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A Instability of LDR estimate

(a) (b)

Figure A1: (a) LDR values of three randomly chosen samples, (b) LDR values (left) and rankings
(right) of 50 samples during training of CIFAR-10 on SNGAN [15]. The values are recorded every
100 steps from 30000 to 40000 steps (total 100 times). LDR values are unstable during training, so it
is hard to diagnose GAN training from the LDR of a particular training step. The level of fluctuations
varies much over samples.

The Log-Density-Ratio estimate (LDR) is defined by

LDR(x) := log
D(x)

1−D(x)
. (A.1)

When D(x) = D∗(x), the LDR(x) is equal to the log density ratio log(pdata(x)/pg(x)). When
LDR(x) > 0, the data point x is underrepresented in the model, i.e., pdata(x) > pg(x), while when
LDR(x) < 0, the data is overrepresented, i.e., pdata(x) < pg(x). Thus, we can leverage the value of
LDR(x) of each instance x to give feedback to improve the generator if the estimation is valid. Some
prior works have used this tendency to evaluate the quality of fake samples and designed sample
reweighting scheme to guide the generator to focus on underestimated samples [16] or rejection
sampling to post-process generated samples to approximately correct errors in the model distribution
[1].

The effectiveness of the above schemes highly depends on the accuracy of the LDR estimate. However,
we observe that LDR(x) is unstable during the training even after large steps, as shown in Fig. A1.
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Therefore, to have a better estimate on LDR, we propose to use statistics (mean and variance) of
LDR estimates over multiple steps (epochs) of the training. Different from [1, 16], we focus on the
discrepancy of GANs at training data instances rather than at generated samples. This leads us to
fully explore the underrepresented regions of the data manifold during the training, which can then
be emphasized to improve the performance of GANs.

B Analysis of variance of LDR estimate

Consider the discriminator trained with a data set {(xi, yi)ni=1} to minimize the cross-entropy loss

−
n∑
i=1

(yi logD(xi) + (1− yi) log(1−D(xi))) (B.1)

where yi = 1 for a real sample and yi = 0 for a fake sample. Assuming that φi = F (xi) ∈ Rd
denotes the feature vector of xi extracted by the discriminator and that the discriminator is defined by
a sigmoid applied to θTφi for some d-dimensional parameter θ just like the logistic regression, the
discriminator output can be considered as the probability that the input xi is a real sample, i.e.,

D(xi; θ) =
1

1 + e−θTφi
= p(yi = 1|φi, θ). (B.2)

We now turn to a Bayesian treatment of logistic regression and find the Gaussian approximation for
the posterior distribution of θ given the data set, in a similar way as in Section 4.5 of [2]. Assume
that

p(θ) = N (θ|0, s0I) (B.3)
where s0 is a fixed hyperparameter. The posterior distribution over θ is given by

p(θ|(φi, yi)ni=1) ∝ p(θ)p(yn1 |φn1 , θ). (B.4)

Taking the log of both sides, and substituting for the prior distribution (B.3), and the likelihood
function using (B.2), we obtain

log p(θ|(φi, yi)ni=1) =

n∑
i=1

(yi logD(xi; θ) + (1− yi) log(1−D(xi; θ)))−
‖θ‖2

2s0
+ const. (B.5)

for D(xi; θ) in (B.2). To obtain a Gaussian approximation to the posterior distribution, we first find
θMAP that maximizes log p(θ|(φi, yi)ni=1), i.e., d

dθ log p(θd|(φi, yi)ni=1)
∣∣∣
θ=θMAP

= 0, which defines

the mean of the Gaussian. The covariance is then given by the inverse of the matrix of second
derivatives of the negative log likelihood, which takes the form

S−1
n = −5θ 5θ log p(θ|(φi, yi)ni=1) =

n∑
i=1

D(xi; θ)(1−D(xi; θ))φiφ
T
i +

1

s0
I. (B.6)

The Gaussian approximation of the posterior distribution of θ thus takes the form of

p(θ|(φi, yi)ni=1) ≈ N (θ|θMAP, Sn). (B.7)

We next relate the variance of LDR estimate for each data sample with the covariance matrix Sn.
First, we can find that

var
(

log
D(xi; θ)

1−D(xi; θ)

)
= var(logD) + var(log(1−D))− 2cov(logD, log(1−D)). (B.8)

By approximating D(xi; θ) by the Taylor expansion at θ = θMAP, we get

logD(xi; θ) ≈ logD(xi; θMAP) + (1−D(xi; θMAP))φTi (θ − θMAP),

log(1−D(xi; θ)) ≈ log(1−D(xi; θMAP))−D(xi; θMAP)φTi (θ − θMAP),
(B.9)

and thus the variances are

var(logD(xi; θ)) ≈ (1−D(xi; θMAP))2φTi Snφi,

var(log(1−D(xi; θ))) ≈ D(xi; θMAP)2φTi Snφi,
(B.10)
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for the covariance matrix Sn of (B.7). Using the similar Taylor expansion, we can approximate

cov(logD, log(1−D)) = E[logD · log(1−D)]− E[logD]E[log(1−D)]

≈ −D(xi; θMAP)(1−D(xi; θMAP))φTi Snφi.
(B.11)

By combining the above results,

var
(

log
D(xi; θ)

1−D(xi; θ)

)
≈ (D2 + (1−D)2 + 2D(1−D))φTi Snφi

= φTi Snφi.

