
7 Appendix494

7.1 Polynomial regression examples495

7.1.1 Example in Section 3.3496

The true underlying function is chosen as f(x) = 0.5x3 + 0.3x2 � 5x+ 4. There are three agents in497

total, each of whom has 50 data points. The local data points are generated using normal distributions:498

x1 ⇠ N (�2, 1), x2 ⇠ N (0, 1) and x3 ⇠ N (2, 1). To introduce noise in the labels, each agent499

adds a normally distributed error term with zero mean and unit variance, i.e. yi = f(xi) + " with500

" ⇠ N (0, 1).501

A set of 50 equally spaced data points in the range of �4 to 4, denoted as Xs, is used in the analysis.502

The algorithm is applied using fixed trust weights with 1/3 in each entry and � is chosen as 1.503

7.1.2 Example with strong and weak architectures504

The true underlying function is chosen as f(x) = 0.5x3 + 0.3x2 � 5x+ 4. There are four agents in505

total, each of whom has 50 data points. The local data points are generated using normal distributions:506

x1 ⇠ N (�2, 1), x2 ⇠ N (0, 1), x3 ⇠ N (2, 1) and x4 ⇠ N (3, 1). To introduce noise in the labels,507

each agent adds a normally distributed error term with zero mean and unit variance, i.e. yi = f(xi)+"508

with " ⇠ N (0, 1).509

A set of 50 equally spaced data points in the range of �4 to 6, denoted as Xs, is used in the analysis.510

The algorithm is applied using dynamic trust weights and � is chosen as 1. For the first three agents,511

a polynomial model with a maximum degree of four is fit, while for the fourth agent, a polynomial512

model with a maximum degree of one is fit, signifying a weak node.513

We see that after 50 rounds of model training using our proposed algorithm with dynamic trust, agent514

4’s model is still underfitting due to its limited expressiveness. Agents 1-3 end up agreeing with each515

other and giving good predictions in the union of their local regions. While with naive trust weights,516

we see that the strong agents also get influenced in the region where they could perform well, as the517

underfitted model has stronger impact through the collective pseudo-labeling.518

(a) (b) (c) (d)

Figure 7: (a) local data distribution in each agent; (b) local model fit without collaboration; (c) model
fits after 50 rounds of our algorithm with dynamic trust update; (d) model fits after 50 rounds with
naive trust update

7.2 Proof of Theorem 1519

The proof is rooted in the results from the work of Wolfowitz [35], we recommend readers to check520

the original paper for more detailed references. Note, for the following texts, when we say a matrix521

W has certain properties, it is equivalent to say a Markov chain induced by transition matrix W has522

certain peoperties.523

Definition B (Irreducible Markov chains). A Markov chain induced by transition matrix W is524

irreducible if for all i, j, there exists some t such that W t
ij > 0. Equivalently, the graph corresponding525

to W is strongly connected.526

Definition C (Strongly connected graph). A graph is said to be strongly connected if every vertex is527

reachable from every other vertex.528
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Definition D (Aperiodic Markov chains). A Markov chain induced by transition matrix W is529

aperiodic if every state has a self-loop. By self-loop, we mean that there is a nonzero probability of530

remaining in that state, i.e. wii > 0 for every i.531

Claim 5. Given Assumption 2, matrix product of any n elements of {W (t)} are SIA (SIA stands for532

stochastic, irreducible and aperiodic) for n � 1.533

Proof. According to Assumption (2), all W (t)’s are positive, and thus we have any product of W (t)’s534

being positive in each entry, which is equivalent to the graph introduced by the product being fully535

connected. Being fully connected implies being strongly connected. According to Definitions B C,536

irreducibility follows.537

By the product being positive, we also have its diagonal entries being all positive. According to538

Definition D, aperiodicity follows.539

The product of row-stochastic matrices remains row-stochastic: for A and B row stochastic, we have540

the product AB remains row-stochastic.541
X

j

(
X

k

aikbkj) =
X

k

aik(
X

j

bkj) = 1, 8i

542

Thus, we have any product of W (t)’s being irreducible, aperiodic and stochastic (SIA).543

