardware Utilization: Poor leverage of advanced hardware features results in
sub-optimal GPU efficiency and lack of customizable checkpointing strategies for memory-
computation trade-offs.

4. Insufficient Support for Production Training: Limited distributed checkpointing scalabil-
ity, cumbersome failure recovery, and inadequate debugging tools hinder production-grade
workflows.

5. Framework Limitations: Dependence on external, poorly maintained dependencies and
failure to harness PyTorch’s optimized kernels, new features, and compiler support lead
to inefficiencies and compatibility issues.

The non-composability and inflexibility of distributed systems stem from the absence of unified
tensor and device abstractions applied consistently across the stack. Without these foundational
components, parallelism strategies, checkpointing, and efficiency optimizations remain fragmented,
limiting modularity, scalability, and extensibility.

TORCHTITAN ’s primary research contribution lies in identifying and unifying the core principles
of parallelism and optimization techniques into a cohesive framework. By leveraging and extending
PyTorch’s Distributed Tensor (DTensor) and DeviceMesh (PyTorch Community, 2023a), TORCHTI-
TAN provides a unified abstraction that simplifies the composition of parallelism strategies, and en-
sures correct single device semantics with its sharding primitives. Unlike existing systems that often
rely on rigid or ad-hoc designs, TORCHTITAN introduces a unified template for distributed training,
enabling researchers to systematically explore configurations, rigorously evaluate existing methods,
and uncover novel techniques within the design space.

TORCHTITAN represents a complete distributed training system for large language models (LLMs),
rather than merely a collection of individual techniques. Its modular, extensible architecture supports
seamless composition of 4D parallelism, advanced training optimizations, and scalable distributed
checkpoint save/load, all while harnessing PyTorch’s native capabilities. The system not only en-
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able production-grade training with thousands of GPUs, but also reduces complexity and fosters
innovation, setting a new standard for scalable and flexible distributed training systems.

To develop and evaluate the capabilities of TORCHTITAN, we undertook several key steps, which
represent the core contributions of this work, and are summarized as follows:

1. We advance DTensor by extending its sharding to support n-D parallelism, adding compat-
ibility with torch.compile for compiler optimizations, and enabling efficient check-
pointing of n-D models via state dict support. We also resolve critical bugs to bolster
DTensor’s production readiness.

2. We demonstrate how to compose various parallelism techniques, facilitating the exploration
of multi-dimensional parallelism in large language model training (§2.1).

3. We enable novel hardware-software co-designed solutions exploiting advanced hardware
features to increase GPU efficiency, offer customizable activation checkpointing strategies
for navigating memory-computation trade-offs, and utilize torch.compile to further
optimize memory, computation, and communication (§2.2).

4. We offer production grade training by incorporating scalable and efficient distributed
checkpoint to facilitate fast failure recovery, integrating debugging tools like Flight
Recorder to debug crashed/stuck jobs, and provide extensive logging metrics (§2.3).

5. We extensively evaluate TORCHTITAN on Llama 3.1 family of models, stacking 1D to
4D parallelisms (respectively), at the scale from 8 to 512 GPUs to demonstrate elastic
scalability while ensuring efficiency, convergence, and accuracy. In summary, we demon-
strate training accelerations ranging from 65.08% on Llama 3.1 8B at 128 GPU scale (1D),
12.59% on Llama3.1 70B at 256 GPU scale (2D), to 30% on Llama3.1 405B at 512 GPU
scale (3D), and the effectiveness of 4D parallelism in enabling long context training, on
latest NVIDIA H100 GPUs over optimized baselines (§3.2).

6. We provide systematic training recipes and guidelines that empower users to navigate the
complexities of distributed training, helping them optimize training efficiency for a range
of model sizes and cluster configurations (§3.3).

By providing an accessible and extensible platform, TORCHTITAN democratizes large language
model (LLM) pretraining, empowering a wider range of researchers and developers to tap into the
potential of LLMs and accelerate innovation in the field.

2 ELASTICITY THROUGH COMPOSABILITY

Figure 1: Composable and Modular TORCHTITAN initialization workflow.

TORCHTITAN incorporates various parallelisms in a modular manner to enable easy, user-selectable
combinations of multi-dimensional shardings. This composability enables the tackling of difficult
scaling challenges by enhancing the ease of exploration for optimizing training efficiencies at scale.

The codebase of TORCHTITAN is organized purposefully to enable composability and extensibility.
We intentionally keep three main components separate and as orthogonal as possible: (1) the model
definition, which is parallelism-agnostic and designed for readability, (2) parallelism helpers, which
apply parallelisms and training optimizations to a particular model, and (3) a generalized training
loop. All these components are configurable via TOML files with command-line overrides, and it is
easy to add new models and parallelism techniques on top of the existing codebase.
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2.1 COMPOSABLE N-D PARALLELISM TRAINING

In this section, we will walk through the entire regime of scaling model training on large clusters,
including meta device initialization and the core composable multi-dimensional parallelisms, to
showcase how these techniques can be composed to train LLMs efficiently at increasing scale in
TORCHTITAN. The corresponding code snippets in TORCHTITAN can be found in Appendix A.

2.1.1 LARGE-SCALE MODEL INITIALIZATION USING META DEVICE

As LLMs grow exponentially, scaling challenges arise even before training begins, particularly in
instantiating large models for sharding without exceeding CPU or GPU memory limits.

To address this, TORCHTITAN enables meta device initialization, where the model is first created on
a meta device that stores only metadata, making initialization ultra-fast. The model is then sharded
into Distributed Tensors (DTensors), with the local shard of each parameter residing on the meta
device. Finally, parameter initialization is performed using user-defined functions, ensuring correct
DTensor sharding layouts and proper RNG seed usage.

