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Abstract

We study nonparametric contextual bandits where Lipschitz mean reward functions1

may change over time. We first establish the minimax dynamic regret rate in2

this less understood setting in terms of number of changes L and total-variation3

V , both capturing all changes in distribution over context space, and argue that4

state-of-the-art procedures are suboptimal in this setting.5

Next, we tend to the question of an adaptivity for this setting, i.e. achieving the6

minimax rate without knowledge of L or V . Quite importantly, we posit that the7

bandit problem, viewed local at a given context Xt, should not be affected by8

reward changes in other parts of context space X . We therefore propose a notion of9

change that better accounts for locality, and thus counts significantly less changes10

than L and V . Our main result is to show that this more strict notion of change,11

which we term experienced significant shifts, can in fact be adapted to. As in12

previous work on non-stationary MAB (Suk and Kpotufe, 2022), not only do our13

results capture changes only at the experienced contexts x, but also only the most14

significant in terms of changes in mean rewards (e.g., only count severe best-arm15

changes at x).16

1 Introduction17

Contextual bandits model sequential decision making problems where the reward of a chosen action18

depends on an observed context Xt at time t, e.g., a consumer’s profile, a medical patient’s history.19

The goal is to maximize the total rewards over time of chosen actions, as informed by seen contexts.20

As such, one suitable measure of performance is that of dynamic regret, which compares earned21

rewards to a time-varying oracle maximizing mean rewards at Xt. While it is often assumed in the22

bulk of works in this setting that rewards distributions remain stationary over time, it is understood23

that in practice, environmental changes induce nontrivial changes in rewards.24

In fact, the problem of non-stationary environments has received a surge of attention in the simpler25

non-contextual Multi-Arm-Bandits (MAB) setting, while the more challenging contextual case26

remains ill-understood. In particular in the contextual case, some recent works of Wu et al. [2018],27

Luo et al. [2018], Chen et al. [2019], Wei and Luo [2021] consider parametric settings, i.e. where28

reward functions belong to fixed parametric family, and show that one may achieve rates adaptive to29

an unknown number of L of shifts in rewards or to a notion of total-variation V , both acccounting30

for all changes over time and context space. Instead here, we consider a much larger class of reward31

functions, namely Lipschitz rewards, corresponding to the natural assumption that closeby contexts32

have similar rewards even as reward distributions change.33

As a first result for this nonparametric setting, we establish some minimax lower-bounds as a baseline34

in terms of either L or V , and argue that state-of-the-art procedures for the parametric case—extended35

to the class of Lipschitz functions—do not achieve these baselines.36
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We then turn attention to whether such baselines may be achieved adaptively, i.e., without knowledge37

of L or V . The answer as we show is affirmative, and more importantly, some much weaker notions38

of change may be adapted to; for intuition, while L or V accounts for any change at any time over39

the context space (say X ), it may be that all changes are relegated to parts of the space irrelevant40

to observed contexts Xt at the time they are played. For instance, suppose at time t, we observe41

Xt = x0, then it may not make sense to count changes that happen at some other x1 far from x0, or42

changes that happened at x0 itself but far back in time.43

We therefore propose a new parameterization of change, termed experienced significant shifts that44

better accounts for the locality of changes in time and space, and as such may register much less45

changes than either L or V . As a sanity check, we show that an oracle policy which restarts46

only at experienced significant shifts can attain enhanced regret rates in terms of the number L̃ =47

L̃(X1, . . . , XT ) of such experienced shifts (Proposition 2), a rate always no worse that the baseline48

we first established in terms of L and V .49

Our main result is to show that experienced significant shifts can be adapted to (Theorem 3), i.e.,50

with no prior knowledge of such shifts. Importantly, the result holds in both stochastic environments,51

and in (oblivious) adversarial ones with no change to our notion, algorithmic approach, nor analysis.52

Furthermore, similar to recent advances in the non-contextual case [Abbasi-Yadkori et al., 2022, Suk53

and Kpotufe, 2022], an experienced shift is only triggered under severe changes such as changes of54

best arms locally at a context Xt. An added difficulty in the contextual case is that we cannot hope to55

observe rewards for a given arm (action) repeatedly at Xt as the context may only appear once, and56

have to rely on carefuly chosen nearby points to identify unknown shifts in reward at Xt.57

1.1 Other Related Work58

Nonparametric Contextual Bandits. The stationary bandits with covariates (where rewards and59

contexts follow a joint distribution) was first introduced in a one-armed bandit problem [Woodroofe,60

1979, Sarkar, 1991], with the nonparametric model first studied by Yang et al. [2002]. Minimax61

regret rates, based on a margin condition, were first established for the two-armed bandit in Rigollet62

and Zeevi [2010] and generalized to any finite number of arms in Perchet and Rigollet [2013], with63

further insights thereafter [Qian and Yang, 2016a,b, Reeve et al., 2018, Guan and Jiang, 2018, Gur64

et al., 2022, Hu et al., 2020, Arya and Yang, 2020, Suk and Kpotufe, 2021, Cai et al., 2022]. However,65

the mentioned works all assume a stationary distribution of rewards over contexts. Blanchard et al.66

[2023] studies non-stationary nonparametric contextual bandits, but in the much-different context of67

universal learning, concerning when sublinear regret is achievable asymptotically.68

Lipschitz contextual bandits appears as part of studies on broader infinite-armed settings [Lu et al.,69

2009, Krishnamurthy et al., 2019]. Related, Slivkins [2014] allows for non-stationary (i.e., obliviously70

adversarial) environments, but only studies regret to the (per-context) best arm in hindsight.71

Realizable contextual bandits posits that the regression function capturing mean rewards in contexts72

lies in some known class of regressors F , over which one can do empirical risk minimization [Foster73

et al., 2018, Foster and Rakhlin, 2020, Simchi-Levi and Xu, 2021]. While this setting can recover74

Lipschitz contextual bandits, the only result on non-stationary guarantees to our knowledge is Wei75

and Luo [2021], which yields suboptimal dynamic regret (see Table 1).76

Non-Stationary Bandits and RL. In the simpler non-contextual bandits, changing reward distribu-77

tions (a.k.a. switching bandits) was introduced in Garivier and Moulines [2011] and further explored78

with various assumptions and formulations [Besbes et al., 2019, Karnin and Anava, 2016, Allesiardo79

et al., 2017, Liu et al., 2018, Wei and Srivatsva, 2018, Besson et al., 2022, Cao et al., 2019, Mukherjee80

and Maillard, 2019]. While these earlier works focused on algorithmic design assuming knowledge81

of non-stationarity, such a strong assumption was removed via the adaptive procedures of Auer et al.82

[2019], Chen et al. [2019]. In followup works, Abbasi-Yadkori et al. [2022], Suk and Kpotufe [2022]83

show that tighter dynamic regret rates are possible, scaling only with severe changes in best arm.84

The ideas from non-stationary MAB were extended to various contextual bandit settings by Wu et al.85

[2018] (for linear mean rewards in contexts), Luo et al. [2018], Chen et al. [2019] (for finite policy86

classes), and Wei and Luo [2021] (for realizable mean reward functions).87

There have also been extensions of these ideas to various reinforcement learning setups [Jaksch88

et al., 2010, Gajane et al., 2018, Ortner et al., 2020, Cheung et al., 2020, Fei et al., 2020, Mao et al.,89
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2021, Zhou et al., 2022, Touati and Vincent, 2020, Domingues et al., 2021, Chi Cheung et al., 2019,90

Domingues et al., 2021, Ding and Lavaei, 2023, Wei and Luo, 2021, Lykouris et al., 2021, Wei et al.,91

2022, Chen and Luo, 2022]. Among these works, only Domingues et al. [2021] can recover Lipschitz92

contextaul bandits, whereupon we find their dynamic regret bounds are suboptimal (see Table 1).93

Again, the typical aim of aforementioned works on contextual bandits or RL is to minimize a notion94

of dynamic regret in terms of the number of changes L or total-variation V . As such, regardless of95

setting, known guarantees in said works do not involve tighter notions of experienced non-stationarity.96

2 Problem Formulation97

2.1 Contextual Bandits with Changing Rewards98

Preliminaries. We assume a finite set of arms [K]
.
= {1, 2 . . . ,K}. Let Yt ∈ [0, 1]K denote the99

vector of rewards for arms a ∈ [K] at round t ∈ [T ] (horizon T ), and Xt the observed context100

at that round, lying in X .
= [0, 1]d, which have joint distribution (Xt, Yt) ∼ Dt. We let Xt

.
=101

{Xs}s≤t,Yt
.
= {Ys}s≤t denote the observed contexts and (observed and unobserved) rewards from102

rounds 1 to t. In our setting, an oblivious adversary decides a sequence of (independent) distributions103

on {(Xt, Yt)}t∈[T ] before play.104

Notation. The reward function ft : X → [0, 1]K is fa
t (x)

.
= E[Y a

t |Xt = x], a ∈ [K], and105

captures the mean rewards of arm a at context x and time t.106

A policy chooses actions at each round t, based on observed contexts (up to round t) and passed107

rewards, whereby at each round t only the reward Y a
t of the chosen action a is revealed. Formally:108

Definition 1 (Policy). A policy π .
= {πt}t∈N is a random sequence of functions πt : X t × [K]t−1 ×109

[0, 1]t−1 → [K]. In the case of a randomized policy, i.e., where πt in fact maps to distributions110

on [K], In an abuse of notation, in the context of a sequence of observations till round t, we’ll let111

πt ∈ [K] denote the (possibly random) action chosen at round t.112

The performance of a policy is evaluated using the dynamic regret, defined as follows:113

Definition 2. Fix a context sequence XT . Define the dynamic regret of a policy π, as114

RT (π,XT )
.
=

T∑
t=1

max
a∈[K]

fa
t (Xt)− fπt

t (Xt).

Thus, we seek a policy π that minimizes E[RT (π,XT )] where the expectation is over XT , YT , and115

any randomness in π.116

Notation. As much of our analysis focuses on the gaps in mean rewards between arms at observed117

contexts Xt, the following notation will serve useful. Let δt(a′, a)
.
= fa′

t (Xt) − fa
t (Xt) denote118

the relative gap of arms a to a′ at round t at context Xt. Define the worst gap of arm a as119

δt(a)
.
= maxa′∈[K] δt(a

′, a), corresponding to the instantaneous regret of playing a at round t and120

context Xt. Thus, the dynamic regret can be written as
∑

t∈[T ] E[δt(πt)]. Additionally, let δa
′,a

t (x)
.
=121

fa′

t (x)− fa
t (x) and δat (x)

.
= maxa′∈[K] δ

a′,a
t (x) be the gap functions mapping X → [0, 1].122

2.2 Nonparametric Setting123

We assume, as in prior work on nonparametric contextual bandits [Rigollet and Zeevi, 2010, Perchet124

and Rigollet, 2013, Slivkins, 2014, Reeve et al., 2018, Guan and Jiang, 2018, Suk and Kpotufe, 2021],125

that the reward function is 1-Lipschitz.126

Assumption 1 (Lipschitz ft). For all rounds t ∈ N, a ∈ [K] and x, x′ ∈ X ,127

|fa
t (x)− fa

t (x
′)| ≤ ∥x− x′∥∞. (1)

For ease of presentation, we assume the contextual marginal distribution µX remains the same across128

rounds. Furthermore, we make a standard strong density assumption on µX , which is typical in this129

nonparametric setting [Audibert and Tsybakov, 2007, Perchet and Rigollet, 2013, Qian and Yang,130

2016a,b, Gur et al., 2022, Hu et al., 2020, Arya and Yang, 2020, Cai et al., 2022]. This holds, e.g. if131

