
Under review as a conference paper at ICLR 2022

SUPPLEMENTARY MATERIAL

Anonymous authors
Paper under double-blind review

CONTENTS

A Code Availability 2

B Proofs 2

B.1 Proof of Proposition 1 . 2

C Gradient Calculation Using Discrete Adjoint Methods 2

C.1 Deriving the discrete adjoint for a time-stepping algorithm 2

C.2 Deriving the gradient to parameters and incorporating integrals 3

C.3 Discrete adjoints of exemplar timestepping methods 3

C.3.1 Backward Euler . 4

C.3.2 Theta methods . 4

C.3.3 Explicit Runge–Kutta methods . 4

C.4 Checkpointing . 4

D Details For Numerical Examples 5

D.1 Image classification . 5

D.2 Continuous normalizing flow . 5

D.3 Time series regression . 6

1

Under review as a conference paper at ICLR 2022

A CODE AVAILABILITY

Our code is publicly available. For reviewing purposes, it is temporarily hosted at
https://github.com/pnode-dev/pnode.

B PROOFS

B.1 PROOF OF PROPOSITION 1

Proposition 1. Assuming λ̃n+1 = λn+1, the local discrepancy between the continuous adjoint
sensitivity and the discrete adjoint sensitivity for forward Euler with the same step size h is

‖λ̃n − λn‖ = h2‖H (un + ε(un+1 − un),θ, tn) f(un,θ, tn)‖‖λn+1‖, (1)

whereH is the Hessian of f and ε is a constant in (0, 1).

Proof. Discretizing the continuous adjoint equation

dλ̃

dt
= −

(
∂f

∂u

)T

λ̃ (2)

with forward Euler gives

λ̃n = λ̃n+1 + h

(
∂f(un+1,θ, tn+1)

∂u

)T

λ̃n+1. (3)

The discrete adjoint of the forward Euler is

λn = λn+1 + h

(
∂f(un,θ, tn)

∂u

)T

λn+1. (4)

With (3) and (4) and the assumption λ̃n+1 = λn+1, we have

‖λ̃n − λn‖ = h‖
(
∂f(un+1,θ, tn+1)

∂u

)T

−
(
∂f(un,θ, tn)

∂u

)T

‖‖λn+1.‖ (5)

Using the Taylor’s series expansion, we obtain(
∂f(un+1,θ, tn+1)

∂u

)T

=

(
∂f(un,θ, tn)

∂u

)T

+H (un + ε(un+1 − un)) (un+1 − un)

=

(
∂f(un,θ, tn)

∂u

)T

+H (un + ε(un+1 − un)) (hf(un)) , (6)

whereH is the Hessian of f and ε is a constant in (0, 1).

Plugging (6) into (5), we obtain (1) and complete the proof.

C GRADIENT CALCULATION USING DISCRETE ADJOINT METHODS

C.1 DERIVING THE DISCRETE ADJOINT FOR A TIME-STEPPING ALGORITHM

Let us define the Lagrange multipliers λn ∈ RNd , n = 0, . . . , N and define the Lagrangian

L(η) = φ(uN)− λT
0 (u0 − η)−

N−1∑
n=0

λT
n+1 (un+1 −N (un)) , (7)

which depends on the initial state η (input data) of an ODE system. Taking the total derivative of
Equation (7) with respect to η leads to

dL
dη

= λT
0 −

(
dφ

du
(uN)− λT

N

)
duN

dη
−

N−1∑
n=0

(
λT
n − λT

n+1

dN
du

(un)

)
dun

dη
. (8)

2

 https://github.com/pnode-dev/pnode

Under review as a conference paper at ICLR 2022

The discrete adjoint equation is defined as

λn =

(
dN
du

(un)

)T

λn+1, n = N − 1, . . . , 0,

λN =

(
dφ

du
(uN)

)T

,

(9)

in order to make the last two terms in (8) vanish so that the total derivative can be obtained without
computing the forward sensitivities dun

dη .