(B.12)

Finally, by plugging in Sn, the variance of LDR estimate for each sample xi with feature vector φi
can be written as

var
(

log
D(xi; θ)

1−D(xi; θ)

)
≈ φTi

(
n∑
i=1

D(xi; θ)(1−D(xi; θ))φiφ
T
i +

1

s0
I

)−1

φi. (B.13)

C Images with lowest/highest discrepancy score for CIFAR-10 & CelebA

(a) Images with lowest disc. score

(b) Images with highest disc. score

(c) Generated samples (d) Historgram of pixel count over intensity level

Figure A2: Examples of CelebA training images with (a) lowest and (b) highest discrepancy scores,
and (c) generated samples after Phase 1 (without weighted sampling). Generated samples resemble
training images with lowest discrepancy score. (d) A smoothed histogram of the intensities for 100
samples per group. The intensity levels of RGB channels are concatenated, resulting in a total of
768 = 256× 3 levels. Images with the lowest scores (blue) and generated samples (green) have a
similar distribution, while images with the highest scores (red) show a high discrepancy.

In this section, we show the characteristics of training images having lowest/highest discrep-
ancy scores. As of Fig. 3 (CIFAR-10) in the main paper, we present the images with lowest
(Fig. A2a)/highest (Fig. A2b) discrepancy scores among CelebA training images, and compare them
with generated samples (Fig. A2c), after Phase 1 of our algorithm (before sample-weighting starts).
Comparing the pixel intensity histogram (Fig. A2d) reveals more clearly the difference in sample
properties. Images with low discrepancy scores exhibit similar intensity distribution with generated
samples, while images with high scores appear to show an extremely different tendency. These results
show that our discrepancy score successfully distinguishes underrepresented instances.

We also present the samples with lowest/highest discrepancy scores with various k values (the
hyperparameter for discrepancy score (7)) for CIFAR-10 (Figure A3, A4) & CelebA (A5, A6).
Samples with high discrepancy scores have properties that are distinct from the samples with low
discrepancy scores (e.g. vividness or unusual backgrounds for CIFAR-10 and minor features such
as diverse hair colors or accessories including glasses or hats for CelebA). Since generated samples
resemble the images with low discrepancy scores, emphasizing high-scoring images can boost the
diversity in sample generation.
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(a) Samples with high LDRM
(k=0)

(b) Samples with high LDRV
(k →∞)

(c) Samples with high disc. score
(k=0.3)

(d) Samples with high disc. score
(k=0.5)

(e) Samples with high disc. score
(k=1.0)

(f) Samples with high disc. score
(k=3.0)

(g) Samples with high disc. score
(k=5.0)

(h) Samples with high disc. score
(k=7.0)

Figure A3: CIFAR-10 samples with highest discrepancy scores on various k
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(a) Samples with low LDRM
(k=0)

(b) Samples with low LDRV
(k →∞)

(c) Samples with low disc. score
(k=0.3)

(d) Samples with low disc. score
(k=0.5)

(e) Samples with low disc. score
(k=1.0)

(f) Samples with low disc. score
(k=3.0)

(g) Samples with low disc. score
(k=5.0)

(h) Samples with low disc. score
(k=7.0)

Figure A4: CIFAR-10 samples with lowest discrepancy scores on various k
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(a) Samples with high LDRM
(k=0)

(b) Samples with high LDRV
(k →∞)

(c) Samples with high disc. score
(k=0.3)

(d) Samples with high disc. score
(k=0.5)

(e) Samples with high disc. score
(k=1.0)

(f) Samples with high disc. score
(k=3.0)

(g) Samples with high disc. score
(k=5.0)

(h) Samples with high disc. score
(k=7.0)

Figure A5: CelebA samples with highest discrepancy scores on various k
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(a) Samples with low LDRM
(k=0)

(b) Samples with low LDRV
(k →∞)

(c) Samples with low disc. score
(k=0.3)

(d) Samples with low disc. score
(k=0.5)

(e) Samples with low disc. score
(k=1.0)

(f) Samples with low disc. score
(k=3.0)

(g) Samples with low disc. score
(k=5.0)

(h) Samples with low disc. score
(k=7.0)

Figure A6: CelebA samples with lowest discrepancy scores on various k
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D Algorithm

Detailed algorithm description for Self-Diagnosing GAN is introduced in Algorithm 1.

Algorithm 1 Self-Diagnosing GAN(Dia-GAN)

Input: Dataset D, ModelM = {D,G,Daux}, Batch size B, Numbers of steps for phase 1 and 2
(t1 and t2), step to start recording LDR ts, Number of samples to be generated N
Output: Set of generated samples {g1, g2, · · · , gN}
Phase 1 - Train and Diagnose
Initialize θ0

D, θ
0
G

for t← 1 to t1 do
DtB ← {xi : xi ∼ Unif(D)}
Zt ← {G(zj) : zj ∼ pz(z)}
θtD ← θt−1

D + ηD∇θDVD(D,G;DtB ,Zt) for VD in (E.1) (NS loss) or (E.3) (hinge loss)
θtG ← θt−1

G − ηG∇θGVG(D,G;Zt) for VG in (E.2) (NS loss) or (E.4) (hinge loss).
if t ≥ ts then

Save LDR(xi)t for i ∈ {1, 2, · · · , |D|}
end if

end for
Compute discrepancy score s(xi; {ts, ts + 1, · · · , t1}) for i ∈ {1, 2, · · · , |D|}. (Eq. (7))
Compute sampling frequency Ps(i) ∝ max_clip(min_clip(s(xi;T ))), for i ∈ {1, 2, · · · , |D|}.
Phase 2 - Score-Based Weighted Sampling
Initialize θt1Daux