µX has a continuous Lebesgue density on [0, 1]d, and ensures good coverage of the context space.132
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Assumption 2 (Strong Density Condition). There exist Cd, cd > 0 s.t. ∀ℓ∞ balls B ⊂ [0, 1]d of133

diameter r ∈ (0, 1]:134

Cd · rd ≥ µX(B) ≥ cd · rd. (2)
Remark 1. We can in fact relax the above assumptions on context marginals so that µX,t(·) is135

changing with time t and the above strong density assumption is satisfied with different constants136

Cd,t, cd,t. Our procedures in the end will not require knowledge of any Cd,t, cd,t.137

2.3 Model Selection138

A common algorithmic approach in nonparametric contextual bandits, starting from earlier work139

[Rigollet and Zeevi, 2010, Perchet and Rigollet, 2013], is to discretize or partition the context space140

X into bins where we can maintain local reward estimates. These bins have a natural hierarchical141

tree structure which we first elaborate.142

Definition 3 (Partition Tree). Let R .
= {2−i : i ∈ N ∪ {0}}, and let Tr, r ∈ R denote a regular143

partition of [0, 1]d into hypercubes (which we refer to as bins) of side length (a.k.a. bin size) r. We144

then define the dyadic tree T .
= {Tr}r∈R, i.e., a hierarchy of nested partitions of [0, 1]d. We will145

refer to the level r of T as the collection of bins in partition Tr. The parent of a bin B ∈ Tr, r < 1146

is the bin B′ ∈ T2r containing B; child, ancestor and descendant relations follow naturally. The147

notation Tr(x) will then refer to the bin at level r containing x.148

Note that, while in the above definition, T has infinite levels r ∈ R, at any round t in a procedure,149

we implicitly only operate on the subset of T containing data.150

Key in securing good regret is then finding the optimal level r ∈ R of discretization (balancing151

regression bias and variance), which over n stationary rounds is known to be ∝ (K/n)
1

2+d [Rigollet152

and Zeevi, 2010]. We introduce the following general notation, useful later in the approaching the153

non-stationary problem, for associating the size of a level to an intervals of rounds.154

Notation 1 (Level). For n ∈ N ∪ {0}, let rn be the largest 2−m ∈ R such that (K/n)
1

2+d ≥ 2−m.155

We use Tm, Tm(x) as shorthand to denote (respectively) the tree Tr of level r = rm and the (unique)156

bin at level rm containing x.157

3 Results Overview158

3.1 Minimax Lower Bounds Under Global Shifts159

As a baseline, we start with some basic lower-bounds under the simplest parametrizations of changes160

in rewards which have appeared in the literature, namely a global number of shifts, and total variation.161

Definition 4 (Global Number of Shifts). Let L .
=
∑T

t=2 111{∃x ∈ X , a ∈ [K] : fa
t (x) ̸= fa

t−1(x)} be162

the number of global shifts, i.e., it counts every change in mean-reward overtime and over X space.163

Definition 5 (Total Variation). Define VT
.
=
∑T

t=2 ∥Dt −Dt−1∥TV where recall Dt ∈ X × [0, 1]K164

is the joint distribution on context and rewards at time t.165

We have the following initial result (for two-armed bandits) to serve as baseline for this study.166

Theorem 1 (Dynamic Regret Lower Bound). Suppose there are K = 2 arms. For V,L ∈ [0, T ], let167

P(V,L, T ) be the family of joint distributions D .
= {Dt}t∈[T ] with either total variation VT ≤ V or168

at most L global shifts. Then, there exists a constant c > 0 such that:169

sup
D∈P(V,L,T )

ED[R(π,XT )] ≥ c
(
T

1+d
2+d + T

2+d
3+d · V

1
3+d

)
∧
(
(L+ 1)

1
2+dT

1+d
2+d

)
. (3)

Remark 2. Note setting d = 0 in Theorem 1 recovers the established non-contextual minimax rate170

of (
√
T + T 2/3V

1/3
T ) ∧

√
(L+ 1) · T .171

Achievability of Miminimax Lower-Bound (3). We are interested in whether the rates of (3)172

are achievable, with, or without knowledge of relevant parameters. First, we note that no existing173

algorithm currently guarantees a rate that matches (3). See Table 1 for a rate comparison (details in174

Appendix A).175
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In particular, the prior adaptive works [Chen et al., 2019, Wei and Luo, 2021] both rely on the176

approach of randomly scheduling replays of stationary algorithms to detect unknown non-stationarity.177

However, the scheduling rate is designed to safeguard against their parametric
√
LT ∧ V

1/3
T T 2/3178

regret rates and thus lead to suboptimal dependence on L and VT .179

However, a simple back of the envelope calculation indicates that the rate in (3) may be attainable, at180

least given some distributional knowledge: a procedure restarting at each shift will incur regret, over181

L equally spaced shifts, (L+ 1) ·
(

T
L+1

) 1+d
2+d ≈ L

1
2+d · T

1+d
2+d .182

As it turns out as we will show in the next section, (3) is indeed attainable, even adaptively; in fact,183

this is shown via a more optimistic problem parametrization as described next.184

Dynamic Regret Upper Bound

ADA-ILTCB [Chen et al., 2019]
(
L1/2 · T

1+d
2+d

)
∧
(
V

1/3
T · T

2+d
3+d+

d
3(2+d)(3+d)

)
MASTER with FALCON [Wei and Luo, 2021]

(
L1/2 · T

1+d
2+d

)
∧
(
V

1/3
T · T

2+d
3+d+

d
3(2+d)(3+d)

)
KeRNS [Domingues et al., 2021] (non-adaptive) V

1/3
T T

2+d
3+d+O(1/d)

Minimax Lower-Bound
(
L

1
2+dT

1+d
2+d

)
∧
(
V

1
3+d

T T
2+d
3+d

)
Table 1: Existing dynamic Regret Upper-Bounds appear suboptimal in the Lipschitz setting.

3.2 A New Problem Parametrization: Experienced Significant Shifts.185

As discussed in Section 1, typical approaches in our setting discretize the context space X into bins,186

each of which is treated as an MAB instance. At a high level, our new measure of non-stationarity187

will trigger an experienced significant shift when the observed context Xt arrives in a bin B ∈ T188

where there has been a severe change in local best arm, w.r.t. the observed data in that bin.189

We first define a notion of significant regret for an arm a ∈ [K] locally within a bin B ∈ T . We say190

arm a incurs significant regret in bin B on interval I if:191 ∑
s∈I

δs(a) · 111{Xs ∈ B} ≥
√

K · nB(I) + r(B) · nB(I), (⋆)

where nB(I)
.
=
∑

s∈I 111{Xs ∈ I}. The intuition for (⋆) is as follows: suppose that, over n separate192

rounds, we observe the same context Xs = x0 in bin B. Then, arm a would be considered unsafe in193

the local bandit problem at context x0 if its regret exceeds
√
K · n (i.e., the first term on the above194

RHS), which is a safe regret to pay for the non-contextual problem. Our broader notion (⋆) extends195

this over the bin B by also accounting for the bias (i.e., the second term on the above RHS) of196

observing Xs near a given context x0 ∈ B.197

We then propose to record an experienced significant shift when we experience a context Xt, for198

which there is no safe arm to play in the sense of (⋆).199

Definition 6. Fix the context sequence X1, X2, . . . , XT .200

•We say an arm a ∈ [K] is unsafe at context x ∈ X on I if there exists a bin B ∈ T containing x201

such that arm a incurs significant regret (⋆) in bin B on I .202

We then have the following recursive definition:203

• Let τ0 = 1. We then have the following recursive definition: define the (i + 1)-th experienced204

significant shift as the earliest time τi+1 ∈ (τi, T ] such that every arm a ∈ [K] is unsafe at Xt205

on some interval I ⊂ [τi, τi+1]. We refer to intervals [τi, τi+1), i ≥ 0, as experienced significant206

phases. The unknown number of such phases (by time T ) is denoted L̃, whereby [τL̃−1τL̃), for207

τL̃
.
= T + 1, is the last phase.208

Remark 3 (Significant Shifts Depend on Contexts). It should be understood that the significant shifts209

τi and L̃ depend on XT and mean rewards {fa
t (Xt)}t∈[T ],a∈[K], but not the realized rewards YT .210

For simplicity of presentation, we will not make the dependence on XT explicit in most places where211

τi, L̃ are mentioned.212
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It’s clear from Definition 6 and (⋆) that only changes in the mean rewards fa
t (x) at experienced213

contexts x ∈ XT are counted, and that they are only counted when experienced. Furthermore, an214

experienced significant shift τi implies a best-arm change at Xτi since, by smoothness (Assumption 1),215

and (⋆) we have216 ∑
s∈I

δas (Xτi) · 111{Xs ∈ B} ≥
∑
s∈I

δs(a) · 111{Xs ∈ B} − r(B)
∑
s∈I

111{Xs ∈ B} > 0.

Thus, L̃ ≤ L+ 1, the global count of shifts.217

On the other hand, so long as an experienced significant shift does not occur, there will be arms safe218

to play at each context Xt. As a result, procedures need not restart exploration so long as unsafe arms219

can be quickly ruled out.220

As a warmup to presenting our main regret bounds and algorithms, we’ll first consider an oracle221

procedure which restarts only at experienced significant shifts.222

Definition 7 (Oracle Procedure). For each round t in phase [τi, τi+1), define a good arm set Gt as223

the set of safe arms, i.e., arms which do not yet satisfy (⋆) in bin Tr(Xt) for r = rτi+1−τi (recall224

from Subsection 2.3 that this is the oracle choice of level over phase [τi, τi+1)).225

Then, define an oracle procedure π: at each round t, π plays a random arm a ∈ Gt w.p. 1/|Gt|.226

We then claim such an oracle procedure attains an enhanced dynamic regret rate in terms of the227

significant shifts {τi}i which recovers the minimax lower bound in terms of global number of shifts228

L and total variation VT from before.229

Proposition 2 (Sanity Check). We have the oracle procedure π of Definition 7 satisfies with proba-230

bility at least 1− 1/T 2 w.r.t. the randomness of XT : for some C > 0231

Eπ[RT (π,XT ) | XT ] ≤ C log(K) log(T )

L̃(XT )∑
i=1

(τi(XT )− τi−1(XT ))
1+d
2+d ·K

1
2+d .

Proof. See Appendix C.232

By Jensen’s inequality on the concave function z 7→ z
1+d
2+d , the above regret rate is at most L̃(XT )

1
2+d ·233

T
1+d
2+d ≪ L

1
2+d · T

1+d
2+d . At the same time, the rate is also faster than V

1
3+d

T T
1+d
2+d (see Corollary 5).234

We next aim to design an algorithm which can attain the same regret without knowledge of τi or L̃.235

3.3 Main Results: Adaptive Upper-bounds236

Our main result is a dynamic regret upper bound of similar order to Proposition 2 without knowledge237

of the environment, e.g., the significant shift times, or the number of significant phases. It is stated for238

our algorithm CMETA (Algorithm 1 of Section 4), which, for simplicity, requires knowledge of the239

time horizon T (knowledge of T removable using doubling tricks).240

Theorem 3. Let π denote the CMETA procedure. Let {τi(XT )}L̃+1
i=0 denote the unknown experienced241

significant shifts (Definition 6). We then have with probability at least 1− 1/T 2 w.r.t. the randomness242

of XT , for some C > 0:243

E[RT (π,XT ) | XT ] ≤ C log4(T )

L̃(XT )∑
i=1

(τi(XT )− τi−1(XT ))
1+d
2+d ·K

1
2+d .

