
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 INSTRUCTION SENTENCES

As detailed in Section 4, RISCompiler constructs Instruction Sentences through a structured process
illustrated in Figure 8 (identical to Figure 3 in the main text). These sentences serve as intermediate
representations that systematically encode program transformations for RISC-V vectorization. The
accompanying algorithm flowchart and our step-by-step dissection will elucidate how RISCompiler:

1. It translates optimization decisions into model-friendly textual formats.
2. It maintains semantic equivalence with the target assembly
3. It bridges high-level transformations to low-level implementations.

This breakdown complements the main text’s conceptual framework with implementational
specifics.

1
2
3
4
5
6
7
8
9
10
11
12

p0 p1 matmul p2 00a625a8 1024 512 1024 512 1024 512
riscv -keys=cpu -mcpu=rv64gcv -model=rv64 SP 2 0 1024 32 1 4 1
SP 2 4 512 8 1 4 1 SP 2 8 1024 1024 1 RE 2 0 4 1 5 8 2 6 9 3 7
FSP 4 0 0 2 FSP 4 3 1 2 RE 4 0 3 1 4 2 5 CA 2 4 3
vector_width$8,16,32,64
vector_reg_count$16,32,64
Vector_element_count$4,8,16
vector_instr_combo$vadd+vmul,vle+vse,...
vector_mem_access$continuous,noncontinuous
vector_sched$static,dynamic
vector_precision$int8,int16,float32
auto_unroll_max_step$0 ESC

Figure 8: The sample of instruction sentence designed for ILM in RISCompiler.

Instruction sentence uniquely corresponds to a tensor program by recording the input operator, in-
struction and hardware specifications, and decision information of the tensor program. Algorithm 1
illustrates the sampling-based transformation space exploration mechanism employed by RISCom-
piler’s Instruction-Level Model (ILM). The algorithm operates in one core functions:

• GetSampleData: This function comprises two key subroutines:
– GetTokensFromOp: Processes the input sequence by extracting the operator type,

parameter configurations, and associated tokens, then updates the corresponding op-
erator metadata.

– GetTokensFromInstr: Similarly processes RISC-V instructions alongside their
tokens to update RISC-V-specific metadata.

The updated operator and RISC-V metadata are then passed to GetSpaces, which con-
structs a solution space—a multi-dimensional optimization space encompassing common
optimization dimensions for RISC-V Vector Extensions.
As for the transformation space, structures, it is composed of 22 interleaved optimization
dimensions, including but not limited to:

– Loop optimizations (e.g., loop splitting, vectorization).
– Data layout and memory access (e.g., cache allocation strategies).
– Instruction selection and scheduling.
– Register and resource management (e.g., register elimination).
– Hardware-specific feature utilization.
– Function and code structure optimizations.
– . . .

Key optimization dimensions are abbreviated as SP (Split), RE (Register Elimination), FSP
(Function Split), and CA (Cache Allocation), among others; these collectively enable fine-
grained tuning across the entire optimization pipeline.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

As for the HandleVectorWidth, it implements vector width tuning as one of the 22 optimization
dimensions in the solution space. It first appends a “vector width” token to mark this optimization
step, then serializes and incorporates metadata about both the target operator (space.operator) and
optimization axis (space.axis) into the token sequence. Finally, it randomly samples a vector width
configuration from the solution space (RandomSample) and adds it to the token stream. This pro-
cess systematically encodes vector width optimization decisions into the tokenized representation,
enabling hardware-aware tuning in subsequent pipeline stages.

1
2
3
4
5
6
7
8
9
10
11
12

p0 p1 matmul p2 00a625a8 1024 512 1024 512 1024 512
riscv -keys=cpu -mcpu=rv64gcv -model=rv64 SP 2 0 1024 32 1 4 1
SP 2 4 512 8 1 4 1 SP 2 8 1024 1024 1 RE 2 0 4 1 5 8 2 6 9 3 7
FSP 4 0 0 2 FSP 4 3 1 2 RE 4 0 3 1 4 2 5 CA 2 4 3
vector_width$8,16,32,64
vector_reg_count$16,32,64
Vector_element_count$4,8,16
vector_instr_combo$vadd+vmul,vle+vse,...
vector_mem_access$continuous,noncontinuous
vector_sched$static,dynamic
vector_precision$int8,int16,float32
auto_unroll_max_step$0 ESC

Figure 9: The input operator configurations in instruction sentence.

The configuration of the input operators is illustrated in Figure 9. In this example, p0 and p1 rep-
resent the two input variables, and the matmul operation indicates that these two variables will
undergo a matrix multiplication, i.e., the transpose of p0 and p1 will be multiplied, and the result
will be stored in p2. The unique hash code 00a625a8 serves to identify the specific operator com-
putation, while the subsequent values of 1024, 512, 1024, 512, 1024, 512 represent the shapes of p0,
p1, and p2, respectively. This detailed specification of the operator configuration in Figure 9, includ-
ing the input variables, the computation performed, and the output shapes, provides a comprehensive
understanding of the transformation applied to the data.