← θt1D
for t← t1 + 1 to t1 + t2 do
DtB ← {xi : xi ∼ Ps(i)}
DtB
′ ← {xi : xi ∼ Unif(D)}

Zt ← {G(zj) : zj ∼ pz(z)}
θtD ← θt−1

D + ηD∇θDVD(D,G;DtB ,Zt)
θtG ← θt−1

G − ηG∇θGVG(D,G;Zt)
θtDaux

← θt−1
Daux

+ ηDaux∇θDaux
VD(Daux, G;DtB

′
,Zt)

end for
Phase 3 - DRS
{g1, g2, · · · , gN} ← DRS(G;Daux, N)

Algorithm complexity Compared to the original GAN training, the overhead in time and space
from our method is not dominant. For CIFAR-10 dataset, 5 hours 38 minutes were required to train
50k steps of Dia-SNGAN (our method), while 4 hours 51 minutes were needed for the original
SNGAN in RTX 3090 GPU. Similarly, for CelebA dataset, 19 hours 53 minutes were required to
train 75k steps of Dia-SNGAN (our method), while 17 hours 7 minutes were needed for the original
SNGAN with the same GPU. Diagnosing samples in Phase 1 requires additional space for saving
LDR values. Phase 2 needs additional auxiliary discriminator training to perform DRS in Phase 3.
However, this does not require much overhead since Phase 2 is shorter than Phase 1 and we initialize
auxiliary discriminator using the original discriminator trained in Phase 1.

E Variants of the original GAN loss and description of evaluation metrics

E.1 Non-saturating GAN loss

We consider a practical training method of GANs, using alternative SGD, to solve
minG maxD V (D,G) for V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1 −D(G(z)))]. The mini-
batches of B samples for the training dataset and fake samples are defined as DB = {x(j) : x(j) =
xi where i ∼ Ps(i) for j = 1, . . . , B} and Z = {G(z(j)) : z(j) ∼ pz(z) for j = 1, . . . , B}, respec-
tively. Then, the alternative training of GAN updates the discriminator parameter θD and the generator
parameter θG by backpropagating the gradient of GAN loss calculated on these mini-batches.
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For training, we use the non-saturating variant of the generator loss,

VD(D,G;DB ,Z) =
1

|DB |
∑
DB

logD(x(j)) +
1

|Z|
∑
Z

log(1−D(G(z(j)))), (E.1)

VG(D,G;Z) = − 1

|Z|
∑
Z

logD(G(z(j))). (E.2)

E.2 Hinge GAN loss

Several types of GANs achieve enhanced performance when the hinge loss [11, 22] is applied instead
of the normal non-saturating loss. In Section 5.2, we demonstrate the applicability of our score-based
weighted sampling to GANs with hinge loss. The hinge loss is defined as

VD(D,G;DB ,Z) =
1

|DB |
∑
DB

min(0,−1 +D(x(j))) +
1

|Z|
∑
Z

min(0,−1−D(G(z(j)))),

(E.3)

VG(D,G;Z) = − 1

|Z|
∑
Z
D(G(z(j))). (E.4)

E.3 Description of evaluation metrics

To evaluate the effect of our method on learned model distribution, we use various evaluation metrics
including (1) Fréchet Inception Distance (FID) [4], (2) Inception Score (IS) [18], and (3) Precision
and Recall (P&R) [9].

• FID measures the distance between the model distribution and the data distribution, ap-
proximated by two multidimensional Gaussian distributions in the feature space of Incep-
tionV3 [20] classifier, so it measures the overall fitness of the model distribution to the data
distribution, in terms of both the quality (fidelity) and the diversity.

• IS measures the quality of generated samples, in the sense that whether the generated
samples can be classified by InceptionV3 classifier into each of the dataset classes.

• Precision is described as the portion of generated samples that fall within the data manifold,
which measures the fidelity of generated samples, while recall measures the portion of data
instances falling within the manifold of generated samples, which measures the diversity.
We follow the definitions of precision and recall by [9], which are described as follows.
Let the set of feature vectors of real and generated samples be Φr, Φg, respectively. Also,
let the binary function f(φ,Φ) be

f(φ,Φ) =

{
1, ∃φ′ ∈ Φ s.t. ‖φ− φ′‖2 ≤ ‖φ′ −NNk (φ′,Φ)‖2
0, otherwise

(E.5)

where NNk(φ′,Φ) denotes the k−th nearest feature vector of φ′ in set Φ. Then, precision
and recall is defined as:

precision =
1

|Φg|
∑
φg∈Φg

f (φg,Φr) (E.6)

recall =
1

|Φr|
∑
φr∈Φr

f (φr,Φg) (E.7)

Partial Recall is proposed to measure the recall rate for a subset of dataset. It is defined as
the portion of data instances in the subset that fall within the manifold of generated samples.
Let us denote a subset of data and the feature space of that subset by S and ΦS , respectively.
Note that ΦS ⊂ Φr. Then, the partial recall of the subset S is defined as

partial_recall(S) =
1

|ΦS |
∑

φS∈ΦS

f (φS ,Φg) (E.8)
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In addition to these global evaluation metrics, to evaluate whether a subset of dataset is well repre-
sented in the model distribution, we consider (4) Reconstruction Error (RE) [24, 27].