2.1.2 FULLY SHARDED DATA PARALLEL

The original Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023) is an effective implementation of
ZeRO that offers large model training capability in PyTorch. However, the original implementation
(FSDP1) in PyTorch suffers from various limitations due to its FlatParameter implementation.

Given these limitations, TORCHTITAN integrates a new version of Fully Sharded Data Parallel
(FSDP2), which uses the per-parameter Distributed Tensor sharding representation and thus pro-
vides better composability with model parallelism techniques and other features that require the
manipulation of individual parameters.

TORCHTITAN integrates and leverages FSDP2 as it’s default 1D parallelism, benefiting from the
improved memory management (often 7 percent lower per GPU memory requirement vs FSDP1)
and the slight performance gains (average of 1.5 percent gain vs FSDP1). More details on FSDP2
and usage example are shown in Appendix B.1. TORCHTITAN makes it simple to run with FSDP2
by embedding appropriate defaults, including auto-sharding with your world size automatically.

For scaling to even larger world sizes, TORCHTITAN also integrates Hybrid Sharded Data Parallel
(HSDP) which extends FSDP2 by creating 2D DeviceMesh with replica groups. Details are shown
in Appendix B.2

2.1.3 TENSOR PARALLEL

Tensor Parallel (TP) (Narayanan et al., 2021), together with Sequence Parallel (SP) (Korthikanti
et al., 2023), is a key model parallelism technique to enable large model training at scale.

TP is implemented in TORCHTITAN using the PyTorch’s RowwiseParallel and
ColwiseParallel APIs, where the model parameters are partitioned to DTensors and
perform sharded computation with it (Figure 3). By leveraging DTensor, the TP implementation
does not need to touch the model code, which allows faster enablement on different models and
provides better composability with other features mentioned in this paper.

Tensor and Sequence Parallel (TP/SP) While TP partitions the most computationally demanding
aspects, Sequence Parallel (SP) performs a sharded computation for the normalization or dropout
layers on the sequence dimension, which otherwise generate large replicated activation tensors,
and thus can be challenging to memory constraints per GPU. See Appendix B.3 for more details,
illustrations, and usage for both TP and FSDP + TP.

Due to the synergistic relationship between TP and SP, TORCHTITAN natively bundles these two
together, and they are jointly controlled by the TP degree setting.

Loss Parallel When computing the loss function, model outputs are typically large, especially
with TP/SP, where they are sharded across the vocabulary dimension. Naively computing cross-
entropy loss requires gathering all shards, leading to high memory usage.
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Loss Parallel enables efficient loss computation without fully gathering model outputs, significantly
reducing memory consumption and improving training speed by minimizing communication over-
head and enabling parallel sharded computation. Due to these advantages, TORCHTITAN imple-
ments Loss Parallel by default.

2.1.4 PIPELINE PARALLEL

For large-scale pretraining, TORCHTITAN employs Pipeline Parallelism (PP), which minimizes
communication overhead by leveraging P2P communications. PP divides the model into S stages,
each running on a separate group of devices. Typically, each stage represents a model layer or a
group of adjacent layers, but can include partial layers. During the forward pass, each stage re-
ceives input activations (except stage 0), computes locally, and sends output activations (except
stage S − 1). The last stage computes the loss and initiates the backward pass, sending gradients
in reverse order. To improve efficiency, the input batch is split into microbatches, and the pipeline
schedule overlaps computation and communication across microbatches. TORCHTITAN supports
various pipeline schedules (Narayanan et al., 2019; Huang et al., 2019; Narayanan et al., 2021; Qi
et al., 2023). Recently, TORCHTITAN added support for new schedules including ZeroBubble and
’Flexible-Interleaved-1F1B’, making use of pipeline IR to quickly express new schedules as a list of
compute actions and rely on compiler passes to insert and optimize communication actions PyTorch
Team 2024d.

The PP training loop differs from standard training by creating pipeline stages and executing sched-
ules instead of directly invoking model.forward(). Since loss is computed per microbatch,
TORCHTITAN introduces a shared loss_fn to unify pipeline and non-pipeline workflows, reduc-
ing code divergence.

torch.distributed.pipelining also simplifies interactions with data parallelism, ensur-
ing that reductions occur only after the final microbatch and handling shard/unshard operations (e.g.,
with ZeRO-3), as well as applying gradient scaling transparently within the pipeline schedule ex-
ecutor. For more details on TORCHTITAN’s implementation of PP, see Appendix B.4.

2.1.5 CONTEXT PARALLELISM

TORCHTITAN has been extended to incorporate Context Parallelism (CP) (Liu et al., 2023; Liu
& Abbeel, 2024; NVIDIA, 2023), enabling 4D parallelism by adding CP as an additional di-
mension to existing DP, TP, and PP. CP scales model training by splitting the context dimension
across GPUs, significantly increasing the maximum trainable context length without causing out-
of-memory (OOM) errors. For example, on Llama 3.1 8B with 8 H100 GPUs, using CP enabled
training at context lengths up to 262,144 tokens, achieving minor MFU degradation as CP degree
increases (PyTorch Team, 2025). For more details on CP integration please refer to Appendix B.5.

2.2 OPTIMIZING TRAINING EFFICIENCIES

2.2.1 NAVIGATING COMPUTE-MEMORY TRADE-OFFS USING ACTIVATION CHECKPOINTING

Activation checkpointing (AC) (Chen et al., 2016; He & Yu, 2023; Purandare et al., 2023) and
selective activation checkpointing (SAC) (Korthikanti et al., 2023) are standard training techniques
to reduce peak GPU memory usage, by trading activation recomputation during the backward pass
for memory savings. It is often needed even after applying multi-dimensional parallelisms.

TORCHTITAN offers flexible AC and SAC options utilizing torch.utils.checkpoint, ap-
plied at the TransformerBlock level. The AC strategies include “full” AC, op-level SAC, and
layer-level SAC.