Theorem 6 (Rewrite of Wolfowitz [35]). Let A1, ..., Ak be square row stochastic matrices of the544

same order and any product of the A’s (of whatever length) is SIA. When k ! 1, the product of A1,545

..., Ak gets reduced to a matrix with identity rows.546

Following Assumptions (1) (2), we have  (t) = W (t) (t�1) holds for all t � 1. From Claim 5, we547

have any products of W (t)’s being SIA. From Theorem 6, we have the product W (t)W (t�1) . . .W (1)548

gets reduced to a matrix with identical rows when t goes to infinity. That implies,  1 has identical549

rows. The statement is thus proved.550

7.3 Proof of Claim 2551

Definition E (Row differences). Define how different the rows of W are by552

�(W ) = max
j

max
i1,i2

|wi1,j � wi2,j | (9)

For identical rows, �(W ) = 0553

Definition F (Scrambling matrix). W is a scrambling matrix if554

�(W ) := 1�min
i1,i2

X

j

min(wi1j , wi2j) < 1 (10)

In plain words, Definition F says that if for every pair of rows i1 and i2 in a matrix W , there exists a555

column j (which may depend on i1 and i2) such that wi1j > 0 and wi2j > 0, then W is a scrambling556

matrix. It is easy to verify that a positive matrix is always a scrambling matrix.557

Lemma 1 (Adaptation of Lemma 2 from Wolfowitz [35]). For any t,558

�(W (t)W (t�1) . . .W (1)) 
tY

i=1

�(W (i)) (11)

Lemma 1 states that multiplying with scrambling matrices will make the row differences smaller.559

tr(W (t)) =
P

i w
(t)
ii represents the sum of self-confidences of all nodes. As every W (t) is positive560

from Assumption (2), we have all W (t)’s scrambling. Thus, the differences between rows of561

W (t)W (t�1)..W (1) get smaller when t gets bigger.562

As  (t)
i =

P
j [W

(t)W (t�1)..W (1)]ij 
(t�1)
j , we have the predictions on Xs given by all nodes get563

similar over time. According to our calculation of W (t) in Equation (7), which is based on cosine564

similarity between predictions, it follows that an agent’s trust towards the others gets larger over time.565

That is,
P

j w
(t+1)
ij �

P
j w

(t)
ij . Since each row sums up to 1, we have w(t+1)

ii  w(t)
ii , for all i.566

According to Theorem 1, we have  (t)
i =  (t)

j as t ! 1, for any i and j. According to the567

calculation of W , we have W (t) with equal entries when t reaches infinity.568
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7.4 Proof of Proposition 3569

Recall stationary distribution (⇡ 2 R1⇥N ) of a Markov chain being570

lim
t!1

W (t) . . .W (1) ! [⇡> . . .⇡>]> (12)

The proof follows from the construction of Metropolis chains given a stationary distribution. We will571

first give an example of how Metropolis chains work.572

Example 2 (Metropolis chains [27]). Given stationary distribution ⇡ = [0.3, 0.3, 0.3, 0.1], how573

could we construct a transition matrix that leads to the stationary distribution?574

Suppose � is a symmetric matrix, one can construct a M5 etropolis chain P as follows:575

p(x, y) =

8
<

:
�(x, y)min

⇣
1, ⇡(y)

⇡(x)

⌘
y 6= x

1�
P

z 6=x �(x, z)min
⇣
1, ⇡(z)

⇡(x)

⌘
y = x

(13)

Choose � =

2

64

1/3 1/4 1/4 1/6
1/4 1/3 1/4 1/6
1/4 1/4 1/3 1/6
1/6 1/6 1/6 1/2

3

75, we could get P =

2

64

4/9 1/4 1/4 1/18
1/4 4/9 1/4 1/18
1/4 1/4 4/9 1/18
1/6 1/6 1/6 1/2

3

75. It can be576

verified that ⇡ is the stationary distribution of Markov chain with transition matrix P . If � is not577

symmetric, we modify ⇡(y)
⇡(x) to ⇡(y)

⇡(x)
�(y,x)
�(x,y) , and the results remain unchanged.578

Following Example 2, choose � to be any self-confident doubly stochastic matrix. For all x, choose579