• Reconstruction Error (RE) score is calculated by training a convolutional autoencoder (CAE)
with generated samples and then calculating the Euclidean distance between each training
data and its reconstruction. RE can assess whether pg(x) covers pdata(x) since CAE is
known to have high RE for out-of-distribution samples [24, 27]. RE score for a subset of
data is defined as the average RE score of each data instance within the subset. Let us denote
the subset of data for which we want to measure RE score by S and the set of generated
samples by F . The autoencoder output function, trained with samples in F , is denoted by
θF (·). Then, the RE score of a subset S is defined as

RE(S) =
1

|S|
∑
s∈S

dist(θF (s), s) (E.9)

where dist(x, y) measures the distance between x, y and is defined as the Euclidean
distance averaged for all pixels.

For data statistics to calculate FID, we use provided results for CIFAR-104 and calculate statistics
for CelebA with all the training samples. We compare the statistics of 50,000 generated samples
with these data statistics. We use 50,000 generated samples to evaluate IS, and 10,000 data samples
and 10,000 generated samples to evaluate P&R. Also, we use the feature layer of the InceptionV3
classifier instead of the feature layer of VGG16 as in [9].

F Details of simulation setups

F.1 Controlled dataset - single-mode Gaussian

We generate 2-D single-mode Gaussian dataset with mean 0 and various covariance σI. We use
σ ∈ {3, 2.5, 2}. Minority level (Fig. 1e) 1, 2, 3 stands for σ = 3, 2.5, 2, respectively. As σ decreases,
the samples concentrate more near the mean of the Gaussian, and this aligns with the situation
that minority rate decreases in the Colored MNIST dataset or the MNIST-FMNIST mixture dataset.
The size of the dataset is 10,000. We use a GAN architecture based on the multi-layer perceptron
(MLP) with details described in Table A1. We use the batch size of 1024 and Adam optimizer with
hyperparameters α = 0.001, β1 = 0.5, β2 = 0.9. We train the model for 200 epochs and record LDR
for every sample at the end of each epoch while training. We define the major group as the samples
within distance two from the origin, and the minor group as the samples outside of distance seven
from the origin. To compute Partial Recall, we use data itself as the feature. Fig 1e and Table 1 are
the experimental results averaged from 10 random seeds.

F.2 Controlled dataset - 25 Gaussian dataset

We construct the mixture of 25 Gaussians dataset, each centered at (cx, cy) for cx, cy ∈
{−2,−1, 0, 1, 2}/1.414. Each (x, y) ∈ D is sampled from

(x, y) =
(dx, dy) + (zx, zy)

2.828
(F.1)

where dx, dy ∈ {−4,−2, 0, 2, 4} and zx, zy ∼ N(0, 0.052). The size of the dataset is 10,000, where
400 samples are sampled from each mixture mode. We use the same GAN architecture as the one
used in the single-mode Gaussian experiment (Table A1). We use the batch size of 128 and Adam
optimizer with hyperparameters α = 0.0002, β1 = 0.5, β2 = 0.999. We train the model for 300
epochs and record LDR for every sample at the end of each epoch while training.

F.3 Controlled dataset - Colored MNIST & MNIST-FMNIST

We generate Colored MNIST by randomly picking 60,000 samples and separating them into two
groups corresponding to each color (red and green) at a given majority rate ρ. For the mixture

4http://bioinf.jku.at/research/ttur/
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Table A1: GAN architecture for Single-mode Gaussian and 25 Gaussian dataset
Generator

Layer Output size Activation

Input z 2
FC 512 ReLU
FC 512 ReLU
FC 512 ReLU
FC 2

Discriminator

Layer Output size Activation

Input x 2
FC 512 ReLU
FC 512 ReLU
FC 512 ReLU
FC 1 Sigmoid

of MNIST and FMNIST dataset, we randomly pick 60,000 samples in total from MNIST and
FMNIST dataset with a given majority rate. For both datasets, minority level (Fig. 1e) 1, 2, 3 stands
for the majority rate ρ = 90%, 95%, 99%, respectively. We use DCGAN [17] with the detailed
architecture described in Table A2 and A3. We use the batch size of 64 and Adam optimizer [8]
with hyperparameters α = 0.0001, β1 = 0.5, β2 = 0.9. We additionally use the linear learning
rate scheduler that decays until the end of the training. All models are trained for 20k steps. For
PacGAN [12], we use a packing degree of two. For Inclusive GAN [25], we use Inception feature [18]
for the feature space. For GOLD [16] and our method, the phase 1 takes 15k steps, and the phase
2 takes 5k steps. For our method, we record LDR every 100 steps and use the last 50 records for
calculating the discrepancy score. We use k = 3 for Colored MNIST and k = 6 for MNIST-FMNIST.

To evaluate Partial Recall in Fig. 1e, we train convolutional classifier (Table A4) with 60,000
samples (30,000 major samples and 30,000 minor samples) with 20 classes (Major 10 classes
+ Minor 10 classes) and use output of flatten layer of this network for the feature space. The
convolutional classifier is trained for 50 epochs with Adam optimizer [8] with hyperparameters
α = 0.001, β1 = 0.9, β2 = 0.999 and learning rate scheduler with learning rate decay 0.1 in 42
epoch. To evaluate reconstruction error (RE) in Table 5, we use convolutional autoencoder with
the detailed architecture described in Table A5, A6. nc in each table states the number of channel.
nc for Colored MNIST is three and nc for MNIST-FMNIST is one. Fig 1e and Table 1, 5 are the
experimental results averaged from three random seeds.