Within a TransformerBlock, full AC works by recomputing all activation tensors needed during
the backward pass, whereas op-level SAC saves the results from computation-intensive PyTorch
operations and only recomputes others. Layer-level SAC works in similar fashion as full AC, but
the wrapping is applied to every x TransformerBlock (where x is specified by the user) to
implement configurable trade-offs between memory and recompute. (Details are in Appendix B.6.)
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2.2.2 REGIONAL COMPILATION TO EXPLOIT TORCH.COMPILE OPTIMIZATIONS

torch.compile was released in PyTorch 2 (Ansel et al., 2024) with TorchDynamo as the fron-
tend to extract PyTorch operations into an FX graph, and TorchInductor as the backend to compile
the FX graph into fused Triton code to improve the performance.

In TORCHTITAN, we use regional compilation, which applies torch.compile to each individ-
ual TransformerBlock in the Transformer model. This has two main benefits: (1) we get a
full graph (without graph breaks) for each region, compatible with FSDP2 and TP (and more gen-
erally torch.Tensor subclasses such as DTensor) and other PyTorch distributed training tech-
niques; (2) since the Llama model stacks identical TransformerBlock layers one after another,
torch.compile can identify the same structure is being repeatedly compiled and only compile
once, thus greatly reducing compilation time.

torch.compile brings efficiency in both throughput and memory (see Section 3.2) via compu-
tation fusions and computation-communication reordering, in a model-agnostic way with a simple
user interface. Below we further elaborate how torch.compile composability helps TORCHTI-
TAN unlock hardware-optimized performance gain with simple user interface, with the integration
of advanced features such as Asynchronous TP and Float8.

2.2.3 ASYNCHRONOUS TENSOR PARALLEL TO MAXIMALLY OVERLAP COMMUNICATION

By default, TP incurs blocking communications before/after the sharded computations, causing
computation resources to not be effectively utilized. Asynchronous TP (AsyncTP) (Wang et al.,
2022) achieves computation-communication overlap by fractionalizing the TP matrix multiplica-
tions within attention and feed-forward modules into smaller chunks, and overlapping communica-
tion collectives in between each section. The overlap is achieved by a micro-pipelining optimization,
where results are being communicated at the same time that the other chunks of the matmul are being
computed.

PyTorch AsyncTP is based on a SymmetricMemory abstraction, which creates intra-node buffers
to write faster communication collectives. This is done by allocating a shared memory buffer on
each GPU in order to provide direct P2P access (PyTorch Team, 2024a).

With TORCHTITAN’s integration of torch.compile, AsyncTP can be easily configured in
TORCHTITAN to achieve meaningful end-to-end speedups (see Section 3.2 for details) on newer
hardware (H100 or newer GPUs with NVSwitch within a node). Usage details are in Appendix B.7

2.2.4 BOOSTING THROUGHPUT WITH MIXED PRECISION TRAINING AND FLOAT8 SUPPORT

Mixed precision training (Micikevicius et al., 2018) provides both memory and computational sav-
ings while ensuring training stability. FSDP2 has built-in support for mixed precision training with
basic torch.dtype. This covers the popular usage of performing FSDP all-gather and com-
putation in a low precision (e.g. torch.bfloat16), and perform lossless FSDP reduce-scatter
(gradient) in high precision (e.g. torch.float32) for better numerical results. See Appendix
B.8 for usage details.

TORCHTITAN also supports more advanced mixed precision training with Float8, a derived data
type, applied selectively to linear layers (available on newer hardware like NVIDIA H100), achiev-
ing substantial performance gains while ensuring training stability (reported in Section 3.2). The
Float8 feature from torchao.float8 supports multiple per-tensor scaling strategies, including
dynamic, delayed, and static (see Micikevicius et al. (2022); PyTorch Community (2023b), Section
4.3 for details), while being composable with other key PyTorch-native systems such as autograd,
torch.compile, FSDP2 and TP (with Float8 all-gather capability) (PyTorch Team, 2024c).

2.3 PRODUCTION READY TRAINING

To enable production-grade training, TORCHTITAN offers seamless integration with key features
out of the box. These include (1) efficient checkpointing using PyTorch Distributed Checkpointing
(DCP), and (2) debugging stuck or crashed jobs through integration with Flight Recorder.
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2.3.1 SCALABLE AND EFFICIENT DISTRIBUTED CHECKPOINTING

Checkpoints are crucial in training large language models for two reasons: they facilitate model
reuse in applications like inference and evaluation, and they provide a recovery mechanism in case
of failures. An optimal checkpointing workflow should ensure ease of reuse across different par-
allelisms and maintain high performance without slowing down training. There are two typical
checkpointing methods. The first aggregates the state (model parameters and optimizer states) into
an unsharded version that is parallelism-agnostic, facilitating easy reuse but requiring expensive
communication. The second method has each trainer save its local sharded state, which speeds up
the process but complicates reuse due to embedded parallelism information.

DCP addresses these challenges using DTensor, which encapsulates both global and local tensor
information independently of parallelism. DCP converts this information into an internal format
for storage. During loading, DCP matches the stored shards with the current DTensor-based model
parameters and optimizer states, fetching the necessary shard from storage. TORCHTITAN effec-
tively uses DCP to balance efficiency and usability. Furthermore, DCP enhances efficiency through
asynchronous checkpointing by processing storage persistence in a separate thread, allowing this op-
eration to overlap with subsequent training iterations. TORCHTITAN utilizes DCP’s asynchronous
checkpointing to reduce the checkpointing overhead by 5-15x compared to synchronous distributed
checkpointing for the Llama 3.1 8B model (PyTorch Team, 2024b).