By Jensen’s inequality, since the function z 7→ z
1+d
2+d is concave, the above regret rate is upper244

bounded by L̃(XT )
1

2+d · T
1+d
2+d ·K

1
2+d ,245

Corollary 4 (Adapting to Experienced Significant Shifts). Under the conditions of Theorem 3, with246

probability at least 1− 1/T 2 w.r.t. the randomness in XT :247

E[RT (π,XT ) | XT ] ≤ C log4(T ) · (K · L̃(XT ))
1

2+d · T
1+d
2+d .
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Note, this is tighter than the earlier mentioned (K · L)
1

2+dT
1+d
2+d rate. The next corollary asserts that248

Theorem 3 also recovers the optimal rate in terms of total-variation VT .249

Corollary 5 (Adapting to Total Variation). Under the conditions of Theorem 3, taking expectation250

over XT :251

E[RT (π,XT )] ≤ C log4(T )
(
T

1+d
2+d ·K

1
2+d + (VT ·K)

1
3+d · T

2+d
3+d

)
.

4 Algorithm252

Algorithm 1: Contextual Meta-Elimination while Tracking Arms (CMETA)
Input: horizon T , set of arms [K], tree T with levels r ∈ R.

1 Initialize: round count t← 1.
2 Episode Initialization (setting global variables):
3 tℓ ← t. ; // tℓ indicates start of ℓ-th episode.
4 For each bin B ∈ T , set Amaster(B)← [K] ; // Initialize master candidate arm sets
5 For each m = 2, 4, . . . , 2⌈log(T )⌉ and s = tℓ + 1, . . . , T :

6 Sample and store Zm,s ∼ Bernoulli
((

1
m

) 1
2+d ·

(
1

s−tℓ

) 1+d
2+d

)
. ; // Set replay schedule.

7 Run Base-Alg (tℓ, T + 1− tℓ).
8 if t < T then restart from Line 2 (i.e. start a new episode). ;

Algorithm 2: Base-Alg (tstart,m0): binned successive elimination with randomized arm-pulls
Input: starting round tstart, scheduled duration m0.

1 Initialize: t← tstart For each bin B at any level in T , set A(B)← [K]
2 while t ≤ tstart +m0 do
3 Choose level inR: r ← rt−tstart .
4 Let At ← A(B) and let B ← Tr(Xt).
5 Play a random arm a ∈ At selected with probability 1/|At|.
6 Increment t← t+ 1.
7 if ∃m such that Zm,t > 0 then
8 Let m .

= max{m ∈ {2, 4, . . . , 2⌈log(T )⌉} : Zm,t > 0}. ; // Set maximum replay length.
9 Run Base-Alg (t,m). ; // Replay interrupts.

10 Evict bad arms in bin B:
11 A(B)← A(B)\{a ∈ [K] :

∃ rounds [s1, s2] ⊆ [tstart, t) s.t. (5) holds for bin Ts2−s1(Xt)}.
12 Amaster(B)← Amaster(B)\{a ∈ [K] :

∃ rounds [s1, s2] ⊆ [tℓ, t) s.t. (5) holds for bin Ts2−s1(Xt)}.
13 Refine candidate arms: ; // Discard arms previously discarded in ancestor bins
14 A(B)← ∩B′∈T ,B⊆B′A(B′).
15 Amaster(B)← ∩B′∈T ,B⊆B′ Amaster(B

′).
16 Restart criterion: if Amaster(B) = ∅ for some bin B then RETURN.;
17 RETURN.

We take a similar algorithmic approach to Suk and Kpotufe [2022], with several important modifi-253

cations for our setting. The high-level strategy is to schedule multiple copies of a base algorithm254

(Algorithm 2) Base-Alg at random times and durations, in order to ensure updated and reliable255

estimation of the gaps in (⋆). This allows fast enough detection of unknown experienced significant256

shifts.257

Overview of Algorithm Hierarchy. Our main algorithm CMETA (Algorithm 1) proceeds in258

episodes, each of which begins by playing according to an initially scheduled base algorithm of259

possible duration equal to the number of rounds left till T . Base algorithms occasionally activate260

their own base algorithms of varying durations (Line 9 of Algorithm 2), called replays, according to a261
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random schedule (stored in the variable {Zm,s}). We refer to the base algorithm playing at round t as262

the active base algorithm. This induces a hierarchy of base algorithms, from parent to child instances263

of Base-Alg .264

Choice of Level. Focusing on a single base algorithm now, each Base-Alg manages its own dis-265

cretization of the context space X = [0, 1]d, corresponding to a level r ∈ R (see Definition 3). Within266

each bin B ∈ Tr at the level r, candidate arms, maintained in a set A(B), are evicted according to267

estimates (4) of local gaps.268

As said earlier in Subsection 2.3, key in attaining optimal regret is using the right level r ∈ R. An269

immediate difficulty is that the oracle choice of level used in Definition 7 depends on the unknown270

significant phase length τi+1 − τi. To circumvent this, as in previous works [Perchet and Rigollet,271

2013, Slivkins, 2014], we rely on an adaptive time-varying choice of level rt. Specifically, each base272

algorithm choose the level rt−tstart based on the time elapsed since the time tstart it was first activated.273

Sharing Information across Base Algorithms. Instances of Base-Alg and CMETA share informa-274

tion, in the form of global variables as listed below:275

• All variables defined in CMETA, namely tℓ, t, {Amaster(B)}B∈T , {Zm,t} (see Lines 3–6 of Algo-276

rithm 1).277

• All arms played at any round t, along with observed rewards Y a
t , and the candidate arm set At278

which takes the value of the set A(B) of the active Base-Alg at round t and bin B = Tr(Xt) used.279

By sharing these global variables, any Base-Alg can trigger a new episode: every time an arm is280

evicted from A(B) a Base-Alg , it is also evicted from Amaster(B), which is essentially the candidate281

arm set for the current episode. A new episode is triggered at time t when Amaster(B) becomes empty282

for some bin B (necessarily a currently experienced bin), i.e., there is no safe arm left to play at the283

context Xt in the sense of Definition 6.284

Note that A(B) are local variables internal to each Base-Alg (the owner of which will be clear from285

context in usage).286

To ensure consistent behavior while using a time-varying choice of level, we enforce further regularity287

in arm evictions across X : arms evicted from A(B′) are also evicted from child bins B ⊆ B′ to288

ensure A(B) ⊆ A(B′).289

Estimating Aggregate Local Gaps. The quantity
∑s2

s=s1
δs(a

′, a) · 111{Xs ∈ B} is estimated290

as
∑s2

s=s1
δ̂Bs (a′, a), whereby the relative gap δs(a

′, a) · 111{Xs ∈ B} is estimated by importance291

weighting as:292

δ̂Bs (a′, a)
.
= |At| ·

(
Y a′

t · 111{πt = a′} − Y a
t · 111{πt = a}

)
· 111{a ∈ At} · 111{Xs ∈ B}. (4)

Note that the above is an unbiased estimate of δt(a
′, a) · 111{Xs ∈ B} whenever a′ and a are293

both in At at time t, conditional on the contexts Xt. It then follows that, conditional on XT , the294

difference
∑s2

t=s1

(
δ̂Bt (a′, a) · 111{Xs ∈ B} − δt(a

′, a)
)

is a martingale that concentrates at a rate295

roughly
√
K · nB([s1, s2]), where recall from earlier that nB(I)

.
=
∑

s∈I 111{Xs ∈ I} is the context296

count in bin B over interval I .297

ut An arm a is then evicted at round t if, for some fixed C0 > 0 1, ∃ rounds s1 < s2 ≤ t such that at298

level rs2−s1 and (i.e., the bin at level rs2−s1 containing Xt) letting B := Ts2−s1(Xt) (i.e., the bin at299

level rs2−s1 containing Xt)300

max
a′∈[K]

s2∑
s=s1

δ̂Bs (a′, a) > log(T )
√
C0 · (KnB([s1, s2]) ∨K2) + rs2−s1 · nB([s1, s2]). (5)

1C0 > 0 needs to be sufficiently large, but is a universal constant free of the horizon T or any distributional
parameters.
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5 Key Technical Highlights of Analysis301

While a full analysis is deferred to Appendix D due to space constraints, we highlight some of the302

key novelties and core points of the analysis.303

• Local Safety in Bins implies Safe Total Regret. We first argue that the notion of significant304

regret (⋆) within a bin B captures the total regret rates T
1+d
2+d we wish to compete with. If (⋆) holds305

for no intervals [s1, s2] in all bins B, arm a would be safe and incur little regret over any [s1, s2].306

As it turns out, bounding the per-bin regret by (⋆) implies a total regret of T
1+d
2+d as seen from the307

following rough calculation: via concentration and the strong density assumption (Assumption 2) to308

conflate nB([1, T ]) ≈ r(B)d · T and the fact that there are ≈ r−d bins at level r, we have:309 ∑
B∈Tr

√
K · nB([1, T ]) + r · nB([1, T ]) ≤ K1/2 · T 1/2 · r−d/2 + T · r. (6)

In particular taking r ∝ (K/T )
1

2+d makes the above RHS the desired rate K
1

2+dT
1+d
2+d .310

• Significant Regret Threshold is Estimation Error. At the same time, the RHS of the definition311

of significant regret (⋆) is a variance and bias decomposition of the bound on the (conditional on312

XT ) error of estimating the cumulative regret
∑s2

s=s1
δas (x) · 111{Xs ∈ B} at any context x ∈ B.313

Thus, intuitively, changes of magnitude above the threshold
√
K · nB(I) + r(B) · nB(I) in (⋆) are314

detectable.315

So, the notion of significant regret (⋆) perfectly balances both (1) detection of unsafe arms and (2)316

regret minimization of playing safe arms.317

• A New Balanced Replay Scheduling. As mentioned earlier in Subsection 3.1, previous adaptive318

works on contextual bandits fail to attain the optimal regret in this setting due to an inappropriate319

frequency of scheduling replays. We introduce a novel scheduling (Line 6 of Algorithm 1) which320

carefully balances exploration and fast detection of significant regret in the sense of (⋆). The chosen321

rate (1/m)
1

2+d (1/t)
1+d
2+d comes from the following intuitive calculation. A scheduled replay of322

duration m will incur an additional regret of about m
1+d
2+d . Then, summing over all possible replays,323

the extra regret incurred due to replays is in total roughly upper bounded by324

T∑
t=1

∑
m=2,4,...,T

(
1

m

) 1
2+d
(
1

t

) 1+d
2+d

·m
1+d
2+d ≲

T∑
t=1

T
d

2+d · (1/t)
1+d
2+d ≲ T

1+d
2+d .