C.2 DERIVING THE GRADIENT TO PARAMETERS AND INCORPORATING INTEGRALS

We consider a system of ODEs in the general form

Mu̇ = f(t,θ,u), t ∈ [t0, tF] , (10)

where M is a mass matrix. For explicit ODEs, M is an identity matrix I of size Nd ×Nd.

The loss function with an integral term can be written as

L = φ(u(tF)) +

∫ tF

t0

q(u(t), t)dt. (11)

To obtain the gradient of L to parameters (weights of the neural network), we can extend the ODE
system (10) by augmenting the state vector with the parameters and the integrand q, and we obtain
a larger system,

Mu̇ = F (t,θ,u), t ∈ [t0, tF] , (12)
where

M =

[M
INp×Np

1

]
,u =

[
u
θ
q

]
, F =

[
f

0Np×1

r

]
.

The second equation indicates that the parameters are constant, and the last equation results from
the following transformation of the integral:

r =

∫ tF

t0

q(u(t), t)dt. (13)

The initial condition for the augmented ODE system is η0 = [η θ 0]T .

For notional brevity, we denote the Jacobian with respect to u and θ as fu and fθ, respectively.
Then the extended Jacobian can be written as

Fu =

[
fu fθ 0Nd×1

0Np×Nd
0Np×Np

0Np×1

ru rθ 0

]
.

Now the adjoint variable expands to the combination of three variables, corresponding to the partial
derivative of the loss function with respect to the initial system state, the parameters, and the initial
value of q, respectively. In the later part of this document, we will use λ and µ to denote the first
and second adjoint variables. The terminal conditions for these two variables are

λN =

(
∂φ

∂u
(un)

)T

, µN =

(
∂φ

∂θ
(un)

)T

. (14)

The third adjoint variable has a constant value 1 because of the zeros in the last column of Fu and
thus does not need to be computed.

C.3 DISCRETE ADJOINTS OF EXEMPLAR TIMESTEPPING METHODS

This section lists the discrete adjoints for three families of timestepping methods that are widely
used. Note that these discrete adjoints are derived and implemented for only selective timestep-
ping methods in PETSc, which is also a limitation in this work. Nevertheless, the discrete adjoint
methods can be easily extended to other timestepping methods in PETSc.

3

Under review as a conference paper at ICLR 2022

C.3.1 BACKWARD EULER

Forward propagation
Mun+1 = Mun + hnθf(un+1) (15)

Adjoint propagation

MTλs = λn+1 + hn f
T
u (un+1)λs + hn r

T
u(un+1),

λn = λn+1 + hn f
T
u (un+1)λs + hn r

T
u(un+1),

µn = µn+1 + hn f
T
θ (un+1)λs + hn r

T
θ (un+1)

C.3.2 THETA METHODS

Forward propagation
Mun+1 = Mun + hn(1− θ)f(un) + hnθf(un+1) (16)

Adjoint propagation

MTλs = λn+1 + hnθ f
T
u (un+1)λs + hnθ r

T
u(tn+1,un+1),

λn = MTλs + hn(1− θ)fT
u (un)λs + hn(1− θ)rTu(tn,un),

µn = µn+1 + hnθ
(
fT
p (un+1)λs + rTp (un+1)

)
+ hn(1− θ)

(
fT
p (un)λs + rTp (un)

) (17)

C.3.3 EXPLICIT RUNGE–KUTTA METHODS

Forward propagation

Ui = un +

i−1∑
j=1

hn aij F (Uj), i = 1, · · · , s,

un+1 = un +

s∑
i=1

hn bi F (Ui)

(18)

Adjoint propagation

λs,i = hnf
T
u (Ui)

biλn+1 +

s∑
j=i+1

aji λs,j

+ hn bi r
T
u(Ui)), i = s, · · · , 1,

µs,i = hnf
T
p (Ui)

biλn+1 +

s∑
j=i+1

aji λs,j

+ hn bi r
T
p (Ui), i = s, · · · , 1,

λn = λn+1 +

s∑
j=1

λs,j ,

µN = µn+1 +

s∑
j=1

µs,j

(19)