2.3.2 FLIGHT RECORDER TO DEBUG JOB CRASHES

Debugging NCCL collective timeouts at large scales is challenging due to the asynchronous na-
ture of communication kernels. PyTorch’s Flight Recorder addresses this by logging the start, end,
and enqueue times for all collective and p2p operations, along with metadata like process groups,
source/destination ranks, tensor sizes, and stack traces.

This data is invaluable for diagnosing hangs in parallelism code. For PP, it can pinpoint the latest
send or recv completed on the GPU, helping debug schedule bugs. For FSDP and TP, it identifies
ranks that failed to call collectives, aiding in uncovering issues with PP scheduling or TP logic.

3 EXPERIMENTATION

In this section, we demonstrate the effectiveness of elastic distributed training using TORCHTITAN,
via experiments on Llama 3.1 8B, 70B, and 405B, from 1D parallelism to 4D parallelism, at the scale
from 8 GPUs to 512 GPUs. We also share the knowledge and experience gained through TORCHTI-
TAN experimentation. A walkthrough of the codebase on how we apply (up to) 4D parallelism can
be found in Appendix A.

3.1 EXPERIMENTAL SETUP

The experiments are conducted on NVIDIA H100 GPUs2 with 95 GiB memory, where each host is
equipped with 8 GPUs and NVSwitch. Two hosts form a rack connected to a TOR switch. A back-
end RDMA network connects the TOR switches. In TORCHTITAN we integrate a checkpointable
data loader and provide built-in support for the C4 dataset (en variant), a colossal, cleaned version
of Common Crawl’s web crawl corpus (Raffel et al., 2020). We use the same dataset for all exper-
iments in this section. For the tokenizer, we use the official one (tiktoken) released together with
Llama 3.1.

3.2 PERFORMANCE

To showcase the elasticity and scalability of TORCHTITAN, we experiment on a wide range of GPU
scales (from 8 to 512), as the underlying model size increases (8B, 70B, and 405B) with a varying
number of parallelism dimensions (up to 4D). To demonstrate the effectiveness of the optimization
techniques introduced in Section 2.2, we show how training throughput improves when adding each

2The H100 GPUs used for the experiments are non-standard. They have HBM2e and are limited to a lower
TDP. The actual peak TFLOPs should be between SXM and NVL, and we don’t know the exact value.

7



Published as a conference paper at ICLR 2025

individual technique on appropriate baselines. In particular, when training on a higher dimensional
parallelism with new features, the baseline is always updated to include all previous techniques.

We note that, throughout our experimentation, memory readings are stable across the whole training
process3, whereas throughput numbers (token per second, per GPU) are calculated and logged every
10 iterations, and always read at the (arbitrarily determined) 90th iteration. We do not report Model
FLOPS Utilization (MFU) (Chowdhery et al., 2023) because when Float8 is enabled in TORCHTI-
TAN, both BFLOAT16 Tensor Core and FP8 Tensor Core are involved in model training, but they
have different peak FLOPS and the definition of MFU under such scenario is not well-defined. We
note that the 1D Llama 3.1 8B model training on 8 or 128 H100 GPUs without Float8 achieves 33%
to 42% MFU.

Table 1: 1D parallelism (FSDP) on Llama 3.1 8B model, 8 GPUs. Mixed precision training. Selec-
tive activation checkpointing. Local batch size 2, global batch size 16. (Stats per GPU)

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)
FSDP 6,258 100% 81.9
+ torch.compile 6,674 + 6.64% 77.0
+ torch.compile + Float8 9,409 + 50.35% 76.8

Table 2: 1D parallelism (FSDP) on Llama 3.1 8B model, 128 GPUs. Mixed precision training.
Selective activation checkpointing. Local batch size 2, global batch size 256. (Stats per GPU)

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)
FSDP 5,645 100% 67.0
+ torch.compile 6,482 + 14.82% 62.1
+ torch.compile + Float8 9,319 + 65.08% 61.8

Table 3: 2D parallelism (FSDP + TP) + torch.compile + Float8 on Llama 3.1 70B model, 256
GPUs. Mixed precision training. Full activation checkpointing. FSDP degree 32, TP degree 8.
Local batch size 16, global batch size 512. (Stats per GPU)

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)
2D 897 100% 70.3
+ AsyncTP 1,010 + 12.59% 67.7

Table 4: 3D parallelism (FSDP + TP + PP) + torch.compile + Float8 + AsyncTP on Llama 3.1
405B model, 512 GPUs. Mixed precision training. Full activation checkpointing. FSDP degree 4,
TP degree 8, PP degree 16. Local batch size 32, global batch size 128. (Stats per GPU)

Schedule Throughput (Tok/Sec) Comparison Memory (GiB)
1F1B 100 100% 78.0
Interleaved 1F1B 130 + 30.00% 80.3

Additional experimental details and loss-convergence tests for correctness can be found in Ap-
pendix B.10.

3.3 SCALING WITH TORCHTITAN 4D PARALLELISM

Scaling large language models (LLMs) requires parallelism strategies to handle increasing model
sizes and data on thousands of GPUs. TORCHTITAN enables efficient scaling through composable

3Different PP ranks can have different peak memory usages. We take the maximum across all GPUs.
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Table 5: FSDP + CP + torch.compile + Float8 on Llama 3.1 8B model, 8 GPUs. Mixed
precision training. Full activation checkpointing. Local batch size 1. (Stats per GPU)

Schedule Sequence Length Throughput (Tok/Sec) Memory (GiB)
FSDP 8, CP 1 32,768 3,890 83.9
FSDP 4, CP 2 65,536 2,540 84.2
FSDP 2, CP 4 131,072 1,071 84.0
FSDP 1, CP 8 262,144 548 84.5

Table 6: 4D parallelism (FSDP + TP + PP + CP) + torch.compile + Float8 + AsyncTP + 1F1B
on Llama 3.1 405B model, 512 GPUs. Mixed precision training. Full activation checkpointing. TP
degree 8, PP degree 8. Local batch size 8. (Stats per GPU)

Schedule Sequence Length Throughput (Tok/Sec) Memory (GiB)
FSDP 8, CP 1 32,768 76 75.3
FSDP 4, CP 2 65,536 47 75.9
FSDP 2, CP 4 131,072 31 77.1
FSDP 1, CP 8 262,144 16 84.9

4D parallelism. This section highlights key observations and motivations for using TORCHTITAN
4D parallelism, focusing on a specific combination shown in Figure 2.