In other words, the cost of replays only incurs extra constants in the regret. Surprisingly, this325

scheduling rate is also sufficient for detecting significant regret in any experienced subregion B of326

the context space X , i.e. there is no need to do additional exploration on a localized per-bin basis.327

Next, a key feature of the analysis is that one need only minimize regret and detect changes at the328

critical level rs2−s1 ∝ (K/(s2 − s1))
1

2+d . In particular, the following two observations play a major329

role in bounding the regret.330

• Suffices to Only Check (⋆) at Critical Levels rs2−s1 . At first glance, detecting experienced331

significant shifts (Definition 6) appears difficult as an arm a may incur significant regret over a332

different bin B′ from the bin B that is currently being used by the algorithm.333

This difficulty is further compounded by the fact there may even be missing data problems as arms334

a ∈ A(B) in contention at B may have been evicted from sibling bins of the parent B′ ⊃ B,335

thus preventing reliable estimation of a across B′. We in fact show that we only require detecting336

significant regret in bins B′ at the critical level rs2−s1 and only for the arms still in contention across337

all of B′. In other words, changes at other levels are all accounted for by changes at this critical level.338

Additionally, we observe that the calculations in (6) would hold if we were just concerned with339

checking (⋆) for intervals [s1, s2] and bins Bs2−s1 at level rs2−s1 :=
(

K
s2−s1

) 1
2+d

. Thus, the critical340

level rs2−s1 is the key to both regret minimization and experienced significant shift detection341
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A Details for Specializing Previous Contextual Bandit Results to Lipschitz486

Contextual Bandits487

A.1 Finite Policy Class Contextual Bandits488

In the finite policy class setting2, one is given access to a known finite class Π of policies π : X → [K],489

and in the non-stationary variant, seeks to minimize regret to the time-varying benchmark of best490

policies π∗
t := argmaxπ∈Π E(X,Y )∈Dt

[Y (π(X))]. In other words, the “dynamic regret” in this491

setting is defined by (for chosen policies {π̂t}t)492

E

[
T∑

t=1

max
π∈Π

E(X,Y )∈Dt
[Y (π(X))]−

T∑
t=1

Yt(π̂t)

]
. (7)

We can in fact recover the nonparametric setting and relate the above to our notion of dynamic regret493

(Definition 2). To do so, we let Π be the class of policies which uses a level r ∈ R and discretizes494

decision-making across individual bins B ∈ Tr. Then, we claim there is an oracle sequence of495

policies {πoracle
t }t which attains the minimax regret rate of Theorem 1. So, it remains to bound the496

regret to the sequence {πoracle
t }t in the sense above.497

• Parametrizing in Terms of Global Number L of Shifts. Suppose there are L + 1 stationary498

phases of length T/(L+ 1). Then, we first claim there is an oracle sequence of policies πoracle
t which499

attains reget (L+ 1)
1

2+d · T
1+d
2+d .500

First, recall from Subsection 2.3 the oracle choice of level rn for a stationary period of n rounds, or501

the level rn ∝ (K/n)
1

2+d . Now, define {πoracle
t }t as follows: at each round t, πoracle

t uses the oracle502

level r := rT/(L+1) ∝
(

K(L+1)
T

) 1
2+d

and plays in each bin B ∈ Tr, the arm maximizing the average503

reward in that bin E[fa
t (Xt) | Xt ∈ B]. As this is a biased version of the actual bandit problem504

{fa
t (Xt)}a∈[K] at context Xt, it will follow that πoracle

t incurs regret of order the bias of estimation in505

B which is r.506

Concretely, suppose Xt falls in bin B at level r, and let πoracle
t (B) be the arm selected at round t by507

πoracle
t in bin B. Then, mean rewards are Lipschitz, each policy πoracle

t suffers regret:508

max
a∈[K]

fa
t (Xt)− f

πoracle
t (B)

t (Xt) ≤ max
a∈[K]

E[fa
t (Xt)− f

πoracle
t (B)

t (Xt) | Xt ∈ B] + r = r.

Thus, the sequence of policies {πoracle
t }t achieves dynamic regret (in the sense of Definition 2)509

E

[
T∑

t=1

max
a∈[K]

fa
t (Xt)− f

πoracle
t (Xt)

t (Xt)

]
≲ (L+1) ·

(
T

L+ 1

)
·
(

K

(L+ 1)T

) 1
2+d

∝ L
1

2+d ·T
1+d
2+d .

Thus, it suffices to minimize dynamic regret in the sense of (7) to this oracle policy πoracle
t . The510

state-of-the-art guarantee in this setting is that of the ADA-ILTCB algorithm of Chen et al. [2019],511

which achieves a dynamic regret of
√
KLT log(|Π|). It then remains to compute |Π|.512

As we need only consider levels in R of size at least (K/T )
1

2+d , the size of the policy class Π513

is |Π| =
∑

r∈R Kr−d ∝ K(T/K)
d

2+d
=⇒ log(|Π|) =

(
T
K

) d
2+d log(K). Plugging this into514 √

KLT log(|Π|) gives a regret rate of K
1

2+d · L1/2T
1+d
2+d , which has a worse dependence on the515

global number of shifts L than the minimax optimal rate of L
1

2+d · T
1+d
2+d (see Theorem 1).516

• Parametrizing in Terms of Total-Variation VT . Fix any positive real number V ∈ [T− 3+d
2+d , T ].517

Then, the lower bound construction of Theorem 1 reveals that there exists an environment with518

L+ 1 = T/∆ stationary phases of length ∆
.
=

⌈(
T
V

) 2+d
3+d

⌉
and total-variation of order V .519

2While there are matters of efficiency and what offline learning guarantees may be assumed in this broader
agnostic setting, we do not discuss these here, and readers are deferred to Langford and Zhang [2008], Dudik
et al. [2011], Agarwal et al. [2014].
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Then, the earlier defined oracle sequence of policies {πoracle
t }t attains optimal dynamic regret in terms520

of VT :521

(L+ 1)
1

2+d · T
1+d
2+d ∝ T

2+d
3+d · V

1+d
3+d .

Meanwhile, the state-of-the-art regret guarantee in this parametrization is Theorem 2 of Chen et al.522

[2019], where ADA-ILTCB’s regret bound becomes:523

(K · log(|Π|) · V )1/3T 2/3 +
√

K log(|Π|) · T ∝ K
2

3(2+d) · V 1
3 · T

2+d
3+d+

d
3(2+d)(3+d) +K

1
2+d · T

1+d
2+d .

We claim this rate is worse than our rate in Corollary 5, in fact in all parameters V,K, T . For K ≥ T ,524

both rates imply linear regret. Assume K < T . Then, note by elementary calculations that for all525

d ∈ N ∪ {0}:526

2

3
+

d

3(2 + d)
=

2 + d

3 + d
+

1

3 + d
− 2

3(2 + d)
.

Then, it follows that rate of Corollary 5 is smaller using the fact that K < T :527

K
2

3(2+d) · V 1/3 · T
2
3+

d
3(2+d) ≥ K

2
3(2+d) · V

1
3+d · T

2+d
3+d ·K

1
3+d−

2
3(2+d) ≥ (KV )

1
3+d · T

2+d
3+d .

A.2 Realizable Contextual Bandits528

Lipschitz contextual bandits is also a special case of contextual bandits with realizability. In this529

broader setting, the learner is given a function class Φ which contains the true regression function530

ϕ∗
t : X × [K] → [0, 1] describing mean rewards of context-arm pairs at round t. The goal is to531

compete with the time-varying benchmark of policies πϕ∗
t
(x) := argmaxa∈[K] ϕ

∗
t (x, a), using calls532

to a regression oracle over Φ.533

While the natural choice for Φ is the infinite class of all Lipschitz functions from X × [K]→ [0, 1],534

the state-of-the-art non-stationary algorithm only provides guarantees for finite Φ [Wei and Luo,535

2021, Appendix I.7].536

However, it is still possible to recover the Lipschitz contextual bandit setting, by defining Φ similarly537

to how we defined the finite class of policies Π above. Let Φ be the class of all piecewise constant538

functions which depends on a level r ∈ R, and are constant on bins B ∈ Tr at level r, taking values539

which are multiples of T− 1
2+d (there are O(T ) many such values in [0, 1]). Note this is quite similar540

to how we defined the policy-class Π above.541

For this specification of Φ, the realizability assumption is false. Rather, this is a mildly misspecified542

regression class which is allowed by the stationary guarantees of FALCON [Simchi-Levi and Xu,543

2021, Section 3.2]. In particular, by smoothness, at each round t ∈ [T ] there is a function ϕ∗
t ∈ Φ544

such that545

sup
x∈X ,a∈[K]

|ϕt(x, a)− fa
t (x)| ≲

(
1

T

) 1
2+d

.

This introduces an additive term in the regret bound of FALCON of order T
1+d
2+d which is of the right546

order in our setting.547

Then, the MASTER black-box algorithm using FALCON Simchi-Levi and Xu [2021] as a base548

algorithm can obtain dynamic regret upper bounded by [see Wei and Luo, 2021, Theorem 2]:549

min
{√

log(|Φ|) · L · T , log1/3(|Φ|) ·∆1/3 · T 2/3 +
√
log(|Φ|) · T

}
.

As Φ is essentially the same size as the policy class Π defined in the previous section, the above550

regret bound specializes to similar rates as those of ADA-ILTCB derived above.551

B Useful Lemmas552

Throughout the appendix, c1, c2, . . . will denote universal positive constants not depending on T,K553

or any of the significant shifts {τi(XT )}i.554
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B.1 Concentration of Aggregate Gap over an Interval within a Bin555

We first recall a Freedman’s inequality, which will help us establish concentration of our gap estimators556

(Proposition 7).557

Lemma 6 (Theorem 1 of Beygelzimer et al. [2011]). Let X1, . . . , Xn ∈ R be a martingale difference558

sequence with respect to some filtration F0,F1, . . .. Assume for all t that Xt ≤ R a.s.. Then for any559

δ ∈ (0, 1), with probability at least 1− δ, we have:560

n∑
i=1

Xi ≤ (e− 1)

√√√√log(1/δ)

n∑
i=1

E[X2
i |Ft−1] +R log(1/δ)

 . (8)

Recall from Section 4 that for round t,561

δ̂a
′,a

t (B)
.
= |At| · (Yt(a

′) · 111{πt = a′} − Yt(a) · 111{πt = a}) · 111{a ∈ At} · 111{Xt ∈ B}.
We next apply Lemma 6 to our aggregate estimator from Section 4.562

Proposition 7. With probability at least 1− 1/T 2 w.r.t. the randomness of YT , {πt}t | XT , we have563

for all bins B ∈ T and rounds s1 < s2 and all arms a ∈ [K] that for large enough c1 > 0:564 ∣∣∣∣∣
s2∑

s=s1

δ̂it,as (B)−
s2∑

s=s1

E[δ̂a
′,a

s (B)|Fs−1]

∣∣∣∣∣ ≤ c1 log(T )
(√

K · nB([s1, s2]) +K
)
, (9)

where F .
= {Ft}Tt=1 is the filtration with Ft generated by {πs, Y

πs
s }ts=1.565

Proof. The proof is similar to the proof of Proposition 3 in Suk and Kpotufe [2022].566

The martingale difference δ̂a
′,a

s (B) − E[δ̂a′,a
s (B) | Fs−1] is clearly bounded above by 2K for all567

bins B, rounds s, and all arms a, a′. We also have a cumulative variance bound:568

s2∑
s=s1

E[(δ̂a
′,a

s (B))2 | Fs−1] ≤
s2∑

s=s1

111{Xs ∈ B} · |As|2 · E[111{πs = a or a′}|Fs−1]

≤
s2∑

s=s1

111{Xs ∈ B} · 2|As|

≤ 2K · nB([s1, s2]).

Then, the result follows from (8), and taking union bounds over bins B (at most T levels and at most569

T bins per level), arms a, a′, and rounds s1, s2.570

Since the error probability of Proposition 7 is negligible with respect to regret, we assume going571

forward in the analysis that (9) holds for all arms a, a′ ∈ [K] and rounds s1, s2. Specifically, let E1572

be the good event over which the bounds of Proposition 7 hold for all all arms and intervals [s1, s2].573

B.2 Concentration of Covariate Counts574

Notation. To ease notation throughout, we’ll henceforth use µ(·) to refer to the context marginal575

distribution µX(·).576

Lemma 8. Let {it}Tt=1 be a random sequence of arms whose distribution depends on XT . With577

probability at least 1 − 1/T 2 w.r.t. the randomness of XT , we have for all bins B ∈ T , all arms578

a′, a ∈ [K], and rounds s1 < s2, for some large enough c2 > 0 the following inequalities hold:579

|nB([s1, s2])− (s2 − s1 + 1) · µ(B)| ≤ c2

(
log(T ) +

√
log(T )µ(B) · (s2 − s1 + 1)

)
(10)∣∣∣∣∣

s2∑
s=s1

δs(is, a) · (111{Xs ∈ B} − µs(B))

∣∣∣∣∣ ≤ c2

(
log(T ) +

√
log(T )µ(B) · (s2 − s1 + 1)

)
(11)∣∣∣∣∣

s2∑
s=s1

δs(a) · (111{Xs ∈ B} − µs(B))

∣∣∣∣∣ ≤ c2

(
log(T ) +

√
log(T )µ(B) · (s2 − s1 + 1)

)
(12)
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Proof. The first inequality (10) follow from Lemma 6 since
∑s2

s=s1
111{Xs ∈ B} − µ(B) is a580

martingale, which has conditional variance at most (s2 − s1 + 1) · µ(B).581

The other two inequalities are trickier since δs(a) depends on Xs (so that the summand may not be a582

martingale difference) while δs(is, a) may not even be adapted to the canonical filtration generated583

by XT (i.e., it may depend on Xs for s > t). Nevertheless, we observe that for any random variable584

Ws = Ws(XT ) ∈ [−1, 1]:585

−(111{Xt ∈ B} − µ(B)) ≤Wt · (111{Xt ∈ B} − µ(B)) ≤ 111{Xt ∈ B} − µ(B).