Table A2: Generator architecture for Colored MNIST & MNIST-FMNIST
Generator

Layer Output size Kernel size Stride Padding Batch Norm Activation

Input z 100
FC 384 - - - X

Reshape 1×1×384 - - - - -
Deconv 4×4×192 4×4 1 0 O ReLU
Deconv 8×8×96 4×4 2 1 O ReLU
Deconv 16×16×48 4×4 2 1 O ReLU
Deconv 32×32×nc 4×4 2 1 X Tanh

Table A3: Discriminator architecture for Colored MNIST & MNIST-FMNIST
Discriminator

Layer Output size Kernel size Stride Padding Batch Norm Dropout Activation

Input x 32×32×nc
Conv 16×16×16 3×3 2 1 X 0.5 LeakyReLU(0.2)
Conv 16×16×32 3×3 1 1 O 0.5 LeakyReLU(0.2)
Conv 8×8×64 3×3 2 1 O 0.5 LeakyReLU(0.2)
Conv 8×8×128 3×3 1 1 O 0.5 LeakyReLU(0.2)
Conv 4×4×256 3×3 2 1 O 0.5 LeakyReLU(0.2)
Conv 4×4×512 3×3 1 1 O 0.5 LeakyReLU(0.2)

Flatten - - - - - - -
FC 1 - - - X Sigmoid
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Table A4: Classifier architecture for measuring Partial Recall of Colored MNIST & MNIST-FMNIST
Classifier

Layer Output size Kernel size Stride Padding Batch Norm Activation

Input x 32×32×nc
Conv 32×32×16 7×7 1 3 O ReLU
Conv 32×32×32 7×7 1 3 O ReLU
Conv 32×32×64 7×7 1 3 O ReLU
Conv 32×32×128 7×7 1 3 O ReLU

AvgPool 1×1×128 - - - - -
Flatten - - - - - -

FC 20 - - - X Softmax

Table A5: Encoder architecture for measuring Reconstruction Error (RE) score
Encoder

Layer Output size Kernel size Stride Padding Batch Norm Activation

Input x 32×32×nc
Conv 16×16×64 3×3 2 1 O ReLU
Conv 8×8×128 3×3 2 1 O ReLU
Conv 4×4×256 3×3 2 1 O ReLU

Flatten - - - - - -
FC 256 - - - X Tanh

Table A6: Decoder architecture for measuring Reconstruction Error (RE) score
Decoder

Layer Output size Kernel size Stride Padding Output padding Batch Norm Activation

Input z 256
FC (4×4×256) - - - - O ReLU

Reshape 4×4×256 - - - - - -
Deconv 8×8×128 3×3 2 1 1 O ReLU
Deconv 16×16×64 3×3 2 1 1 O ReLU
Deconv 32×32×nc 3×3 2 1 1 X Tanh

F.4 Real dataset - CIFAR-10 and CelebA

We evaluate our method with two types of GANs: SNGAN [15] and SSGAN [23] 5. Following [15],
we use the residual network architecture proposed in ResNet [3] for all GAN variants. Our experi-
mental code is based on the GAN research library Mimicry [10]. We use batch size of 64 and Adam
optimizer [8] with hyperparameters α = 0.0002, β1 = 0, β2 = 0.9. The learning rate is set to decay
linearly with the training steps. Table 2 and 4 are the experimental results averaged from three random
seeds.

F.5 Real dataset - FFHQ

We test the scalability of our method on the large-scale model. Specifically, we train StyleGAN2 [7]
on FFHQ 256x256 [6] dataset. We follow most of the techniques used in the original StyleGAN2 [7].
We use leaky ReLU activation with α = 0.2, bilinear filtering [26] in all up/downsampling layers,
minibatch standard deviation layer at the end of the discriminator [5], exponential moving average
of generator weights [5] and style mixing regularization [6]. For the discriminator, we use r1 = 0.1
for the weight of R1 regularizer [14] and apply the lazy regularization [7] every 16 steps. For the
generator, we apply path length regularization [7] with weight of 2 and batch size reducing factor
of 2 and also apply the lazy regularization every 4 steps. We use the batch size of 16 and Adam
optimizer [8] with the hyperparameters α = 0.0016, β1 = 0, β2 = 0.991. In total, we train for 250k

5When we train SSGAN with the Top-k method, we only consider top-k samples for the GAN tasks, while
we use full (not top-k) samples for the self-supervised tasks.

12



where the phase 1 takes 200k steps and phase 2 takes the remaining 50k steps. We record the LDR
values every 100 steps for the last 5k steps of phase 1 (195k ∼ 200k). For the discrepancy score, we
use k = 3.0. Table 3 shows the experimental results averaged from two random seeds.

F.6 Details on CelebA minor attribute analysis

To analyze the CelebA minor attribute, we use the meta-information provided by CelebA [13]. We
use a pre-trained VGG16 network to train attribute classifiers for each attribute. Except for the last
three fully connected layers, we fix the parameters of the pre-trained VGG16 network and change the
output size of last layer to two. We train only the last three layers (classifier layers) of the VGG16
network for 10 epochs with batch size 128 and SGD optimizer with a learning rate of 0.001 and
momentum of 0.9. We select the minor attributes with accuracy above 95% for train and test datasets.
We count the occurrence of minor attributes using the trained classifier. Table 6 is the experimental
results averaged from three random seeds.

F.7 Hyperparameter search for discrepancy score

The hyperparmeter k for discrepancy score (7) is chosen from k = 0.3, 0.5, 1.0, 3.0, 5.0, 7.0 to
achieve the best FID score among the candidates for each dataset at SNGAN, and the value of k is
fixed across the GAN variants. See Table A7 for details. As we can see in Table A7, an appropriate
choice of k can be different depending on the dataset. These are results averaged from three random
trials.