Figure 2: Scaling with 4D Parallelism

3.3.1 SCALING WITH FSDP

FSDP (ZeRO) is a general technique applicable to any model architecture and is often sufficient
as the first degree of parallelism when communication is faster than computation (e.g., up to 512
GPUs). However, with larger scales, collective latency increases linearly with the world size, limit-
ing efficiency. To overcome this, model parallelism like TP and PP can be combined with FSDP.

3.3.2 2D PARALLELISM: TP WITH FSDP

Tensor Parallelism (TP) reduces collective latency by distributing work across GPUs, enabling
smaller effective batch sizes and reducing peak memory usage for large models or sequence lengths.
Combining FSDP and TP allows strong scaling with a fixed problem/batch size (Details shown in
Figure 4). TP also improves FLOP utilization by optimizing matrix multiplication shapes. However,
TP introduces blocking collectives and is typically limited to intra-node scaling (e.g., NVLink), with
degrees usually capped at 8. Scaling beyond 4192 GPUs requires combining TP with PP.
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3.3.3 3D PARALLELISM: PP WITH 2D PARALLELISM

Pipeline Parallelism (PP) reduces communication bandwidth requirements by transmitting only ac-
tivations and gradients between stages in a peer-to-peer manner. PP is particularly effective for
mitigating FSDP communication latency at larger scales or in bandwidth-limited clusters. The ef-
ficiency of PP depends on pipeline schedules and microbatch sizes, which influence the size of
pipeline “bubbles.”

3.3.4 LONG CONTEXT TRAINING AND 4D PARALLELISM

Context Parallelism (CP) allows ultra long context training by splitting the context (sequence) di-
mension across GPUs to avoid OOM errors. CP is mainly used for long context training, to give the
model capability to capture more correlations for tokens, thus enhancing the overall model quality.
For scaling sequence length, CP can be used alone or together with DP. When training large models
or on large number of GPUs, we can combine CP with 3D paralleism, where TP usually keeps the
innner-most DeviceMesh dimension, and CP applies in the next outer DeviceMesh dimension.

4 RELATED WORK

Libraries such as Megatron-LM (Narayanan et al., 2021), DeepSpeed (Rasley et al., 2020),
veScale (Inc., 2024) and PyTorch Distributed (Paszke et al., 2019; Meta Platforms, Inc., 2024) pro-
vide APIs for distributed workflows. However, these frameworks present challenges in flexibility,
integration, and scalability. TORCHTITAN addresses these limitations with native support for key
features absent in existing systems:

• Megatron-LM: Requires model modifications for TransformerEngine, lacks seamless FSDP
integration with TP and PP, and does not support advanced pipeline schedules to minimize
computation overhead.

• DeepSpeed: Depends on Megatron-LM for TP and CP, with limited support for FSDP and
advanced pipeline schedules.

• veScale: Does not support FSDP, CP, SAC, Float8 training, or torch.compile, and
offers only three pipeline schedules, compared to TORCHTITAN ’s six.

We note that each of these libraries has its own strengths, and TORCHTITAN is designed to provide
foundational components that can be leveraged by all of them. A detailed comparison, includ-
ing feature breakdowns and code complexity analysis, is available in Appendix B.9. Slapo (Chen
et al., 2023) introduces a schedule language to convert a PyTorch model for common model train-
ing optimizations such as 3D parallelism, and supports progressive optimization through high-level
primitives. In contrast, TORCHTITAN provides modular and composable APIs built on DTensor and
DeviceMesh.

5 CONCLUSION

TORCHTITAN is a powerful and flexible framework for LLM training, enabling seamless com-
posability of parallelism techniques (FSDP, TP, PP, CP), memory optimizations (Float8, activation
checkpointing), and PyTorch compiler integration for enhanced efficiency. Its modular design sup-
ports evolving architectures and hardware, fostering innovation with multi-axis metrics.

Designed for interpretability and production-grade training, TORCHTITAN offers elastic scalability,
comprehensive training recipes, and expert guidance on distributed training strategies. As demon-
strated in experiments, it accelerates training by 65.08% on Llama 3.1 8B (128 GPUs, 1D), 12.59%
on Llama 3.1 70B (256 GPUs, 2D), and 30% on Llama 3.1 405B (512 GPUs, 3D) over optimized
baselines, while enabling long-context training with 4D composability. With its robust features and
high efficiency, TORCHTITAN is an ideal one-stop solution for challenging LLM training tasks.
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A COMPOSABLE 4D PARALLELISM WALKTHROUGH

We have discussed the scaling with TORCHTITAN 4D parallelism and the motivations to apply
different parallelisms to scale training to thousands of GPUs. In this section we will walk through
the 4D parallelism code in TORCHTITAN.

The first step is to create an instance of the model (e.g. the Transformer for Llama models)
on the meta device. We then apply PP by splitting the model into multiple PP stages according to
the pipeline_parallel_split_points config. Note that for PP with looped schedules,
we may obtain multiple model_parts from PP splitting, where each item in model_parts is
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one stage-model-chunk. Next we apply SPMD-style distributed training techniques including TP,
activation checkpointing, torch.compile, FSDP, and mixed precision training for each model part,
before actually initializing the sharded model on GPU.