The upper and lower bounds above are both martingale differences with respect to the canonical586

filtration of XT and thus, summing the above over t we have via Lemma 6:587 ∣∣∣∣∣
s2∑

s=s1

Ws · (111{Xt ∈ B} − µ(B))

∣∣∣∣∣ ≤
∣∣∣∣∣

s2∑
s=s1

111{Xs ∈ B} − µ(B)

∣∣∣∣∣
≤ c2

(
log(T ) +

√
log(T )µ(B) · (s2 − s1 + 1)

)
.

Then, taking union bounds over rounds s1, s2, bins B ∈ T , and arms a ∈ [K] gives the result.588

Notation 2 (good event). Let E1 be the good event over which the bounds of Proposition 7 hold589

for all rounds s1, s2 ∈ [T ] and arms a′, a ∈ [K]. Thus, on E1, our estimated gaps in each bin will590

concentrate.591

Let E2 be the good event on which bounds of Lemma 8 holds for all bins B, arms a ∈ [K], rounds592

s1, s2 ∈ [T ]. Thus, on E2, our covariate counts nB([s1, s2]) will concentrate and we will be able to593

relate the empirical quantities
∑s2

s=s1
δs(a) · 111{Xs ∈ B} with their expectations.594

Next, we establish a lemma which allow us to relate significant regret (⋆) and thus our eviction595

criterion (5) between different bins and levels.596

Lemma 9 (Relating Aggregate Gaps Between Levels). On event E2, if for rounds s1 < s2, bin B′ at597

level rs2−s1 and arm a, for some c3 > 0:598

s2∑
s=s1

δs(a) · 111{Xs ∈ B′} ≤ c3

(√
K · nB′([s1, s2]) ∨K2 + r(B′) · nB′([s1, s2])

)
,

then for any bin B ⊆ B′ and some c4 > 0:599

s2∑
s=s1

δs(a)·111{Xs ∈ B} ≤ c4

(
log1/2(T ) · r(B)d ·K

1
2+d · (s2 − s1)

1+d
2+d +K log(T ) +

√
log(T )µ(B)(s2 − s1 + 1)

)
.

The same applies for δs(a) replaced with δs(a
′, a) with any other fixed arm a′.600

Proof. We have using (12) and the strong density assumption (Assumption 2):601

s2∑
s=s1

δs(a) · 111{Xs ∈ B} ≤
s2∑

s=s1

δs(a) · µ(B) + c2

(
log(T ) +

√
log(T )(s2 − s1 + 1) · µ(B)

)
≤ r(B)d

r(B′)d

s2∑
s=s1

δs(a) · µ(B′) + c2

(
log(T ) +

√
log(T )(s2 − s1 + 1) · µ(B)

)
(13)

Again using (12)602

s2∑
s=s1

δs(a) · µs(B
′) ≤

s2∑
s=s1

δs(a) · 111{Xs ∈ B′}+ c2

(
log(T ) +

√
log(T )(s2 − s1 + 1) · µ(B′)

)
≤ c5

(√
K · nB′([s1, s2]) ∨K2 + r(B′) · nB′([s1, s2])

+ log(T ) +
√

log(T )(s2 − s1 + 1) · µ(B′)
)
.
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Next, applying (10) to nB′([s1, s2]) and using the strong density assumption (Assumption 2) to603

bound the mass µ(B′) above by Cd · r(B′)d, the above R.H.S. is further upper bounded by604

c6

(
log1/2(T )K

1+d
2+d · (s2 − s1)

1
2+d +K log(T )

)
. (14)

Finally, plugging (14) into (13) and using the fact that (r(B′)/2)d ≥ (K/(s2 − s1))
d

2+d , we have605

that (13) is of the desired order. The proof of the same inequalities with δs(a
′, a) is analogous.606

The following lemma relating the bias and variance terms in the notion of significant regret (⋆) will607

serve useful many places in the analysis. They all follow from concentration and similar calculations608

via the strong density assumption (Assumption 2) as done previously.609

Lemma 10 (bias-variance bound and strong density). Let r = rs2−s1 . Then, for any bin B ∈ Tr:610

c7(s2 − s1)
1

2+d ·K
d/2
2+d ≤

√
(s2 − s1 + 1) · µ(B) ≤ c8(s2 − s1)

1
2+d ·K

d/2
2+d√

nB([s1, s2]) ≤ c9(s2 − s1)
1

2+d ·K
d/2
2+d

c10(s2 − s1)
1

2+d ·K
1+d
2+d ≤ nB([s1, s2]) · r ≤ c11(s2 − s1)

1
2+d ·K

1+d
2+d

B.3 Useful Facts about Levels r ∈ R and Blocks [sℓ(r), eℓ(r)]611

The following basic facts about the level selection procedure on Line 2 of Algorithm 2 will be useful612

as we decompose the analysis into the blocks, or different periods of rounds, where different levels613

are used. The proofs all follow from Notation 1 and basic calculations.614

Fact 1 (relating level to interval length). The level rs2−s1 = 2−m satisfies for s2 − s1 ≥ K:615

2−(m−1) >

(
K

s2 − s1

) 1
2+d

≥ 2−m,

and hence616

K · 2(m−1)(2+d) < s2 − s1 ≤ K · 2m(2+d).

Fact 2 (the first block). The first block [sℓ(1), eℓ(1)] consists of rounds [tℓ, tℓ +K].617

Fact 3 (start and end times of a block). For r < 1, the start time or first round sℓ(r) of the block618

corresponding to level r in episode [tℓ, tℓ+1) is sℓ(r) = tℓ +
⌈
K · (2r)−(2+d)

⌉
and the anticipated619

end time or last round of the block is eℓ(r) = tℓ +
⌈
K · r−(2+d)

⌉
− 1.620

Fact 4 (length of a block). Each block [sℓ(r), eℓ(r)] is at least K rounds long. For the first block621

[sℓ(1), eℓ(1)], this is already clear. Otherwise, suppose r < 1 in which case:622

eℓ(r)− sℓ(r) + 1 =
⌈
K · r−(2+d)

⌉
−
⌈
K · (2r)−(2+d)

⌉
≥ K · r−(2+d)(1− 2−(2+d))− 1 ≥ K.

We also have the above implies623

2 · (eℓ(r)− sℓ(r)) ≥
K · r−(2+d) · (1− 2−(2+d))

2
.

Rearranging, this becomes for some constant c12 depending only on d:624

c−1
12 · r ≤

(
K

eℓ(r)− sℓ(r)

) 1
2+d

< c12 · r.

Note we can make c12 large enough so that the above also holds for level r = 1.625

The above implies that the block length eℓ(r)− sℓ(r) and the episode length eℓ(r)− tℓ(r) up to the626

end of block [sℓ(r), eℓ(r)] can be conflated up to constants627

c−1
13 · (eℓ(r)− sℓ(r)) ≤ eℓ(r)− tℓ ≤ c13 · (eℓ(r)− sℓ(r)) .
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C Proof of Oracle Regret Bound (Proposition 2)628

Recall that E2 is the good event on which our covariate counts concentrate by Lemma 8. It suffices to629

show our desired regret bound for any fixed XT on this event.630

Fix a phase [τi, τi+1) and let r = rτi+1−τi . Fix a bin B ∈ Tr and let τai be the last round t ∈ [τi, τi+1)631

such that Xt ∈ B and arm a is included in Gt. If a is never excluded from Gt for all such t, let632

τai
.
= τi+1 − 1. WLOG suppose τ1i ≤ τ2i ≤ · · · ≤ τKi . Then, letting B′ be the bin at level rτa

i −τi633

containing covariate Xτa
i

, we have by (⋆) that:634

τa
i∑

t=τi

δt(a) · 111{Xt ∈ B′} ≤
√

K · nB′([τi, τai ]) + r(B′) · nB′([τi, τ
a
i ]).

From Lemma 9, we conclude635

τa
i∑

t=τi

δt(a) · 111{Xt ∈ B}
|Gt|

≤
c4

(
log1/2(T ) · rd ·K

1
2+d · (τai+1 − τi)

1+d
2+d +K log(T ) +

√
log(T )(τai − τi + 1) · µ(B)

)
K + 1− a

,

(15)
where we use the fact that |Gt| ≥ K + 1 − a for t ≤ τai such that Xt ∈ B. Summing over arms636

a ∈ [K] with
∑

a∈[K]
1

K+1−a ≤ log(K), we obtain:637

∑
a∈[K]

τa
i∑

t=τi

δt(a) · 111{Xt ∈ B}
|Gt|

≤ c4 log(K)

(
log1/2(T )rdK

1
2+d (τi+1 − τi)

1+d
2+d +K log(T ) +

√
log(T )(τai − τi + 1) · µ(B)

)
.

(16)
Next, we claim that each significant phase [τi, τi+1) is at least K rounds long or K ≤ τi+1− τi. This638

follows from the definition of significant regret (⋆) since for [s1, s2] ⊆ [τi, τi+1):639

nB([s2, s2]) ≥
s2∑

s=s1

δs(a) ·111{Xs ∈ B} ≥
√
K · nB([s1, s2]) =⇒ τi+1− τi ≥ nB([s1, s2]) ≥ K.

Then K ≤ τi+1 − τi implies (via Fact 1 about the level rτi+1−τi )640 ∑
B∈Tr

K log(T ) ≤ K log(T )·r−d ≤ c14 log(T )K
2

2+d (τi+1−τi)
d

2+d ≤ c14 log(T )K
1

2+d ·(τi+1−τi)
1+d
2+d .

Additionally, we have by Lemma 10:641 √
(τai − τi) · µ(B) ≤

√
(τi+1 − τi) · µ(B) ≤ c8(τi+1 − τi)

1
2+dK

d/2
2+d ≤ c8K

1
2+d (τi+1 − τi)

1+d
2+d .

Then, plugging the above into (16) and summing over bins B at level r, we have the regret in episode642

[τi, τi+1) is with probability at least 1− 1/T 2 w.r.t. the distribution of XT :643

E

[
τi+1−1∑
t=τi

δt(πt)

∣∣∣∣∣XT

]
= E

[∑
B∈Tr

τi+1−1∑
t=τi

∑
a∈Gt

δt(a) · 111{Xt ∈ B}
|Gt|

∣∣∣∣∣XT

]

= E

∑
B∈Tr

∑
a∈[K]

τa
i∑

t=τi

δt(a) · 111{Xt ∈ B}
|Gt|

∣∣∣∣∣XT


≤ c15 log(K)

∑
B∈Tr

log1/2(T )rd(τi+1 − τi)
1+d
2+dK

1
2+d +K log(T )

≤ c16 log(K) log(T ) · (τi+1 − τi)
1+d
2+d ·K

1
2+d ,

where we use the strong density assumption to bound
∑

B∈Tr
rd ≤

∑
B∈Tr

c−1
d · µ(B) ≤ c−1

d in the644

last inequality. Summing the regret over all phases [τi, τi+1) gives the desired result.645
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D Proof of CMETA Regret Upper Bound (Theorem 3)646

Recall from Line 3 of Algorithm 1 that tℓ is the first round of the ℓ-th episode. WLOG, there are T647

total episodes and, by convention, we let tℓ
.
= T + 1 if only ℓ− 1 episodes occurred by round T .648

We first quickly handle the simple case of T < K. In this case, the regret bound of Theorem 3 is649

vacuous since by the sub-additivity of x 7→ x
1+d
2+d :650

L̃∑
i=0

(τi+1 − τi)
1+d
2+d ·K

1
2+d ≥ (τL̃+1 − τ0)

1+d
2+d ·K

1
2+d ≥ T

1+d
2+d · T

1
2+d = T.