Table A7: FID for Dia-GAN with various k

k 0.3 0.5 1.0 3.0 5.0 7.0

FID for CIFAR-10 19.23 19.47 20.58 23.45 24.44 20.43

FID for CelebA 7.27 6.91 6.52 6.73 6.37 6.41

F.8 Hyperparameter choice for training steps

We choose the training steps for Phase 1 of our algorithm as 80% of total steps to make sure that the
discriminator is trained enough. However, experiments with the different training step choices shown
in Table A8 imply our method’s robustness on the parameter choice.

Table A8: FID for Dia-GAN with different phase 1 steps (% of total steps).
Baseline 20% 40% 60% 80%

FID for CIFAR-10 26.90±0.90 17.56±1.03 16.72±0.74 18.65±0.94 19.66±0.42

FID for CelebA 7.12±0.27 6.69±0.33 6.90±0.66 6.86±0.77 6.70±0.69

When we take the longer total training steps as 100k steps for SNGAN on CIFAR-10 and CelebA, we
find similar trends as we use 50k steps for total training steps. See Table A9 for details. The overall
FID gets better when the model is trained longer, but our method still gives an improvement in term
of FID, Inception score and recall. In addition, we want to point out that our method can offer an
efficient way of training, as our method requires much fewer steps to achieve FID better that the best
FID of the Vanilla GAN.

F.9 Necessity of combining LDRM and LDRV

Our discrepancy score is the weighted sum of two metrics, balancing the effects of two terms. To
check the effects of combining two metrics, we train SNGAN on CIFAR-10 and CelebA using
only LDRM or LDRV metric. We use clipped LDRM or clipped LDRV value as we applied to the
discrepancy score. As shown in Table A10, average FID of using only one metric cannot achieves
average FID of using discrepancy score. This implies the importance of incorporating LDRV over
LDRM and the effect of proper balancing of both metrics.
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Table A9: FID for SNGAN and Dia-SNGAN with different total training steps.

CIFAR-10 CelebA

FID ↓ IS ↑ FID ↓ P ↑ R ↑
SNGAN (50k/ 75k) 26.90±0.90 7.36±0.08 7.12±0.27 0.68±0.00 0.44±0.01

Dia-SNGAN (50k/ 75k) 19.66±0.42 7.95±0.09 6.70±0.69 0.64±0.02 0.48±0.02

SNGAN (100k) 22.43±0.92 7.59±0.06 6.83±0.46 0.68±0.00 0.45±0.02
Dia-SNGAN (100k) 16.49±1.05 8.10±0.14 6.57±0.70 0.63±0.01 0.49±0.01

Table A10: FID for GAN using weighted sampling with LDRM and LDRV.
Baseline LDRM LDRV Dia-GAN(Ours)

FID for CIFAR-10 26.90±0.90 19.80±0.47 20.08±0.67 19.66±0.42

FID for CelebA 7.12±0.27 7.46±0.57 7.08±0.75 6.70±0.69

F.10 Details on Discriminator Rejection Sampling (DRS)

In this subsection, we introduce the practical scheme of DRS by briefly referring to original DRS
paper and explain our hyperparameter uses for DRS algorithm. Discriminator Rejection Sampling [1]
accepts the fake sample x with probability pdata(x)/Mpg(x) where M = maxx (pdata(x)/pg(x)).
If we let LDRM = logM , then acceptance probability for x, denoted by paccept(x), would be

paccept(x) = eLDR(x)−LDRM . (F.2)

To deal with low acceptance probabilities and numerical stability issue, Azadi et al. [1] instead
proposed to compute F (x) which satisfies

paccept(x) =
1

1 + e−F (x)
. (F.3)

Equivalently,

F (x) = LDR(x)− LDRM − log(1− eLDR(x)−LDRM ). (F.4)

Practically, in DRS algorithm we compute

F̂ (x) = LDR(x)− LDRM − log(1− eLDR(x)−LDRM−ε)− γ, (F.5)

where ε is a constant for preventing overflow and γ is a hyperparameter for controlling the acceptance
probability. For applying DRS with auxiliary discriminator in our algorithm, we used ε = 10−6 and
let γ be 80% percentile of F̂ (x). LDRM is initially estimated with 256× 50 = 12800 samples by
finding the maximum LDR value among those samples. LDRM is updated during sampling phase
whenever a bigger one is found.

G Effect of our method in sample generation for CIFAR-10 & CelebA

G.1 Visualized effect of weighted sampling

In Fig. A7 (CIFAR-10) and A8 (CelebA), we compare the generated samples with and without our
sampling method, which emphasizes underrepresented samples having high discrepancy scores. We
also visualize the effect of our weighted sampling by showing some examples of generated samples
G(z) with the same z between original GAN and our method in Fig. A9. In Fig. A9, we show
some examples of CelebA images with minor features such as accessories including glasses or hats
appeared by our weighted sampling, and also images having unique backgrounds (e.g. with some
letters in the background) with our method. These minor features are often underrepresented in
sample generation of original GANs, while our weighted sampling effectively helps the model learn
such minor features by detecting and emphasizing underrepresented samples.
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(a) Generated samples with original sampling
method

(b) Generated samples with weighted sampling
method (ours)

Figure A7: Example of generated samples with (a) original sampling and with (b) weighted sampling
(CIFAR-10)

(a) Generated samples with original sampling
method

(b) Generated samples with weighted sampling
method (ours)

Figure A8: Example of generated samples with (a) original sampling and with (b) weighted sampling
(CelebA)