P as calculated from (13), we have580

p(x, x) = 1�
X

z 6=x

�(x, z)min

✓
1,
⇡(z)

⇡(x)

◆
� 1�

X

z 6=x

�(x, z) = �(x, x) (14)

we see that probability distribution among each row gets more concentrated on the diagonal entries in581

P than �. As � already has high diagonal values, the claim follows.582

7.5 Proof of Proposition 4583

Proposition 4 states sufficient conditions for W (t)’s to have such that a low quality node b is assigned584

lowest importance in ⇡, i.e. ⇡b = mini ⇡i.585

From Equation (12), ⇡ comes from the product of trust matrices. We start from a product of two such586

matrices.587

Proposition 7. For row-stochastic and positive matrices A and B, and C = AB, if in both A and588

B,589

(1) j-th column has the lowest column sum,590

(2) (i, j)-th entry being the lowest value in i-th row for i 6= j,591

then we have j-th column remains the the lowest column sum in matrix C and (i, j)-th entry being592

the lowest value in i-th row of C for i 6= j,593

Proof. Let C = AB, the column sum of column j of C can be expressed as:594
X

i

cij =
X

i

X

k

aikbkj

=
X

k

(
X

i

aik)bkj
(15)

for t 6= j, the column sum of C is595

X

i

cit =
X

i

X

k

aikbkt

=
X

k

(
X

i

aik)bkt
(16)
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We first show that j-th column remains the lowest column sum in C. For t 6= j:596

X

i

cit �
X

i

cij =
X

k

(
X

i

aik)(bkt � bkj)

=
X

k 6=j

(
X

i

aik)(bkt � bkj) + (
X

i

aij)(bjt � bjj)

(i)
>
X

k 6=j

(
X

i

aij)(bkt � bkj) + (
X

i

aij)(bjt � bjj)

= (
X

i

aij)

0

@
X

k 6=j

(bkt � bkj) + (bjt � bjj)

1

A

=
X

i

aij

 
X

k

bkt �
X

k

bkj

!

(ii)
> 0

(i) holds because for k 6= j, bkt � bkj > 0 and
P

i aij <
P

i aik597

(ii) holds because the j-th column has the lowest column sum in B598

We then show that (i, j)-th entry remains the lowest value in i-th row of C for i 6= j. For t 6= j, we599

have600

cit � cij =
X

k

aikbkt �
X

k

aikbkj

=
X

k 6=j

aik(bkt � bkj) + aij(bjt � bjj)

(iii)
>
X

k 6=j

aij(bkt � bkj) + aij(bjt � bjj)

=aij

0

@
X

k 6=j

(bkt � bkj) + (bjt � bjj)

1

A

=aij

 
X

k

bkt �
X

k

bkj

!

(iv)
> 0

(17)

(iii) holds since bkt � bkj > 0 and aik > aij for i, k 6= j.601

(iv) holds because
P

k bkt >
P

k bkj602

For time-inhomogenous trust matrix, Assumptions 1 2 ensure the Markov chain update:  (t)
i =603 P

j w
(t)
ij  

(t�1)
j , which is followed by consensus as proven in Theorem 1. We see that b-th column604

remains the lowest column sum in the product W (⌧)W (⌧�1)...W (1), by iteratively applying Propo-605

sition 7. For t � ⌧ , W (t) = 11> 1
N , the multiplication does not change the order of the column606

sum. Thus, the b-th column will remain to be the smallest column in the consensus. For the time-607

homogenous case, we can simply treat ⌧ as 1, as long as W remains to have the above-mentioned608

properties, the results will still hold. Thus, Proposition 4 is proved.609

Extend to more than one node with low-quality data. For more than one low-quality node, what610

are the desired properties (sufficient conditions) for the transition (trust) matrices to have? It turns out611

that apart from the two conditions in a single low-quality node case, we need an extra assumption.612