Thus, it remains to show Theorem 3 for T ≥ K.651

We first transform the expected regret into a more suitable form.652

D.1 Decomposing the Regret653

It suffices to bound E[RT (π,XT ) | XT ] on the good event E1 ∩ E2 where the bounds of Lemmas 8654

and 9 hold. Going forward in the rest of the analysis, we will assume said bounds hold wherever655

convenient.656

We first transform the regret into a more convenient form. Let F .
= {Ft}Tt=1 be the filtration with Ft657

generated by {πs, Y
πs
s }ts=1. Then,658

E[RT (π,XT ) · 111{E1 ∩ E2} | XT ] =

T∑
t=1

E[E[δt(πt) · 111{E1 ∩ E2} | Ft−1] | XT ]

=

T∑
t=1

E

[∑
a∈At

δt(πt)

|At|
· 111{E1 ∩ E2}

∣∣∣∣∣XT

]

= E

[
T∑

t=1

∑
a∈At

δt(a)

|At|
· 111{E1 ∩ E2}

∣∣∣∣∣XT

]
.

Next, as alluded to in the oracle procedure (Definition 7), until the end of a significant phase [τi, τi+1),659

there is a safe arm in each bin B at level rτi+1−τi which is experienced.660

Definition 8 (local last safe arm in each phase a♯t). For a round t ∈ [τi, τi+1), let B be the bin at661

level rτi+1−τi which contains Xt and let ti(B) be the last round in [τi, τi+1) such that Xti(B) ∈ B.662

Then, by Definition 6, there is a last safe arm a♯t which does not yet incur significant regret in bin663

B in the following sense: for all [s1, s2] ⊆ [τi, ti(B)] letting r = rs2−s1 and B′ ∈ Tr such that664

B′ ⊇ B we have:665

s2∑
s=s1

δs(a
♯
t) · 111{Xs ∈ B′} <

√
K · nB′([s1, s2]) + r · nB′([s1, s2]).

Remark 4. The last safe arms {a♯t}t only depend on the distribution of XT and not on the realized666

rewards YT . In particular, conditional on XT , they are fixed.667

We first decompose the regret at round t as (a) the regret of a♯t and (b) the regret of arm a to the last668

safe arm. In other words, it suffices to bound:669

E

[
T∑

t=1

∑
a∈At

δt(a)

|At|
· 111{E1 ∩ E2}

∣∣∣∣∣XT

]
=

T∑
t=1

δt(a
♯
t)·111{E1∩E2}+E

[
T∑

t=1

∑
a∈At

δt(a
♯
t, a)

|At|
· 111{E1 ∩ E2}

∣∣∣∣∣XT

]
.

Note that the expectation on the first sum disappears since a♯t is only a function of XT and the mean670

reward functions {fa
t (·)}t,a.671
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D.2 Bounding the Regret of the Last Safe Arm672

Bounding
∑T

t=1 δt(a
♯
t) will be similar to the proof of Proposition 2. We essentially show that the673

oracle procedure could have also just played arm a♯t every round.674

Fix a phase [τi, τi+1) and let r = rτi+1−τi . Fix a bin B ∈ Tr and let ai(B) be the last safe arm a♯t of675

the last round t ∈ [τi, τi+1) such that Xt ∈ B. Then, a♯t = ai(B) for every round t ∈ [τi, τi+1) such676

that Xt ∈ B. Then, we have by Definition 6 that for bin B′ ⊇ B at level rt−τi :677

t∑
s=τi

δs(ai(B)) · 111{Xs ∈ B′} ≤
√

K · nB′([τi, t]) + r(B′) · nB′([τi, t]).

Then, by Lemma 9, we have:678

t∑
s=τi

δs(ai(B))·111{Xs ∈ B} ≤ c4

(
log1/2(T ) · rd · (τi+1 − τi)

1+d
2+d ·K

1
2+d +K log(T ) +

√
log(T )(t− τi + 1) · µ(B)

)
.

(17)
Then, summing the above over bins in the same fashion as the proof of Proposition 2 gives:679

τi+1−1∑
t=τi

δt(a
♯
t) =

∑
B∈Tr

τi+1−1∑
s=τi

δs(ai(B)) · 111{Xs ∈ B} ≤ c3 log(T ) · (τi+1 − τi)
1+d
2+d ·K

1
2+d .

Finally, summing over phases [τi, τi+1) we have
∑T

t=1 δt(a
♯
t) is of the right order.680

D.3 Relating Episodes to Significant Phases681

We next show that w.h.p. a restart occurs (i.e., a new episode begins) only if a significant shift has682

occurred sometime within the episode. Recall from Definition 6 that τ1, τ2, . . . , τL̃ are the times of683

the significant shifts and that t1, . . . , tT are the episode start times.684

Lemma 11 (Restart Implies Significant Shift). On event E1, for each episode [tℓ, tℓ+1) with tℓ+1 ≤685

T (i.e., an episode which concludes with a restart), there exists a significant shift τi ∈ [tℓ, tℓ+1).686

Proof. Fix an episode [tℓ, tℓ+1). Then, by Line 11 of Algorithm 1, there is a bin B such that every687

arm a ∈ [K] was evicted from B at some round in the episode, i.e. (5) is true for each arm a on688

some interval [s1, s2] ⊆ [tℓ, tℓ+1). It suffices to show that this implies a significnat shift has occurred689

between rounds tℓ and tℓ+1.690

Suppose (5) first triggers the eviction of arm a at time t in B′ ⊇ B over interval [s1, s2] where691

r(B′) = rs2−s1 . By concentration (9) and our eviction criteria (5), we have that there is an arm692

a′ ̸= a such that (using the notation of Proposition 7) for large enough C0 > 0 and some c17 > 0:693

s2∑
s=s1

E
[
δ̂Bs (a′, a) | Fs−1

]
≥ c17 log(T )

(√
K · nB′([s1, s2]) +K2 + r(B′) · nB′([s1, s2])

)
.

(18)
Next, if arm a is evicted from A(B′) at round t, then we have by the definition of δ̂B

′

s (a′, a) (4):694

E[δ̂B
′

s (a′, a) | Fs−1] =


δs(a

′, a) · 111{Xs ∈ B′} a, a′ ∈ As

−fa
s (Xs) · 111{Xs ∈ B} a ∈ As, a

′ ̸∈ As

0 a ̸∈ As

.

In any case, the above L.H.S. conditional expectation is bounded above by δs(a) ·111{Xs ∈ B′}. Thus,695

(18) implies arm a incurs significant regret (⋆) in B′ on [s1, s2]:696

s2∑
s=s1

δs(a) · 111{Xs ∈ B′} ≥
√

K · nB′([s2, s2]) + r(B′) · nB′([s1, s2]).

Then, since every arm a is evicted in bin B by round t, a significant shift must have occurred between697

rounds tℓ and tℓ+1.698
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D.4 Regret of CMETA to the Last Safe Arm699

It remains to bound E[
∑T

t=1

∑
a∈At

δt(a
♯
t, a)/|At| | Xt]. We further decompose this sum over t into700

episodes and then blocks where a particular choice of level is used within the episode. The following701

notation will be useful.702

Definition 9. Let sℓ(r) and eℓ(r) denote the first and last rounds when level r is used by the master703

Base-Alg in episode [tℓ, tℓ+1), i.e. rounds t ∈ [tℓ, tℓ+1) such that rt−tℓ = r. We call [sℓ(r), eℓ(r)] a704

block. Let PHASES(ℓ, r)
.
= {i ∈ [L̃] : [τi, τi+1) ∩ [sℓ(r), eℓ(r)] ̸= ∅} be the phases which intersect705

block [sℓ(r), eℓ(r)), let T (i, r, ℓ) .
= |[τi, τi+1) ∩ [sℓ(r), eℓ(r)]| be the effective length of the phase as706

observed in block [sℓ(r), eℓ(r)].707

Similarly, define PHASES(ℓ)
.
= {i ∈ [L̃] : [τi, τi+1) ∩ [tℓ, tℓ+1) ̸= ∅} be the phases which intersect708

episode [tℓ, tℓ+1).709

It will in fact suffice to show w.h.p. w.r.t. the distribution of XT , for each episode [tℓ, tℓ+1), each710

block [sℓ(r), eℓ(r)] in [tℓ, tℓ+1), and each bin B ∈ Tr:711

E

 eℓ(r)∑
t=sℓ(r)

∑
a∈At

δt(a
♯
t, a)

|At|
· 111{Xt ∈ B} · 111{E1 ∩ E2}

∣∣∣∣∣XT

]

≤ c18 log
3(T )E

111{E1 ∩ E2}
log(T ) +

∑
i∈PHASES(ℓ,r)

r(B)d · T (i, r, ℓ)
1+d
2+d ·K

1
2+d

∣∣∣∣∣XT


(19)

D.5 Summing the Per-(Bin,Block,Episode) Regret over Bins, Blocks, and Episodes.712

Admitting (19), we show that the total dynamic regret over T rounds is of the desired order.713

Recall from earlier that there are WLOG T total episodes with the convention that tℓ
.
= T + 1 if only714

ℓ episodes occur by round T . Then, summing our per-bin regret bound (19) over all the bins at level715

r gives (using strong density to bound
∑

B∈r r
d ≤ Cd

cd
):716

E

∑
B∈Tr

eℓ(r)∑
t=sℓ(r)

∑
a∈At

δt(a
♯
t, a)

|At|
· 111{Xt ∈ B} · 111{E1 ∩ E2}

∣∣∣∣∣XT


≤ c18 log

3(T )E

111{E1 ∩ E2}
∑

B∈Tr

log(T ) +
∑

i∈PHASES(ℓ,r)

T (i, r, ℓ)
1+d
2+d ·K

1
2+d

∣∣∣∣∣XT

 . (20)

Next, summing over the different levels r (of which there are at most log(T ) used in any episode),717

we obtain by Jensen’s inequality:718 ∑
r∈R

∑
i∈PHASES(ℓ,r)

T (i, r, ℓ)
1+d
2+d =

∑
i∈PHASES(ℓ)

∑
r∈R:i∈PHASES(ℓ,r)

T (i, r, ℓ)
1+d
2+d

≤
∑

i∈PHASES(ℓ)

log(T )
∑

r∈R:i∈PHASES(ℓ,r)

T (i, r, ℓ)


1+d
2+d

.

Now, we have719 ∑
r∈R:i∈PHASES(ℓ,r)

T (i, r, ℓ) =
∑

r∈R:i∈PHASES(ℓ,r)

|[τi, τi+1) ∩ [sℓ(r), eℓ(r)]| = τi+1 − τi + 1.
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We also have (via Fact 1 about level rtℓ+1−tℓ which is the smallest level used in episode [tℓ, tℓ+1)).720 ∑
r∈R

∑
B∈Tr

log(T ) ≤
∑
r∈R

r−d · log(T )

≤ c19 log
2(T )

(
tℓ+1 − tℓ

K

) d
2+d

≤ c20 log
2(T )

∑
i∈PHASES(ℓ)

(τi+1 − τi)
1+d
2+d ·K

1
2+d .

Thus, combining the above inequalities with (20), we obtain overall bound:721

c18 log
4(T )E

111{E1 ∩ E2} ∑
i∈PHASES(ℓ)

(τi+1 − τi)
1+d
2+d ·K

1
2+d

 .