# meta init
with torch.device("meta"):

model = model_cls.from_model_args(model_config)

# apply PP
pp_schedule, model_parts = models_pipelining_fns[model_name](

model, pp_mesh, parallel_dims, job_config, device, model_config,
loss_fn

)

for m in model_parts:
# apply SPMD-style distributed training techniques
models_parallelize_fns[model_name](m, world_mesh, parallel_dims,

job_config)
# move sharded model to GPU and initialize weights via DTensor
m.to_empty(device="cuda")
m.init_weights()

To apply PP to the model, we run the following code at the high level.
pipeline_llama_manual_split splits the model into multiple stages according to the
manually given pipeline_parallel_split_points config, by removing the unused model
components from a complete model (on the meta device). Then build_pipeline_schedule
make the pipeline schedule with various options from torch.distributed.pipelining,
including 1F1B (Narayanan et al., 2019), GPipe (Huang et al., 2019), interleaved 1F1B (Narayanan
et al., 2021), etc. instructed by the pipeline_parallel_schedule config.

stages, models = pipeline_llama_manual_split(
model, pp_mesh, parallel_dims, job_config, device, model_config

)
pp_schedule = build_pipeline_schedule(job_config, stages, loss_fn)
return pp_schedule, models

TP and FSDP are applied in the SPMD-style models_parallelize_fns function. To apply
TP, we utilize the DTensor parallelize_module API, by providing a TP “plan” as the in-
struction of how model parameters should be sharded. In the example below, we showcase the
(incomplete) code for sharding the repeated TransformerBlock.

for layer_id, transformer_block in model.layers.items():
layer_tp_plan = {

"attention_norm": SequenceParallel(),
"attention": PrepareModuleInput(

input_layouts=(Shard(1), None),
desired_input_layouts=(Replicate(), None),

),
"attention.wq": ColwiseParallel(),
...

}
parallelize_module(

module=transformer_block,
device_mesh=tp_mesh,
parallelize_plan=layer_tp_plan,

)

Then, we apply the FSDP by wrapping each individual TransformerBlock and then the whole
model. Note that the FSDP2 implementation in PyTorch comes with mixed precision training sup-
port. By default, we use torch.bfloat16 on parameters all-gather and activation computations,
and use torch.float32 on gradient reduce-scatter communication and optimizer updates.
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mp_policy = MixedPrecisionPolicy(param_dtype, reduce_dtype)
fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}

for layer_id, transformer_block in model.layers.items():
# As an optimization, do not reshard_after_forward for the last
# TransformerBlock since FSDP would prefetch it immediately
reshard_after_forward = int(layer_id) < len(model.layers) - 1
fully_shard(

transformer_block,
**fsdp_config,
reshard_after_forward=reshard_after_forward,

)
fully_shard(model, **fsdp_config)

Independently, we can apply CP by running each training iteration under a Python context manager.

optional_context_parallel_ctx = (
utils.create_context_parallel_ctx(

cp_mesh=world_mesh["cp"],
cp_buffers=[input_ids, labels] + [m.freqs_cis for m in

model_parts],
cp_seq_dims=[1, 1] + [0 for _ in model_parts],
cp_no_restore_buffers={input_ids, labels},
cp_rotate_method=job_config.experimental.context_parallel_rotate_method,

)
if parallel_dims.cp_enabled
else None

)
...
with train_context(optional_context_parallel_ctx):

pred = model(input_ids)
loss = loss_fn(pred, labels)

B SUPPLEMENTARY MATERIALS

B.1 FULLY SHARDED DATA PARALLEL

FSDP2 advances the tensor sharding approach by replacing the original FSDP1 FlatParameter shard-
ing. Specifically, parameters are now represented as DTensors sharded on the tensor dimension 0.
This provides better composability with model parallelism techniques and other features that re-
quires the manipulation of individual parameters, allowing sharded state dict to be represented by
DTensor without any communication, and provides for a simpler meta-device initialization flow via
DTensor. For example, FSDP2 unlocks finer grained tensor level quantization, especially Float8
tensor quantization, which we will showcase in the results section.

As part of the rewrite from FSDP1 to FSDP2, FSDP2 implements an improved memory management
system by avoiding using record stream. This enables deterministic memory release, and as a result
provides lower memory requirements per GPU relative to FSDP1. For example on Llama 2 7B,
FSDP2 records an average of 7% lower GPU memory versus FSDP1.

In addition, by writing efficient kernels to perform multi-tensor allgather and reduce scatter, FSDP2
shows on-par performance compared to FSDP1, with even slight performance gains - using the
Llama 2 7B, FSDP2 shows an average gain of 1.5% faster throughput.

The performance gains are the result of employing two small performance improvements. First,
only a single division kernel is run for the FP32 reduce scatter (pre-dividing the local FP32 reduce-
scatter gradient by world size, instead of a two step pre and post divide by square root of world size).
Secondly, in TORCHTITAN, FSDP2 is integrated with a default of not re-sharding the final block in
a transformer layer during the forward pass, since it will be immediately re-gathered at the start of
the backward pass.
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Usage: TORCHTITAN has fully integrated FSDP2 as the default parallelism when training, and the
data_parallel_shard_degree is the controlling dimension in the command line or TOML
file. Note that for ease of use, the default data_parallel_shard_degree is -1, means to
simply use all GPUs available, so user do not need to specify the actual world size.

B.2 HYBRID SHARDED DATA PARALLEL

Hybrid Sharded Data Parallel (HSDP) is an extension of FSDP (Zhang et al., 2022). In FSDP,
communication occurs between all devices within the FSDP group. However, at some point,
the FSDP communication overhead exceeds its corresponding computation because the latency of
allgather/reduce-scatter communications increases linearly with the number of devices. This results
in low MFU and becomes worthless to add more GPUs for scaling.