C.4 CHECKPOINTING

PETSc offers transparent and optimal checkpointing strategies on high-performance computing
platforms. All of the strategies are accessible through our PNODE framework. In addition to the
classic Revolve algorithm Griewank & Walther (2000), PETSc provides extended algorithms
Zhang & Constantinescu (2021) that are tailored for multistage time integration methods. Figure
1 illustrates an optimal schedule for the adjoint calculation given a memory budget for storing 3
checkpoints, with each checkpoint consisting of a solution vector (numbered circles) and the stage
values (black dots). This schedule requires a minimal number (6) of extra recomputations in order
to reverse 10 time steps. PETSc also supports many other checkpointing algorithms, such as online
algorithms Stumm & Walther (2010); Wang et al. (2009), multistage algorithms Stumm & Walther
(2009), and multilevel algorithms Schanen et al. (2016) for heterogeneous platforms.

4

Under review as a conference paper at ICLR 2022

0 1 2 3 4 5 6 7 8 9 10 8 9

7 8 5 6 7 5 6 4 5

1 2 3 4 2 3 1 2 0 1

Figure 1: Modified Revolve algorithm for multistage time integration methods. Reprinted from
Zhang & Constantinescu (2021). A numbered circle stands for the solution at the corresponding
time index. A block dot stands for the stage values associated with the time step. The up arrow and
down arrow stand for “store” operation and “restore” operation, respectively. When a stack is used
for holding the checkpoints, the arrows with solid lines correspond to push and pop operations. The
down arrow with dashed line indicates to read the top element on the stack without removing it.

D DETAILS FOR NUMERICAL EXAMPLES

D.1 IMAGE CLASSIFICATION

We modify a SqueezeNext network into a neural ODE by replacing all nonactivation blocks with
ODE blocks. Our experiment is based on model files from the ANODE Gholaminejad et al. (2019)
code repository 1 . All models are trained with the SGD optimizer for 200 epochs, with an initial
learning rate 0.1 decayed by a factor of 10 at the 150th epoch.

To further demonstrate the stability and accuracy of PNODE, we train SqueezeNext models using
one-step forward Euler and RK4 for 3 independent runs, and we report the mean and standard
deviation (STD) across the runs. As shown in Table 1, training with the discrete adjoint reaches
lower training loss and higher test accuracy when compared with the neural ODE implementation
using the continuous adjoint method (NODE cont).

Training loss

NODE disc ANODE NODE cont PNODE
Euler 0.0006 ± 0.0000 0.0008± 0.0002 0.0030 ± 0.0002 0.0006± 0.0001
RK4 0.0005 ± 0.0000 0.0006 ± 0.0001 0.0006 ± 0.0000 0.0005± 0.0001

Test accuracy

NODE disc ANODE NODE cont PNODE
Euler 0.8830 ± 0.0085 0.8740±0.0157 0.5303 ± 0.0702 0.8780 ± 0.0036
RK4 0.8803 ± 0.0032 0.8850 ± 0.0050 0.8780 ± 0.0010 0.8803 ± 0.0068

Table 1: Mean and STD of training loss and test accuracy on classification on CIFAR-10 dataset
after 200 epochs of training across 3 runs with different random seeds.

D.2 CONTINUOUS NORMALIZING FLOW

We apply PNODE on FFJORD, which is a free-from continuous generative model, and we follow
the architecture and hyperparameter settings chosen by the authors in Grathwohl et al. (2019). The
details are given in Table 2.

1https://github.com/amirgholami/anode

5

Under review as a conference paper at ICLR 2022

Dataset Dimension Activation Number of
layers in NN

Hidden dim.
multiplier

Number of
ODE blocks Batchsize

POWER 6 tanh 3 10 5 10000
BSDS300 63 softplus 3 20 2 10000 (1000*)

MINIBOONE 43 softplus 2 10 1 1000

Table 2: Information of hyperparameters chosen by Grathwohl et al. (2019). *The batch size is
reduced to 1000 when using the discrete adjoint, so the memory can fit in the GPU.