G.2 Quantitative comparison of generated samples

To verify that our method encourages model to generate underrepresented samples (having high
discrepancy scores) for CIFAR-10 and CelebA, we evaluate ‘PFID (Partial FID)’. Original FID is
calculated by comparing the feature statistics of all training data and randomly sampled generated
samples, but PFID is calculated by the difference between the feature statistics of the specific subset
of training data and generated samples. We evaluate the High PFID, the PFID of 5,000 training
samples having the highest discrepancy scores and the Low PFID, the PFID of 5,000 training samples
having the lowest discrepancy scores. In both PFID calculations, we use 50,000 generated samples.
The results are summarized in Table A11 (averaged over three trials), where the PFID values are
calculated for SNGAN.
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(a) Generated samples with original sampling (b) Generated samples with weighted sampling

Figure A9: Comparison of generated samples with (a) original sampling and with (b) weighted
sampling for CelebA dataset. Examples of generated images with minor features such as accessories
including glasses or hats appeared by our method (1st row), or with more unique backgrounds (e.g.
with some letters in the background) (2nd row).

This result shows the effectiveness of our method in two aspects. First, the Low PFID is signif-
icantly lower than the High PFID, which means that our discrepancy score successfully detects
underrepresented samples. Another aspect is that after weighted sampling, the High PFID decreases
significantly, implying the effectiveness of our method on promoting the consideration of high-scoring,
underrepresented samples in GAN training.

Table A11: Partial FID for SNGAN
Baseline Dia-GAN (ours)

CIFAR-10 High PFID 94.64±2.93 77.28±3.76

Low PFID 22.43±0.68 33.98±1.77

CelebA High PFID 50.25±3.24 42.33±3.36

Low PFID 17.25±1.35 23.17±3.29

H Effect of our method in capturing semantic features for FFHQ

To ensure that the ability of our method in capturing semantic features also applies to high-resolution
datasets, we consider the FFHQ dataset and classify the race on the FFHQ dataset using the DeepFace
architecture [21]. This architecture classifies the images as Asian, Black, Indian, Latino hispanic,
Middle eastern, and White. For the FFHQ dataset, Black, Indian, and Middle eastern represent the
minority taking less than 5% of the FFHQ dataset. See Table A12 for details.

We compare the occurrence rate and partial recall for these minor races after training with vanilla
StyleGAN2 and Dia-GAN, respectively. The results are shown in Table A13.

Table A12: Ratio(%) of race on the FFHQ dataset classified by the DeepFace architecture [21].
Race Asian Black Indian Latino hispanic Middle eastern White

Ratio(%) 19.38 4.80 2.08 10.83 4.04 58.87

Table A13: FFHQ minor attribute analysis. O stands for the occurrence of minor attributes among
the generated samples in percentage (%) and R stands for the Partial Recall.

Vanilla Dia-GAN

O ↑ R ↑ O ↑ R ↑
Black (4.80%) 3.00±0.13 0.27±0.03 2.99±0.17 0.30±0.01
Indian (2.08%) 0.81±0.19 0.26±0.03 1.16±0.03 0.30±0.01

Middle eastern (4.04%) 3.18±0.20 0.27±0.04 3.49±0.61 0.31±0.00
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Similar to the results for the CelebA dataset in Section 5.3, the occurrence rate and partial recall
for minor races in the FFHQ dataset are improved with our method, especially for Indian and
Middle-eastern image samples.

In conclusion, this evidence demonstrates that our method successfully captures semantically mean-
ingful minor attributes and emphasizes them during the training, resulting in a diverse generation of
minor samples across low- to high-resolution datasets.
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I Examples of generated samples for MNIST-FMNIST

We show randomly generated samples of various GANs trained on MNIST-FMNIST with different
majority (MNIST) rate ρ ∈ {90, 95, 99}% in Fig. A10. Our method is the only method that recovers
the minor (FMNIST) features when the rate is 99%. Moreover, the reconstruction error (RE) scores
reported in Table 5 demonstrate that our method improves the quality of generated samples with minor
features, resulting in better RE score of the green training samples. Results indicate the effectiveness
of Dia-GAN in improving the quality of generated samples with underrepresented features.

99% 95% 90%

Baseline

GOLD

Top-k

PacGAN

Inclusive GAN

Dia-GAN

Figure A10: MNIST-FMNIST generated samples of various GANs on different majority rate.
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J Full experimental results with standard deviation

In this section, we show the detailed results for the tables in the main document, which are reported
with only mean values due to the space limitation, with the standard deviation.

Table A14: (Details of Table 1) LDRV of major/minor groups on various datasets with majority rate
90%.

Group Gaussian (σ=3.0) Colored MNIST MNIST-FMNIST

Major 0.001±0.000 0.077±0.018 0.082±0.022

Minor 0.098±0.009 0.186±0.057 0.115±0.021

Table A15: (Details of Table 2) Comparison of diverse sampling/weighting techniques for CIFAR-10
image generation.

Methods
SNGAN SSGAN

FID ↓ IS ↑ FID ↓ IS ↑
Vanilla 26.90±0.90 7.36±0.08 22.01±0.99 7.65±0.10

DRS [1] 24.54±0.80 7.57±0.05 20.51±1.01 7.77±0.09

GOLD [16] 28.86±0.92 7.21±0.09 21.90±0.90 7.57±0.09

GOLD + DRS [1] 24.65±0.86 7.53±0.09 19.36±0.45 7.79±0.04

Top-k [19] 24.45±0.60 7.60±0.06 20.01±1.23 7.78±0.08

Top-k + DRS [1] 23.92±0.69 7.70±0.09 20.09±0.98 7.88±0.10

Dia-GAN 19.66±0.42 7.95±0.09 16.31±0.53 8.14±0.06

Table A16: (Details of Table 2) Comparison of diverse sampling/weighting techniques for CelebA
image generation.