HSDP obviates this to some degree by creating a 2-D DeviceMesh that contains replica groups on
one dimension and shard groups on the other dimension, where each shard group runs FSDP and
the replica group runs normal data parallel. This ensures the FSDP communications happen in a
fraction of the original world size, with the addition of backward gradient allreduce across replica
groups. HSDP reduces FSDP communication overhead and allows further scaling with data parallel.

Usage: TORCHTITAN makes it easy to experiment with HSDP by using the two configurable
settings: data_parallel_shard_degree and data_parallel_replicate_degree,
which controls the degree of the shard and replica groups we are creating. The product of both
replicate and shard degree is the actual data parallel world size.

B.3 TENSOR PARALLEL

TP partitions the attention and feed forward network (MLP) modules of a transformer layer across
multiple devices, where the number of devices used is the TP degree. This allows for multiple
GPUs to cooperatively process the same batch by using the local sharded model parameters, at
the cost of adding all-reduce/all-gather/reduce-scatter operations to synchronize
intermediate activations.

Figure 3: Tensor Parallel in detail (2 GPUs, data moves from left to right).

Due to the additional collectives introduced by TP, it needs to happen within a fast network (i.e
NVLink). When training LLMs, TP is usually combined with FSDP, where TP shards within nodes
and FSDP shards across nodes to create the 2D hierarchical sharding on different DeviceMesh di-
mensions.

Usage: Because of the synergistic relationship between TP and SP, TORCHTITAN natively bundles
these two together and they are jointly controlled by the TP degree setting in the command line
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Figure 4: FSDP2 + Tensor Parallel (TP degree 4) sharding layout, with 2 nodes of 4 GPUs.

or the TOML entry of tensor_parallel_degree. Setting this to 2 for example would mean
that 2 GPUs within the node will share the computational load for each transformer layers attention
and MLP modules via TP, and normalization/dropout layers via Sequence Parallel. Loss Parallel is
implemented via a context manager as it needs to control the loss computation outside of the model’s
forward computation. It can be enabled via enable_loss_parallel.

B.4 PIPELINE PARALLEL

We expose several parameters to configure PP. pipeline_parallel_degree controls the
number of ranks participating in PP. pipeline_parallel_split_points accepts a list
of strings, representing layer fully-qualified-names before which a split will be performed.
Thus, the total number of pipeline stages V will be determined by the length of this list.
pipeline_parallel_schedule accepts the name of the schedule to be used. If the schedule
is multi-stage, there should be V > 1 stages assigned to each pipeline rank, otherwise V == 1.
pipeline_parallel_microbatches controls the number of microbatches to split a data
batch into.

B.5 ENABLING 4D PARALLEL TRAINING: CONTEXT-PARALLEL (CP)

To address context scaling, we have incorporated Context Parallelism (CP) into TORCHTI-
TAN. Following the principles of modular design of TORCHTITAN, CP was integrated
via a context manager that dynamically replaces calls to attention operators (namely,
scaled dot product attention) with CP operations, ensuring no changes to the model
code are required.

Under the hood, CP shards the DTensor along the sequence dimension across the CP device mesh.
It extends the DTensor dispatcher to handle CP-specific operations, such as Ring Attention and
causal attention load balancing, ensuring efficient operation. By extending DTensor’s capabilities to
support CP, TORCHTITAN ensures that CP is fully compatible with all other parallelisms (FSDP, TP,
PP), optimizations (e.g., activation checkpointing, torch.compile), and DCP. This demonstrates
the extensibility of TORCHTITAN ’s modular design, which accommodates future optimizations
seamlessly while maintaining performance and compatibility.
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B.6 ACTIVATION CHECKPOINTING

TORCHTITAN offers two types of Selective Activation Checkpointing which allow for a more nu-
anced tradeoff between memory and recomputation. Specifically, we offer the option to selectively
checkpoint “per layer” or “per operation”. The goal for per operation is to free memory used by op-
erations that are faster to recompute and save intermediates (memory) for operations that are slower
to recompute and thus deliver a more effective throughput/memory trade-off.

Usage: AC is enabled via a two-line setting in the command line or TOML file. Specifically, mode
can be either none, selective, or full. When selective is set, then the next config of
selective_ac_type is used which can be either a positive integer to enable selective layer
checkpointing, or op to enable selective operation checkpointing. Per layer takes an integer input to
guide the checkpointing policy, where 1 = checkpoint every layer (same as full), 2 = checkpoint ev-
ery other layer, 3 = checkpoint every third layer, etc. Per op(eration) is driven by the _save_list
policy in parallelize_llama.pywhich flags high arithmetic intensity operations such as mat-
mul (matrix multiplication) and SPDA (Scaled Dot Product Attention) for saving the intermediate
results, while allowing other lower intensity operations to be recomputed. Note that for balancing
total throughput, only every other matmul is flagged for saving.

B.7 ASYNCTP

The SymmetricMemory collectives used in AsyncTP are faster than standard NCCL collectives
and operate by having each GPU allocate an identical memory buffer in order to provide direct P2P
access. SymmetricMemory relies on having NVSwitch within the node, and is thus generally
only available for H100 or newer GPUs.

Usage: AsyncTP is enabled within the experimental section of the TORCHTITAN TOML config file
and turned on or off via the enable_async_tensor_parallel boolean setting.

B.8 CUSTOMIZING FSDP2 MIXED PRECISION IN TORCHTITAN

Mixed Precision is controlled by the MixedPrecisionPolicy class in the apply_fsdp func-
tion, which is then customized with param_dtype as BF16, and reduce_dtype defaulting to
FP32 by default in TORCHTITAN. The reduce_dtype in FP32 means that the reduce-scatter in
the backwards pass for gradient computation will take place in FP32 to help maximize both stability
and precision of the gradient updates.