Proposition 8. Given Assumptions 1 2 and that all agents are over-parameterized, let R be the set of613

indices of regular nodes, and B be the set of indices of low-quality nodes, if for t  ⌧ , W (t) satisfies614

the following conditions:615
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(1) any regular node’s column sum is larger than any low-quality node’s: minr2R
P

i w
(t)
ir >616

maxb2B
P

i w
(t)
ib ;617

(2) the gap between the sum of trust from regular nodes towards any regular node r and low-quality618

node b is larger than the gap between low-quality node b’s self-confidence and its trust towards the619

regular node:
P

n2R(w(t)
nr � w(t)

nb ) > (w(t)
bb � w(t)

br ),620

(3) any node’s trust towards a regular node is bigger or equal than its trust towards a low-quality621

node other than itself: for any r 2 R and any b 2 B, we have w(t)
nr � w(t)

nb holds as long as n 6= b.622

And after t > ⌧ , W (t) = 11> 1
N . then we have nodes in B has the lower importance in the consensus623

than nodes in R.624

Proof. First, let us look at the multiplication of two such matrices when 1 < t < ⌧ , for any r 2 R625

and b 2 B, we have conditions (1)(2)(3) remain to be true for the product W (t)W (t�1). We will626

verify them one by one in the following part:627

Verification of condition (1): any regular node’s column sum is larger than any low-quality node’s in628

W (t)W (t�1). For any r 2 R and any b 2 B, we have629

X

i

X

n

w(t)
in w(t�1)

nr �
X

i

X

n

w(t)
in w(t�1)

nb

=
X

n

(
X

i

w(t)
in )
⇣
w(t�1)

nr � w(t�1)
nb

⌘

=
X

n2R
(
X

i

w(t)
in )
⇣
w(t�1)

nr � w(t�1)
nb

⌘
+

X

n2B\{b}

(
X

i

w(t)
in )
⇣
w(t�1)

nr � w(t�1)
nb

⌘

+(
X

i

w(t)
ib )
⇣
w(t�1)

br � w(t�1)
bb

⌘

(i)
>
X

n2R
(
X

i

w(t)
ib )
⇣
w(t�1)

nr � w(t�1)
nb

⌘
+
X

i

w(t)
ib

⇣
w(t�1)

br � w(t�1)
bb

⌘

+
X

n2B\{b}

(
X

i

w(t)
in )
⇣
w(t�1)

nr � w(t�1)
nb

⌘

=(
X

i

w(t)
ib )

 
X

n2R
w(t�1)

nr �
X

n2R
w(t�1)

nb + w(t�1)
br � w(t�1)

bb

!

+
X

n2B\{b}

(
X

i

w(t)
in )
⇣
w(t�1)

nr � w(t�1)
nb

⌘

(ii)
> 0

(i) holds because
P

i w
(t)
in for any n 2 R is larger than

P
i w

(t)
ib for any b 2 B, which follows from630

condition (1), and w(t)
nr � w(t)

nb > 0, which follows from condition (3).631

(ii) holds following the conditions (2) and (3). From (2),
P

n2R w(t�1)
nr �

P
n2R w(t�1)

nb +w(t�1)
br �632

w(t�1)
bb > 0, and from (3), w(t�1)

nr � w(t�1)
nb for n 6= b633

Verification of condition (2):634

X

n2R

 
X

p

w(t)
npw

(t�1)
pr �

X

p

w(t)
npw

(t�1)
pb

!
�
 
X

p

w(t)
bp w

(t�1)
pb �

X

p

w(t)
bp w

(t�1)
pr

!

=
X

p

 
X

n2R
w(t)

np + w(t)
bp

!
w(t�1)

pr �
X

p

 
X

n2R
w(t)

np + w(t)
bp

!
w(t�1)

pb
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=
X

p

 
X

n2R
w(t)

np + w(t)
bp

!⇣
w(t�1)

pr � w(t�1)
pb

⌘

=
X

p2R

 
X

n2R
w(t)

np + w(t)
bp

!⇣
w(t�1)

pr � w(t�1)
pb

⌘
+

X

p2B\{b}

 
X

n2R
w(t)

np + w(t)
bp

!⇣
w(t�1)

pr � w(t�1)
pb

⌘

+

 
X

n2R
w(t)

nb + w(t)
bb

!⇣
w(t�1)

br � w(t�1)
bb

⌘

(iii)
�
X

p2R

 
X

n2R
w(t)

nb + w(t)
bb

!⇣
w(t�1)