Recall now that E1 is the good event over which the concentration bounds of Proposition 7 hold. Then,722

using the fact that, on event E1, each phase [τi, τi+1) intersects at most two episodes (Lemma 11),723

summing the above R.H.S over episodes ℓ ∈ [T ] gives us (since at most log(T ) blocks per episode)724

order725

2 log4(T )

L̃∑
i=1

(τi+1 − τi)
1+d
2+d ·K

1
2+d .

It then remains to show (19).726

D.6 Bounding the Per-Bin Per-Block Regret to the Last Safe Arm727

To show (19), we first fix a block [sℓ(r), eℓ(r)] and a bin B ∈ Tr. We then further decompose728

δt(a
♯
t, a) in two parts:729

(a) The regret of a to the last local arm, denoted by ar(B), to be evicted from Amaster(B) in block730

[sℓ(r), eℓ(r)] (ties are broken arbitrarily).731

(b) The regret of the last local arm ar(B) to the last safe arm a♯t.732

In other words, the L.H.S. of (19) is decomposed as:733

E

 eℓ(r)∑
t=sℓ(r)

∑
a∈At

δt(ar(B), a)

|At|
· 111{Xt ∈ B}

∣∣∣∣∣XT


︸ ︷︷ ︸

(a)

+E

 eℓ(r)∑
t=sℓ(r)

δt(a
♯
t, ar(B)) · 111{Xt ∈ B}

∣∣∣∣∣XT


︸ ︷︷ ︸

(b)

.

We will show both (a) and (b) are of order (19).734

• Bounding the Regret of Other Arms to the Last Local Arm ar(B). We start by partitioning735

the rounds t such that Xt ∈ B and a ∈ At in (a) according to before or after they are evicted from736

Amaster(B). Suppose arm a is evicted from Amaster(B) at round tar ∈ [sℓ(r), eℓ(r)] (formally, we let737

tar := eℓ(r) if a is not evicted in block [sℓ(r), eℓ(r)]). Then, it suffices to bound:738

E

 K∑
a=1

tar−1∑
t=sℓ(r)

δt(ar(B), a)

|At|
· 111{Xt ∈ B}+

K∑
a=1

eℓ(r)∑
t=tar

δt(ar(B), a)

|At|
· 111{a ∈ At} · 111{Xt ∈ B}

∣∣∣∣∣XT

 .

(21)
Suppose WLOG that t1r ≤ t2r ≤ · · · ≤ tKr . Then, for each round t < tar all arms a′ ≥ a are retained in739

Amaster(B) and thus retained in the candidate arm set At for all rounds t where Xt ∈ B. Importantly,740

at each round t a level of at least r is used since a child Base-Alg can only use a higher level than the741

master Base-Alg . Thus, |At| ≥ K + 1− a for all t ≤ tar .742

Next, we bound the first double sum in (21), i.e. the regret of playing a to ar(B) from sℓ(r) to743

tar . Applying our concentration bounds (Proposition 7), since arm a is not evicted from A(B) till744
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round tar , on event E1 we have for some c5 > 0 and any other arm a′ ∈ A(B) through round tar − 1745

(i.e., a′ ∈ At for all t ∈ [tℓ, t
a
r) such that Xt ∈ B since we always use level at least r at such a746

round t): for bin B′ ⊇ B at level rtar−1−sℓ(r): on event E1 (note that we necessarily always have747

A(B′) ⊇ A(B) for B′ ⊇ B):748

tar−1∑
t=sℓ(r)

E[δ̂B
′

s (a′, a) | Ft−1] ≤ c5 log(T )
√
K · nB′([sℓ(r), tar)) ∨K2 + r(B′) · nB′([sℓ(r), t

a
r)).

Next, since a, a′ ∈ At for each t ∈ [sℓ(r), t
a
r − 1) such that Xt ∈ B, we have:749

∀t ∈ [sℓ(r), t
a
r), Xt ∈ B : E[δ̂Bt (a′, a) | Ft−1] = δt(a

′, a).

Thus, we conclude750

tar−1∑
t=sℓ(r)

δt(a
′, a) · 111{Xt ∈ B} ≤ c5 log(T )

√
K · nB′([sℓ(r), tar)) ∨K2 + r(B′) · nB′([sℓ(r), t

a
r)).

Thus, by Lemma 9, and since B′ ⊇ B, we conclude for any such a′ on event E1:751

tar−1∑
t=sℓ(r)

δt(a
′, a)

|At|
·111{Xt ∈ B} ≤

c5

(
log1/2(T )rd ·K

1
2+d · (tar − sℓ(r))

1+d
2+d +K log(T ) +

√
log(T )(τ1i − τi + 1) · µ(B)

)
K + 1− a

,

(22)
where we use the fact that |At| ≥ K + 1 − a for all t ∈ [sℓ(r), t

a
r). Since this last bound holds752

uniformly for all a′ ∈ A(B) through round tar − 1, it must hold for the last master arm ar(B).753

Then, summing over all arms a, we have on event E1:754

K∑
a=1

tar−1∑
t=sℓ(r)

δt(ar(B), a)

|At|
· 111{Xt ∈ B} ≤ c5 log(K)

(
log1/2(T ) · rd · (eℓ(r)− sℓ(r))

1+d
2+d ·K

1
2+d+

K log(T ) +
√

log(T )(tar − sℓ(r)) · µ(B)
)
.

Note that by Lemma 10:755 √
(tar − sℓ(r)) · µ(B) ≤

√
(eℓ(r)− sℓ(r)) · µ(B) ≤ c8K

d/2
2+d (eℓ(r)−sℓ(r))

1
2+d ≤ c8K

1
2+d ·rd·(eℓ(r)−sℓ(r))

1+d
2+d .

Thus, it suffices to consider the RHS above as our bound.756

Next, we handle the second double sum in (21). We first observe that if arm a is played in bin B757

after round tar , then it must due to an active replay. The difficulty here is that replays may interrupt758

each other and so care must be taken in managing the contribution of
∑

t δt(ar(B), a) (which may759

be negative) by different overlapping replays.760

Our strategy, identical to that of Section B.1 in Suk and Kpotufe [2022], is to partition the rounds761

when a is played by a replay after round tar according to which replay is active and not accounted for762

by another replay. This involves carefully designating a subclass of replays whose durations while763

playing a in B span all the rounds where a is played in B after tar . Then, we cover the times when a764

is played by a collection of intervals corresponding to the schedules of this subclass of replays, on765

each of which we can employ the eviction criterion (5) and concentration like before.766

For this purpose, we define the following terminology (which is all w.r.t. a fixed arm a):767

Definition 10.768

(i) For each scheduled and activated Base-Alg (s,m), let the round M(s,m) be the minimum769

of two quantities: (a) the last round in [s, s + m] when arm a is retained in A(B) by770

Base-Alg (s,m) and all of its children, and (b) the last round that Base-Alg (s,m) is active771

and not permanently interrupted. Call the interval [s,M(s,m)] the active interval of772

Base-Alg (s,m).773

(ii) Call a replay Base-Alg (s,m) proper if there is no other scheduled replay Base-Alg (s′,m′)774

such that [s, s+m] ⊂ (s′, s′ +m′) where Base-Alg (s′,m′) will become active again after775

round s+m. In other words, a proper replay is not scheduled inside the scheduled range of776

rounds of another replay. Let PROPER(sℓ(r), eℓ(r)) be the set of proper replays scheduled777

to start in the block [sℓ(r), eℓ(r)].778
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Figure 1: Shown are replay scheduled durations (in gray) with dots marking when arm a is reintro-
duced toAt. Black segments indicate the period [s,M(s,m)] for proper and subproper replays. Note
that the rounds where a ∈ At in the left unlabeled replay’s duration are accounted for by the larger
proper replay.

(iii) Call a scheduled replay Base-Alg (s,m) subproper if it is non-proper and if each of its779

ancestor replays (i.e., previously scheduled replays whose durations have not concluded)780

Base-Alg (s′,m′) satisfies M(s′,m′) < s. In other words, a subproper replay either781

permanently interrupts its parent or does not, but is scheduled after its parent (and all782

its ancestors) stops playing arm a in B. Let SUBPROPER(sℓ(r), sℓ(r)) be the set of all783

subproper replays scheduled before round tℓ+1.784

Equipped with this language, we now show some basic claims which essentially reduce analyzing the785

complicated hierarchy of replays to analyzing the active intervals of replays in PROPER(sℓ(r), eℓ(r))∪786

SUBPROPER(sℓ(r), sℓ(r)).787

Proposition 12. The active intervals788

{[s,M(s,m)] : Base-Alg (s,m) ∈ PROPER(sℓ(r), eℓ(r)) ∪ SUBPROPER(sℓ(r), sℓ(r))},

are mutually disjoint.789

Proof. Clearly, the classes of replays PROPER(tℓ, tℓ+1) and SUBPROPER(sℓ(r), sℓ(r)) are dis-790

joint. Next, we show the respective active intervals [s,M(s,m)] and [s′,M(s′,m′)] of any two791

Base-Alg (s,m) and Base-Alg (s′,m′) ∈ PROPER(sℓ(r), eℓ(r))∪SUBPROPER(sℓ(r), sℓ(r)) are dis-792

joint.793

1. Proper replay vs. subproper replay: a subproper replay can only be scheduled after the794

round M(s,m) of the most recent proper replay Base-Alg (s,m) (which is necessarily an795

ancestor). Thus, the active intervals of proper replays and subproper replays.796

2. Two distinct proper replays: two such replays can only permanently interrupt each other,797

and since M(s,m) always occurs before the permanent interruption of Base-Alg (s,m), we798

have the active intervals of two such replays are disjoint.799

3. Two distinct subproper replays: consider two non-proper replays800

Base-Alg (s,m),Base-Alg (s′,m′) ∈ SUBPROPER(sℓ(r), sℓ(r)) with s′ > s. The only801

way their active intervals intersect is if Base-Alg (s,m) is an ancestor of Base-Alg (s′,m′).802

Then, if Base-Alg (s′,m′) is subproper, we must have s′ > M(s,m), which means that803

[s′,M(s′,m′)] and [s,M(s,m)] are disjoint.804

805

Next, we claim that the active intervals [s,M(s,m)] for Base-Alg (s,m) ∈ PROPER(tℓ, tℓ+1) ∪806

SUBPROPER(sℓ(r), sℓ(r)) contain all the rounds where a is played in B after being evicted from807

Amaster(B). To show this, we first observe that for each round t when a replay is active, there is a808

unique proper replay associated to t, namely the proper replay scheduled most recently. Next, note809

that any round t > tar where Xt ∈ B and where arm a ∈ At must belong to the active interval810

[s,M(s,m)] of the unique proper replay Base-Alg (s,m) associated to round t, or else satisfies t >811

M(s,m) in which case a unique subproper replay Base-Alg (s′,m′) ∈ SUBPROPER(sℓ(r), sℓ(r))812
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was active and not yet permanently interrupted by round t. Thus, it must be the case that t ∈813

[s′,M(s′,m′)].814

Overloading notation, we’ll let At(B) be the value of A(B) for the Base-Alg active at round t. Next,815

note that every round t ∈ [s,M(s,m)] for a proper or subproper Base-Alg (s,m) is clearly a round816

where a ∈ At(B) and no such round is accounted for twice by Proposition 12. Thus,817

{t ∈ (tar , eℓ(r)] : a ∈ At(B)} =
⊔

Base-Alg (s,m)∈PROPER(sℓ(r),eℓ(r))∪SUBPROPER(sℓ(r),sℓ(r))

[s,M(s,m)].

Then, we can rewrite the second double sum in (21) as:818

K∑
a=1

∑
Base-Alg (s,m)∈PROPER(sℓ(r),eℓ(r))∪SUBPROPER(sℓ(r),sℓ(r))

Zm,s ·
M(s,m)∑
t=s∨tar

δt(ar(B), a)

|At|
· 111{Xt ∈ B}.