Methods
SNGAN SSGAN

FID ↓ Prec. ↑ Rec. ↑ FID ↓ Prec. ↑ Rec. ↑
Vanilla 7.12±0.27 0.68±0.00 0.44±0.01 7.19±0.18 0.68±0.01 0.44±0.02

DRS [1] 7.04±0.31 0.68±0.01 0.44±0.01 7.08±0.23 0.68±0.01 0.45±0.01

GOLD [16] 7.31±0.67 0.69±0.00 0.44±0.02 7.46±0.31 0.68±0.00 0.43±0.00

GOLD + DRS [1] 6.97±0.64 0.68±0.01 0.44±0.01 7.15±0.37 0.67±0.01 0.45±0.01

Top-k [19] 7.35±0.20 0.67±0.00 0.44±0.01 7.23±0.18 0.67±0.00 0.45±0.01

Top-k + DRS [1] 7.35±0.18 0.68±0.00 0.44±0.00 7.16±0.25 0.68±0.00 0.45±0.00

Dia-GAN 6.70±0.69 0.64±0.02 0.48±0.02 6.88±0.58 0.66±0.02 0.46±0.02
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Table A17: (Details of Table 3) StyleGAN2 on FFHQ 256x256.

FID ↓ P ↑ R ↑
StyleGAN2 14.07±3.07 0.72±0.02 0.27±0.03

GOLD 15.53±4.14 0.69±0.00 0.29±0.02

Dia-StyleGAN2 11.89±0.21 0.69±0.01 0.30±0.01

Table A18: (Details of Table 4) HingeGAN on CIFAR-10 and CelebA.

CIFAR-10 CelebA

FID ↓ IS ↑ FID ↓
HingeGAN 21.99±1.73 7.67±0.16 6.66±0.06

Dia-HingeGAN 18.74±1.79 8.02±0.14 5.98±0.15

Table A19: (Details of Table 5) Reconstruction Error (RE) score of green (minor) training samples in
Colored MNIST on different majority rate ρ.

Dataset Colored MNIST

Majority rate ρ 99% 95% 90%

Vanilla 0.838±0.033 0.236±0.037 0.218±0.058

GOLD [16] 0.813±0.002 0.297±0.146 0.200±0.022

Top-k [19] 0.831±0.022 0.210±0.012 0.223±0.015

PacGAN [12] 0.810±0.001 0.244±0.049 0.233±0.052

Inclusive GAN [25] 0.812±0.001 0.274±0.060 0.216±0.024

Dia-GAN 0.224±0.020 0.204±0.018 0.197±0.026

Table A20: (Details of Table 5) Reconstruction Error (RE) score of FMNIST samples (minor) in a
mixture of MNIST and FMNIST on different majority rate ρ.

Dataset MNIST-FMNIST

Majority rate ρ 99% 95% 90%

Vanilla 0.290±0.019 0.227±0.001 0.215±0.010

GOLD [16] 0.296±0.008 0.241±0.005 0.218±0.004

Top-k [19] 0.281±0.012 0.232±0.006 0.221±0.007

PacGAN [12] 0.313±0.026 0.251±0.013 0.225±0.007

Inclusive GAN [25] 0.283±0.012 0.230±0.015 0.220±0.011

Dia-GAN 0.264±0.007 0.219±0.016 0.206±0.002

Table A21: (Details on Table 6) CelebA minor attribute analysis. Mean of LDRV and mean of the
discrepancy score of CelebA samples with (W/) or without (W/O) minor attributes.

Method
LDRV Discrepancy

W/ W/O W/ W/O

Bald (2.244%) 0.271±0.050 0.184±0.035 2.938±0.183 2.221±0.183

Double Chin (4.669%) 0.219±0.040 0.184±0.035 2.525±0.188 2.224±0.183

Eyeglasses (6.512%) 0.254±0.048 0.181±0.035 2.783±0.202 2.200±0.182

Gray Hair (4.195%) 0.211±0.037 0.185±0.035 2.450±0.173 2.228±0.184

Mustache (4.155%) 0.242±0.047 0.183±0.035 2.699±0.218 2.218±0.182

Pale Skin (4.295%) 0.190±0.032 0.186±0.036 2.240±0.156 2.238±0.184

Wearing Hat (4.846%) 0.357±0.072 0.177±0.034 3.651±0.297 2.164±0.178
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Table A22: (Details of Table 6) CelebA minor attribute analysis. O stands for the occurrence of minor
attributes among the generated samples in percentage (%) and R stands for the Partial Recall.

Method
Vanilla Dia-GAN

O ↑ R ↑ O ↑ R ↑
Bald (2.244%) 0.678±0.164 0.353±0.014 0.836±0.089 0.393±0.012

Double Chin (4.669%) 0.440±0.090 0.411±0.015 0.522±0.090 0.461±0.003
Eyeglasses (6.512%) 3.300±0.044 0.400±0.019 4.053±0.282 0.449±0.008
Gray Hair (4.195%) 2.273±0.335 0.402±0.016 2.369±0.087 0.436±0.013
Mustache (4.155%) 0.157±0.027 0.391±0.012 0.228±0.009 0.433±0.008
Pale Skin (4.295%) 0.346±0.014 0.380±0.013 0.453±0.004 0.427±0.025

Wearing Hat (4.846%) 2.307±0.055 0.380±0.007 3.595±0.655 0.408±0.020
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