1
2
3
4
5
6
7
8
9
10
11
12

p0 p1 matmul p2 00a625a8 1024 512 1024 512 1024 512
riscv -keys=cpu -mcpu=rv64gcv -model=rv64 SP 2 0 1024 32 1 4 1
SP 2 4 512 8 1 4 1 SP 2 8 1024 1024 1 RE 2 0 4 1 5 8 2 6 9 3 7
FSP 4 0 0 2 FSP 4 3 1 2 RE 4 0 3 1 4 2 5 CA 2 4 3
vector_width$8,16,32,64
vector_reg_count$16,32,64
Vector_element_count$4,8,16
vector_instr_combo$vadd+vmul,vle+vse,...
vector_mem_access$continuous,noncontinuous
vector_sched$static,dynamic
vector_precision$int8,int16,float32
auto_unroll_max_step$0 ESC

Figure 10: The RISC-V specialized optimization in instruction sentence.

As illustrated in Figure 10, the corresponding RISC-V specialized optimizations are applied during
the program transformation process. The specific abbreviations for these optimizations have been
introduced in Algorithm 1.

1
2
3
4
5
6
7
8
9
10
11
12

p0 p1 matmul p2 00a625a8 1024 512 1024 512 1024 512
riscv -keys=cpu -mcpu=rv64gcv -model=rv64 SP 2 0 1024 32 1 4 1
SP 2 4 512 8 1 4 1 SP 2 8 1024 1024 1 RE 2 0 4 1 5 8 2 6 9 3 7
FSP 4 0 0 2 FSP 4 3 1 2 RE 4 0 3 1 4 2 5 CA 2 4 3
vector_width$8,16,32,64
vector_reg_count$16,32,64
Vector_element_count$4,8,16
vector_instr_combo$vadd+vmul,vle+vse,...
vector_mem_access$continuous,noncontinuous
vector_sched$static,dynamic
vector_precision$int8,int16,float32
auto_unroll_max_step$0 ESC

Figure 11: The RISC-V vectorized extension in instruction sentence.

Similarly, Figure 11 demonstrates the RISC-V vectorized extension-level optimizations and their
possible values. Together, Figure 9, Figure 10, and Figure 11 constitute the complete instruction
sentence, providing a comprehensive representation of the various optimization components applied
to the program.

This holistic view of the instruction sentence, encompassing the operator configuration, RISC-V spe-
cialized optimizations, and RISC-V vectorized extension-level optimizations, enables the Instruction
Language Model (ILM) to learn and generate detailed and context-aware optimization guidance. By
capturing the intricate relationships between these different aspects of the optimization process, the
ILM can provide more informed and targeted recommendations to the users.

B DATASET

The Instruction Language Model’s performance is fundamentally constrained by the quality and
diversity of its training corpus. We construct an extensive offline dataset to enable the ILM to
acquire comprehensive knowledge about the transformation space. The offline dataset collection
process is a crucial step in our approach, as it provides the comprehensive knowledge base required

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1 Instruction sentences with sampling in the space.
1: function GETSAMPLEDATA(Operator, RISC-V)
2: tokens [];
3: GetTokensFromOp (Operator, tokens);
4: GetTokensFromInstr (RISC-V, tokens);
5: transformation spaces = GetSpaces (Operator, RISC-V);
6: for space in transformation spaces do
7: if space.type == “SP” then
8: HandleSplit (space, tokens);
9: else if space.type == “RE” then

10: HandleRegisterElimination (space, tokens);
11: else if space.type == “FSP” then
12: HandleFunctionSplit (space, tokens);
13: else if space.type == “CA” then
14: HandleCacheAllocation (space, tokens);
15: else if then
16: . . . ;
17: else if space.type == “VectorWidth” then
18: HandleVectorWidth (space, tokens);
19: end if
20: end for
21: return tokens;
22: end function
23: function HANDLEVECTORWIDTH(space, tokens)
24: tokens.append (“vector width”);
25: tokens.extend (Serialize(space.operator));
26: tokens.extend (Serialize(space.axis));
27: width = RandomSample (space);
28: tokens.extend (Serialize(width));
29: end function

by the Instruction Language Model (ILM). This data collection effort is equipped with a tensorized
instruction format, which enables efficient processing and storage of the dataset.

The complete offline dataset collection takes approximately 8.5 hours to gather on a dedicated server.
The server hardware used for this task is equipped with an Intel Core i9-12900K CPU, which has 16
cores and 24 threads. This high-performance server configuration allows for parallel processing and
accelerated data collection, ensuring the efficient generation of the extensive offline dataset. The
process involves the following key objectives:

1. Ensuring Dataset Alignment: We conduct a thorough random sampling of the transfor-
mation space to ensure that the dataset samples closely match the underlying distribution
in the transformation space. This helps the ILM learn from a representative set of transfor-
mations.

2. Expanding Vocabulary Comprehensively: The sampling process aims to expand the vo-
cabulary used to describe the transformations, covering a diverse range of vectorized opti-
mization possibilities. This includes distinct tokens for concepts such as “vector width” and
“vector register count”, allowing the ILM to learn the nuances of these important attributes.