pr � w(t�1)
pb

⌘
+

 
X

n2R
w(t)

nb + w(t)
bb

!⇣
w(t�1)

br � w(t�1)
bb

⌘

+
X

p2B\{b}

 
X

n2R
w(t)

np + w(t)
bp

!⇣
w(t�1)

pr � w(t�1)
pb

⌘

=

 
X

n2R
w(t)

nb + w(t)
bb

!0

@
X

p2R
w(t�1)

pr �
X

p2R
w(t�1)

pb + w(t�1)
br � w(t�1)

bb

1

A

+
X

p2B\{b}

 
X

n2R
w(t)

np + w(t)
bp

!⇣
w(t�1)

pr � w(t�1)
pb

⌘

(iv)
� 0

(iii) holds because for p a regular node, we have
P

n2R w(t)
np + w(t)

bp >
P

n2R w(t)
nb + w(t)

bb , which635

follows from condition (2), and w(t�1)
pr � w(t�1)

pb � 0 for p 6= b, following from condition (3).636

(iv) holds because of conditions (2) and (3).637

Verification of (3): for n 6= b, we want to show the trust towards a regular node r is bigger than638

towards a low-quality node b, that is
P

p w
(t)
npw

(t)
pr >

P
p w

(t)
npw

(t)
pb639

X

p

w(t)
npw

(t)
pr �

X

p

w(t)
npw

(t)
pb

=
X

p2R
w(t)

np

⇣
w(t)

pr � w(t)
pb

⌘
+

X

p2B\{b}

w(t)
np

⇣
w(t)

pr � w(t)
pb

⌘
+ w(t)

nb

⇣
w(t)

br � w(t)
bb

⌘

(v)
�
X

p2R
w(t)

nb

⇣
w(t)

pr � w(t)
pb

⌘
+ w(t)

nb

⇣
w(t)

br � w(t)
bb

⌘
+

X

p2B\{b}

w(t)
np

⇣
w(t)

pr � w(t)
pb

⌘

=w(t)
nb

0

@
X

p2R
w(t)

pr �
X

p2R
w(t)

pb + w(t)
br � w(t)

bb

1

A++
X

p2B\{b}

w(t)
np

⇣
w(t)

pr � w(t)
pb

⌘

(vi)
� 0

(18)

(v) holds because for n 6= b, we have w(t)
np � w(t)

nb , following from condition (3), and w(t)
pr �w(t)

pb � 0640

for p 6= b.641

(vi) holds following from conditions (2) and (3).642

It follows that in the product W (⌧)W (⌧�1)...W (1), a low-quality node will still have a lower column643

sum than any regular node. Because conditions (1)(2)(3) holds for any product of W (t)’s as long as644

each of the W (t) share the conditions listed by (1)(2)(3).645

After t > ⌧ , multiplying with a naive weight matrix does not change the column sum order, we will646

have all low-quality nodes have lower importance in the consensus than the regular nodes.647

648
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7.6 Reasoning for confidence upweighting block649

In this section, we provide our intuition of adding such a confidence weighting block in Equa-650

tion (7).651

�(t) is a row-normalized pairwise cosine similarity matrix, with (i, j)-th entry before row normaliza-652

tion as653

1

nS

X

x02Xs

D
f
✓(t�1)
i

(x0),f
✓(t�1)
j

(x0)
E

kf
✓(t�1)
i

(x0)k2kf✓(t�1)
j

(x0)k2
(19)

After adding a confidence weighting block, we have W (t) with (i, j)-th entry before row normaliza-654

tion as655

1

nS

X

x02Xs

1

H(f
✓(t�1)
i

(x0))

D
f
✓(t�1)
i

(x0),f
✓(t�1)
j

(x0)
E

kf
✓(t�1)
i

(x0)k2kf✓(t�1)
j

(x0)k2
(20)

We want to show that the weighting scheme down-weights the a regular node i’s trust towards a656

low-quality node b, that is657

�(t)ib > w(t)
ib

As the comparison is made with respect to the same time step t, we drop the t notation from now658

on. Let {a0, .., aN�1} be the cosine similarity between a regular agent i and others inside agent i’s659

confident region, and {b0, .., bN�1} be the cosine similarity between i and others outside agent i’s660

confident region. By confident region, we mean region with low entropy in class probabilities, i.e.661

the model is more sure about the prediction. Further, we make the following assumptions:662