D.3 TIME SERIES REGRESSION

We use the same model as in Rackauckas et al. (2020) and Onken & Ruthotto (2020):

d

dt

[
x1
x2

]
= A

[
x31
x32

]
, A =

[
−0.10 2.00
−2.00 −0.10

]
,

with an initial condition x = [2, 0]. The data are generated on 160 equidistant time grid points in
[0, 16] by integrating the ODE using an adaptive dopri5 solver. For the training model, we use a
single linear layer with 2D input and output applied to the elementwise cubic of x; therefore, the
true underlying model can be represented exactly. We train the model on t ∈ [0, 1] with a step size of
0.1. In each iteration, we use an equal batch size of 20. The loss function is defined as the average of
the absolute values of the residuals. The parameters in the model are updated through an RMSprop
minimizer with a learning rate of 0.01. The test loss is then evaluated on all the samples.

Here we provide the comparison in terms of loss functions using two second-order schemes—
explicit midpoint and Crank–Nicolson (implicit)—using three different random seeds, as shown
in Figure 2. The solution using explicit solver blows up during tests for all three runs, while training
with implicit solvers always reaches a lower training loss and the solutions always remain finite
during testing.

REFERENCES

Amir Gholaminejad, Kurt Keutzer, and George Biros. ANODE: Unconditionally accurate memory-efficient
gradients for neural ODEs. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, pp. 730–736. International Joint Conferences on Artificial Intelligence Organization,
7 2019. doi: 10.24963/ijcai.2019/103.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible generative
models with free-form continuous dynamics. In International Conference on Learning Representations,
2019.

Andreas Griewank and Andrea Walther. Algorithm 799: Revolve: An implementation of checkpointing for
the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Softw., 26(1):19–45, March
2000. ISSN 0098-3500. doi: 10.1145/347837.347846.

Derek Onken and Lars Ruthotto. Discretize-optimize vs. optimize-discretize for time-series regression and
continuous normalizing flows. arXiv e-preprints, 2020.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic
Skinner, and Ali Ramadhan. Universal differential equations for scientific machine learning. arXiv preprint
arXiv:2001.04385, 2020.

Michel Schanen, Oana Marin, Hong Zhang, and Mihai Anitescu. Asynchronous two-level checkpointing
scheme for large-scale adjoints in the spectral-element solver Nek5000. Procedia Computer Science, 80:
1147–1158, 2016. ISSN 18770509. doi: 10.1016/j.procs.2016.05.444.

Philipp Stumm and Andrea Walther. MultiStage Approaches for Optimal Offline Checkpointing. SIAM Journal
on Scientific Computing, 31(3):1946–1967, 2009. ISSN 1064-8275. doi: 10.1137/080718036.

Philipp Stumm and Andrea Walther. New algorithms for optimal online checkpointing. SIAM Journal on
Scientific Computing, 32(2):836–854, 2010. ISSN 1064-8275. doi: 10.1137/080742439.

6

Under review as a conference paper at ICLR 2022

(a) Random seed 1

(b) Random seed 2

(c) Random seed 3

Figure 2: Train and test loss with explicit midpoint and Crank–Nicolson (implicit) solvers as func-
tions of number of iterations using different random seeds.

Qiqi Wang, Parviz Moin, and Gianluca Iaccarino. Minimal repetition dynamic checkpointing algorithm for
unsteady adjoint calculation. SIAM Journal on Scientific Computing, 31(4):2549–2567, 2009. ISSN 1064-
8275. doi: 10.1137/080727890.

Hong Zhang and Emil M. Constantinescu. Revolve-based adjoint checkpointing for multistage time integration.
In International Conference on Computational Science, (online), in main track, 2021.

7

	Code Availability
	Proofs
	Proof of Proposition 1

	Gradient Calculation Using Discrete Adjoint Methods
	Deriving the discrete adjoint for a time-stepping algorithm
	Deriving the gradient to parameters and incorporating integrals
	Discrete adjoints of exemplar timestepping methods
	Backward Euler
	Theta methods
	Explicit Runge–Kutta methods

	Checkpointing

	Details For Numerical Examples
	Image classification
	Continuous normalizing flow
	Time series regression