3. Incorporating Diverse Operators: The operators sampled for the ILM are inspired by
the TenSet benchmark Zheng et al. (2021). These operators are sourced from PyTorch
Image Models (timm)Wightman (2019) and Hugging Face’s Transformer ModelsWolf et al.
(2020), spanning both computer vision and natural language processing tasks. This diverse
set of operators ensures that the ILM can learn from a comprehensive set of vectorized
transformations.

4. Dataset Characteristics: The offline dataset comprises 86 workloads and around 1.8K
operators, with over 0.5 million instruction sentences that cover a wide range of vectorized
optimizations. Constructing this dataset takes approximately 8.5 hours on a 16-core server,
demonstrating the scale and thoroughness of the data collection process.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Compilation Time Comparison Across Baselines (seconds).

Benchmark Scalar Claude-3-Haiku GCC-Loops LLVM-Vectorizer RISCompiler
GEMM 0.98 2.52 1.65 1.32 1.91
GEMV 0.62 1.86 1.03 0.89 1.24
Conv-2D 1.75 3.51 2.18 1.94 2.65

By following this rigorous approach to offline dataset construction, we ensure that the ILM can learn
from a representative and comprehensive set of transformations, enabling it to provide high-quality
guidance for vectorized code optimization.

While the pre-trained ILM can provide valuable guidance, its performance may not remain perfect
for all cases. To address this, we introduce an efficient fine-tuning stage that adapts the ILM using
an online dataset.

For this fine-tuning process, we leverage an asymmetric LoRA architecture to perform PEFT it-
eratively. This approach selectively activates parts of the ILM in response to different operator
configurations and their corresponding instruction sentences at each fine-tuning iteration.

Specifically, the ILM handles each vectorized instruction-dependent component as an expert adapter.
This ensures computational efficiency throughout the fine-tuning process, as the model only updates
the relevant parts instead of the entire network.

The online dataset used for fine-tuning is collected during the actual usage of the ILM in production
environments. This dataset captures the real-world distribution of operator configurations and their
associated instructions, allowing the ILM to adapt and refine its knowledge for improved perfor-
mance on practical workloads.

By combining the comprehensive offline dataset and the targeted online fine-tuning, our approach
ensures that the ILM can provide high-quality and adaptable guidance for vectorized code optimiza-
tion, addressing a wide range of scenarios encountered in real-world deployments.

C COMPILATION FLOW

Due to the extensive code associated with the LLVM compiler infrastructure, we have provided the
code for the efficient fine-tuning phase to obtain the instruction language model in the corresponding
appendix upload file. Additionally, we have included the QEMU simulator to test the environment
for vectorized optimized RISC-V tensor programs, along with the relevant toolchain. The complete
code for the compiler infrastructure and the code generation section exceeds the upload limit of
100 MB imposed by the supplementary material. Upon acceptance of the paper, we will prepare a
comprehensive documentation detailing this work and establish a corresponding GitHub repository
for interested users to learn and understand how to integrate AI compilers with instruction language
models for the end-to-end generation of vectorized RISC-V tensor programs.

D ADDITIONAL EXPERIMENTS

D.1 COMPILATION TIME OVERHEAD

As shown in Table 5, we observe significant variations in compilation time across different ap-
proaches. The scalar baseline achieves the fastest compilation (0.62-1.75s) by avoiding all optimiza-
tion passes, while Claude-3-Haiku exhibits the highest overhead (1.86-3.51s) due to LLM inference
latency and iterative code validation. Traditional compilers demonstrate intermediate performance,
with GCC-Loops (1.03-2.18s) being consistently slower than LLVM-Vectorizer (0.89-1.94s) be-
cause of its more aggressive but computationally expensive loop optimizations. Our RISCompiler
strikes a balance between these extremes, maintaining competitive compilation times (1.24-2.65s)
that are 32-38% faster than Claude-3-Haiku while being only 15-25% slower than LLVM-Vectorizer.
Given the modest compilation overhead, our experimental results in Figure 6 and Figure 7 clearly
demonstrate that RISCompiler generates the highest-performance RISC-V vectorized tensor pro-
grams.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.2 COMPILATION STORAGE OVERHEAD

RISCompiler’s compilation process does not require persistent storage of the ILM, as it operates in
inference mode. The generated vectorized code retains the same memory footprint as LLVM/GCC-
compiled binaries, as no additional runtime metadata is embedded. We measure the peak memory
usage during compilation and final binary sizes, showing no significant overhead compared to base-
lines.

17

	Introduction
	Background and Related Work
	Design Overview of RISCompiler
	Offline Learning Stage
	Instruction Generation
	Efficient Fine-Tuning Stage
	Code Generation Stage

	Evaluation
	Single Operator Benchmark
	End-to-End Network Benchmark
	Discussion

	Conclusion
	Implementation Details
	Instruction Sentences

	Dataset
	Compilation Flow
	Additional Experiments
	Compilation Time Overhead
	Compilation Storage Overhead