B.9 TORCHTITAN: COMPREHENSIVE FEATURE SET AND REDUCED COMPLEXITY

B.9.1 TORCHTITAN ENABLES NEW DESIGNS

TORCHTITAN ’s extensive feature set and broad design space coverage are driven by its unified
design principles i.e. modularity, composability, and extensibility. Leveraging these principles,
TORCHTITAN seamlessly integrates diverse parallelism strategies (FSDP, TP, PP, and CP) and opti-
mizations (e.g., SAC, Float8 training). This unified framework not only supports advanced pipeline
schedules and multi-dimensional parallelism but also simplifies the integration of new techniques,
making it highly adaptable for cutting-edge research and production-grade deployments.

The following table highlights TORCHTITAN ’s capabilities in context of parallelism, checkpointing
and compiler support offerings compared to Megatron-LM, DeepSpeed, and veScale:

B.9.2 CODE COMPLEXITY AND MAINTAINABILITY

TORCHTITAN ’s design principles also contribute to its significantly reduced code complexity. De-
spite offering a rich feature set, TORCHTITAN maintains a compact and modular codebase, making
it easier to extend, maintain, and evolve while ensuring high performance. The following table
compares the lines of code (LOC) for TORCHTITAN with Megatron-LM and DeepSpeed:

4Custom Fusion Kernels
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Table 7: Comparison of TORCHTITAN with Megatron-LM, DeepSpeed, and veScale with respect to
parallelism, compiler support, activation checkpointing, and model checkpointing.

Features TORCHTITAN Megatron-LM DeepSpeed veScale
FSDP-Zero2 Yes Yes Yes No
FSDP-Zero3 Yes Yes Yes No
HSDP Yes Yes No No
TP Yes Yes No Yes
Async TP (Micro-pipelining) Yes Yes No Yes
CP Yes Yes No No
PP-Gpipe Yes Yes Yes No
PP-Interleaved (1F1B) Yes Yes Yes Yes
PP-Looped-BFS Yes No No No
PP-1F1B Yes Yes Yes Yes
PP-Flexible-Interleaved-1F1B Yes No No No
PP-ZeroBubble Yes No No Yes
(TP+SP)+PP Yes Yes No Yes
DDP+(TP+SP)+PP Yes Yes No Yes
FSDP+(TP+SP) Yes No No No
FSDP+(TP+SP)+PP Yes No No No
FSDP+(TP+SP)+PP+CP Yes No No No
MoE Ongoing Yes No No
Full AC Yes Yes Yes Yes
Flexible SAC Yes No No No
DCP Yes Yes Yes Yes
Float8 Training Yes Yes No No
torch.compile Yes No4 Partial No

Table 8: Lines of Code (LOC) comparison across systems.
Lines of Code (LOC) TORCHTITAN Megatron-LM DeepSpeed
Core Codebase 7K 93K 94K
Total Codebase (Including Utils) 9K 269K 194K

B.10 EXTENDED EXPERIMENTS ANALYSIS: PERFORMANCE AND LOSS CONVERGING

B.10.1 PERFORMANCE

Our experiments in Section 3.2 serve multiple objectives:

• Establish composability and modularity: TORCHTITAN demonstrates seamless integra-
tion of various parallelisms and optimization techniques.

• Showcase performance improvements: Significant speed-ups are observed across paral-
lelisms and optimizations.

• Validate elastic scalability: TORCHTITAN scales effectively with both the model size and
the number of GPUs.

• Ablation studies: Detailed performance gains for individual techniques are presented.

In particular

• Table 1: Highlights improvements from compiler support over eager execution, followed
by further gains with Float8 training.

• Table 2: Demonstrates how earlier gains scale as the number of GPUs increases.
• Table 3: Shows speed-up achieved by AsyncTP (a HW/SW co-designed technique) over

2D training combined with torch.compile and Float8 training.
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• Table 4: Quantifies the benefits of Interleaved 1F1B scheduling over 1F1B on top of
AsyncTP, torch.compile, and Float8 training.

• Table 5: Demonstrates the effectiveness of CP on enabling long context training, even at
small scale.

• Table 6: Demonstrate the composability of 4D parallelism, and the effectiveness of CP on
enabling long context training at large scale.

For FSDP, the ZeRO-3 variant is used for all experiments except for those involving PP where the
ZeRO-2 variant is used. This distinction is due to the inefficiency of ZeRO-3 in PP, where it incurs
additional all-gather calls for each microbatch. In contrast, ZeRO-2 gathers parameters only once
for the first microbatch and reshards after the last microbatch’s backward pass.

B.10.2 LOSS CONVERGING

TORCHTITAN ’s design principles have influenced the development of advanced distributed training
features such as FSDP2, AsyncTP, PP, and CP in PyTorch’s distributed library. Throughout these
contributions, we have ensured the loss converging of individual techniques as well as their various
combinations of parallelisms and optimizations.

For example, below is a series of loss-converging tests covering both parallelisms and training op-
timizations. We use notations of “FSDP 8” for an experiment in which the degree of FSDP is 8,
“FSDP 8, CP 8” for an experiment on 64 GPUs where FSDP degree is 8 and CP degree is 8, etc. We
assume the correctness of FSDP, which can be further verified by comparing it with DDP or even
single-device jobs.

Table 9: Loss-converging tests setup.
Parallelism Techniques
FSDP 8 (ground truth) default
FSDP 8, TP 2, PP 2 torch.compile, Float8, async TP, Interleaved 1F1B
FSDP 8, TP 2, CP 2, PP 2 torch.compile, Float8, async TP, Interleaved 1F1B
FSDP 8, CP 8 default

Figure 5: Loss converging tests on Llama 3.1 8B. C4 dataset. Local batch size 4, global batch size
32. 3000 steps, 600 warmup steps.
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