(1) for x0 in agent i’s confident region, we have low entropy of predicted class probabilities:663

H(f
✓(t�1)
i

(x0)) = 1/c1 with c1 > 1, while for x0 outside agent i’s confident region, we have664

H(f
✓(t�1)
i

(x0)) = 1/c2 with c2 < 1665

(2) inside a regular node i’s confident region, i has a better judgment of the alignment score produced666

by cosine similarity, such that the cosine similarity with low quality b is weighted lower inside:667

abP
i ai

<
bbP
i bi

(21)

to claim wib < �ib, we need to show668

c1ab + c2bbP
i(c1ai + c2bi)

<
ab + bbP
i(ai + bi)

(22)

Proof. Re-arrange Equation 21, we get669

bb
X

i

ai > ab
X

i

bi (23)

Multiply with c2 � c1 on both sides, we have670

(c2 � c1)bb
X

i

ai < (c2 � c1)ab
X

i

bi (24)

671

c2bb
X

i

ai + c1ab
X

i

bi < c1bb
X

i

ai + c2ab
X

i

bi (25)

Now add c1ab
P

i bi + c2bb
P

i bi to both sides, we have672

c1ab
X

i

ai + c2bb
X

i

ai + c1ab
X

i

bi + c2bb
X

i

bi <

c1ab
X

i

ai + c1bb
X

i

ai + c2ab
X

i

bi + c2bb
X

i

bi
(26)
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Combining the terms we have673

(c1ab + c2bb)

 
X

i

(ai + bi)

!
<

 
X

i

(c1ai + c2bi)

!
(ab + bb) (27)

following which, we directly have674

c1ab + c2bbP
i(c1ai + c2bi)

<
ab + bbP
i(ai + bi)

(28)

675

7.7 Complementary details676

7.7.1 Details regarding model training677

All the model training was done using a single GPU (NVIDIA Tesla V100). For each local iteration,678

we load local data and shared unlabeled data with batch size 64 and 256 separately. We empirically679

observed that a larger batch size for unlabeled data is necessary for the training to work well. The680

optimizer used is Adam with a learning rate 5e-3. For Cifar10 and Cifar100, as the base model is not681

pretrained, we do 50 global rounds with 5 local training epochs for each agent per global round. For682

Fed-ISIC-2019 dataset, as the base model is pretrained EfficientNet, we do 20 global rounds. For the683

first 5 global rounds, we set � = 0 to arrive at good local models, such that every agent can evaluate684

trust more fairly. After that, � is fixed as 0.5. Dynamic trust is computed after each global round,685

while static trust denotes the utilization of the initially calculated trust value throughout the whole686

experiment.687

For Cifar10 and Cifar100, we use 5% of the whole dataset to constitute Xs, where each class has688

equal representation. For the rest, we spread them into 10 clients using Dirichlet distribution with689

↵ = 1. For Fed-ISIC-2019 dataset, we follow the original splits as in du Terrail et al. [33], and we let690

each client contribute 50 data samples to constitute Xs.691

We employ a fixed � for all our experiments. To select �, we randomly sample 10% of the full692

Cifar10 dataset, which we then split into local training data (95%) and Xs (5%). The local training693

data is then spread into 10 clients using Dirichlet distribution with ↵ = 1. The test global accuracy694

and value of � is plotted out in Figure 8. We thus choose � = 0.5 for all our experiments, and it is695

always able to give stable performances according to our experiments.696

Figure 8: � versus algorithm performance

7.7.2 Limitations of the work697

The main limitation of this work is the requirement of an extra shared unlabelled dataset, like in other698

knowledge distillation-based decentralized learning works. Moreover, each agent needs to calculate699

their trust towards all other nodes locally. The extra computational complexity is O(N ⇥ nS ⇥ C),700

where N stands for the number of agents, nS stands for the size of the shared dataset and C denotes701

the number of classes. The computation can be heavy if the number of clients gets large. But as we702

focus on cross-silo setting, N usually does not tend to be a big number.703
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