Recall in the above that the Bernoulli Zm,s (see Line 6 of Algorithm 1) decides whether819

Base-Alg (s,m) is scheduled.820

Further bounding the sum over t above by its positive part, we can expand the sum over821

Base-Alg (s,m) ∈ PROPER(tℓ, tℓ+1) ∪ SUBPROPER(sℓ(r), sℓ(r)) to be over all Base-Alg (s,m),822

or obtain:823
K∑

a=1

∑
Base-Alg (s,m)

Zm,s ·

M(s,m)∑
t=s∨tar

δt(ar(B), a)

|At|
· 111{Xt ∈ B}


+

,

where the sum is over all replays Base-Alg (s,m), i.e. s ∈ {tℓ + 1, . . . , tℓ+1 − 1} and m ∈824

{2, 4, . . . , 2⌈log(T )⌉}. It then remains to bound the contributed relative regret of each Base-Alg (s,m)825

in the interval [s ∨ tar ,M(s,m)], which will follow similarly to the previous steps.826

We first have using similar arguments as before (now overloading the notation M(s,m) as M(s,m, a)827

for clarity), i.e. combining our concentration bound (9) with the eviction criterion (5) and applying828

Lemma 9:829

M(s,m)∑
t=s∨tar

δt(ar(B), a)

|At|
·111{Xt ∈ B} ≤

c5

(
log1/2(T ) · rd ·K

1
2+d ·m

1+d
2+d +K log(T ) +

√
log(T )(M(s,m)− s)µ(B)

)
mint∈[s,M(s,m,a)] |At|

Thus, it remains to bound830

K∑
a=1

∑
Base-Alg (s,m)

Zm,s·

c5

(
log1/2(T ) · rd ·K

1
2+d ·m

1+d
2+d +K log(T ) +

√
log(T )(M(s,m)− s) · µ(B)

)
mint∈[s,M(s,m,a)] |At|

 .

Swapping the outer two sums and recognizing that
∑K

a=1
1

mint∈[s,M(s,m,a)] |At| ≤ log(K) by similar831

arguments to beforeby summing over arms in the order they are evicted by Base-Alg (s,m), we have832

that it remains to bound833 ∑
Base-Alg (s,m)

Zm,s · c5
(
log1/2(T ) · rd ·K

1
2+d · m̃

1+d
2+d +K log(T ) +

√
log(T )(m− s)µ(B)

)
,

(23)
where m̃

.
= m ∧ (eℓ(r)− sℓ(r)) (note we may restrict attention to the part of replays in the current834

block [sℓ(r), eℓ(r)]). Let835

R(m,B)
.
=

(
c5

(
log1/2(T ) · rd ·K

1
2+d · m̃

1+d
2+d +K log(T ) +

√
log(T ) · m̃ · rd

))
∧nB([s, s+m]).

Then, in light of the previous calculations, R(m,B) is an upper bound on the within-bin B regret836

contributed by a replay of total duration m (note we can always coarsely upper bound this regret by837

nB([s, s+m]).838

Then, plugging R(m,B) into (23) gives via tower law (we remove the “conditional on XT ” part for839

ease of presentation):840

E

E
 ∑

Base-Alg (s,m)

Zm,s ·R(m,B)

∣∣∣∣∣sℓ(r)
 = E

 T∑
s=sℓ(r)

∑
m

E[Zm,s · 111{s ≤ eℓ(r)} | sℓ(r)] ·R(m,B)


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Next, we observe that Zm,s and 111{s ≤ eℓ(r)} are independent conditional on tℓ since 111{s ≤ eℓ(r)}841

only depends on the scheduling and observations of base algorithms scheduled before round s. Thus,842

recalling that P(Zm,s = 1) = E[Zm,s | tℓ] =
(

1
m

) 1
2+d ·

(
1

s−tℓ

) 1+d
2+d

,843

E[Zm,s · 111{s ≤ eℓ(r)} | tℓ] = E[Zm,s | tℓ] · E[111{s ≤ eℓ(r)} | sℓ(r)]

=

(
1

m

) 1
2+d

·
(

1

s− tℓ

) 1+d
2+d

· E[111{s ≤ eℓ(r)} | sℓ(r)].

Plugging this into our expectation from before and unconditioning, we obtain:844

E

 eℓ(r)∑
s=sℓ(r)

⌈log(T )⌉∑
n=1

(
1

2n

) 1
2+d
(

1

s− tℓ

) 1+d
2+d

·R(2n, B)

 (24)

We first evaluate the inner sum over n. Note that845

⌈log(T )⌉∑
n=1

(
1

2n

) 1
2+d

· (2n ∧ (eℓ(r)− sℓ(r))
1+d
2+d ≤ log(T ) · (eℓ(r)− sℓ(r))

d
2+d

⌈log(T )⌉∑
n=1

(
1

2n

) 1
2+d √

2n ∧ (eℓ(r)− sℓ(r)) ≤ (eℓ(r)− sℓ(r))
d/2
2+d

⌈log(T )⌉∑
n=1

(
1

2n

) 1
2+d

(K ∧ 2n) ≤ log(T ) ·K
1+d
2+d .

Multiplying by (s− tℓ)
− 1+d

2+d and taking a further sum over s ∈ [sℓ(r), eℓ(r)] in the above display,846

(24) becomes847

(eℓ(r)−tℓ)
1

2+d

(
(eℓ(r)− sℓ(r))

d
2+dK

1
2+d · rd + (eℓ(r)− sℓ(r))

d/2
2+d

√
log(T ) · rd +K

1+d
2+d log(T )

)
.

We have the first term inside the paranetheses above inside dominates the second term as long as848

K ≥ log(T ).849

Next, note from Fact 4 that eℓ(r)− tℓ ≤ c13(eℓ(r)− sℓ(r)) and so the above is at most:850

rd · (eℓ(r)− sℓ(r))
1+d
2+dK

1
2+d + log(T )K

1+d
2+d · (eℓ(r)− sℓ(r))

1
2+d . (25)

We next recall from Fact 4 that each block [sℓ(r), eℓ(r)] is at least K rounds long. Thus,851

Cd · rd · (eℓ(r)− sℓ(r))
1+d
2+d ·K

1
2+d ≥ c21 · (eℓ(r)− sℓ(r))

1
2+d ·K

1+d
2+d .

Thus, the second term of (25) is at most log(T ) times the first term.852

Showing (a) is order (19) then follows from upper bounding eℓ(r)− sℓ(r) by the combined length of853

all phases [τi, τi+1) intersecting block [sℓ(r), eℓ(r)], and using the sub-additivity of x 7→ x
1+d
2+d .854

• Bounding the Regret of the Last Master Arm ar(B) to the Last Safe Arm a♯t. Before we855

proceed, we first convert
∑eℓ(r)

t=sℓ(r)
δt(a

♯
t, ar(B)) · 111{Xt ∈ B} into a more convenient form in terms856

of the bin-masses µ(B). By concentration (11) of Proposition 7, we have857 ∑
t

δt(a
♯
t, ar(B)) · 111{Xt ∈ B} ≤

∑
t

δt(a
♯
t, ar(B)) · µ(B) + c1

(
log(T ) +

√
log(T )(eℓ(r)− sℓ(r)) · µ(B)

)
.

By Lemma 10, we have858 √
(eℓ(r)− sℓ(r)) · µ(B) ≤ rd · (eℓ(r)− sℓ(r))

1+d
2+dK

1
2+d .

Additionally, log(T ) is of the right order with respect to (20). Thus, the concentration error terms859

from Proposition 7 above are negligible.860
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Moving forward, by the strong density assumption and in light of (19), it suffices to show861

eℓ(r)∑
t=sℓ(r)

δt(a
♯
t, ar(B)) ≲

∑
i∈PHASES(ℓ,r)

(τi+1 − τi)
1+d
2+dK

1
2+d .

This is the most difficult quantity to bound since arm a♯t may have been evicted from Amaster(B)862

before round t and, thus, we rely on our replay scheduling to bound the regret incurred while waiting863

to detect a large aggregate value of δt(a
♯
t, ar(B)).864

For each phase [τi, τi+1) which intersects the remaining rounds [sℓ(r), eℓ(r)] (in an abuse of notation,865

we’ll conflate eℓ(r) with the anticipated block end time based on sℓ(r); that is, the end block time if866

no episode restart occurs within the block).867

Then, our strategy will be to map out in time the local bad segments or subintervals of [τi, τi+1) where868

arm ar(B) incurs significant regret to arm a♯t in bin B, roughly in the sense of (⋆). The argument869

will conclude by arguing that a well-timed replay is scheduled to detect some local bad segment in B,870

before too many elapse.871

As mentioned above, the difficulty here is that ar(B) is a random variable which depends on all the872

randomness up to time eℓ(r). However, conditional on just the block start time sℓ(r), we define the873

bad segments for a fixed arm a and then argue that if too many bad segments w.r.t. a elapse in the874

block, arm a will be evicted in bin B. Crucially, this will hold uniformly over all arms a and thus for875

arm a = ar(B), which bounds the regret of ar(B) in block [sℓ(r), eℓ(r)].876

Notation. Going forward, we will drop the dependence on the bin B, level r, block [sℓ(r), eℓ(r)],877

and episode [tℓ, tℓ+1) in certain definitions as they are fixed in the remainder of the analysis. We will878

let a♯i(B) denote the last safe of bin B in phase [τi, τi+1) (see Definition 8).879

Definition 11. Fix an arm a and sℓ(r), and let [τi, τi+1) be any phase intersecting [sℓ(r), eℓ(r)].880

Define rounds si,0(a), si,1(a), si,2(a) . . . ∈ [tℓ∨ τi, τi+1) recursively as follows: let si,0(a)
.
= tℓ∨ τi881

and define si,j(a) as the smallest round in (si,j−1(a), τi+1∧eℓ(r)) such that arm a satisfies for some882

fixed c21 > 0:883

si,j(a)∑
t=si,j−1(a)

δt(a
♯
i(B), a) ≥ c21 log(T ) · (si,j(a)− si,j−1(a))

1+d
2+d ·K

1
2+d . (26)

where B′ ⊇ B is the bin at level rsi,j(a)−si,j−1(a), if such a round si,j(a) exists. Otherwise, we884

let the si,j(a)
.
= τi+1 − 1. We refer to the interval [si,j−1(a), si,j(a)) as a bad segment. We call885

[si,j−1(a), si,j(a)) a proper bad segment if (26) above holds.886

It will in fact suffice to constrain our attention to proper bad segments, since non-proper bad segments887

[si,j−1(a), si,j(a)) (where si,j(a) = τi+1 − 1 and (26) is reversed) will be negligible in the regret888

analysis since there is at most one non-proper bad segment per phase [τi, τi+1) (i.e., the regret of889

such non-proper bad segments is at most (19)). In what follows, we let B′ ⊇ B be the bin at level890

rsi,j(a)−si,j−1(a) where [si,j−1(a), si,j(a)) will be some proper bad segment, known from context.891

Lemma 13. Any proper bad segment is at least K rounds long.892

Proof. We have893

nB′([si,j(a), si,j+1(a)]) ≥
si,j+1(a)∑
s=si,j(a)

δt(a
♯
i(B), a) · 111{Xt ∈ B′}

≥
si,j+1(a)∑
s=si,j(a)

δt(a
♯
i(B), a) · µ(B′)− c2

(
log(T ) +

√
log(T )(si,j+1(a)− si,j(a)) · µ(B′)

)

≥ c21 log(T )(si,j+1(a)− si,j(a))
1

2+d ·K
1+d
2+d − c2

(
log(T ) +

√
log(T )(si,j+1(a)− si,j(a))µ(B′)

)
≥
√
K · nB′([si,j(a), si,j+1(a)]),

where the last inequality follows from Lemma 10 and choosing c21 large enough.894
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First, we relate our concentration bound (9) to (26), giving us control of the behavior of CMETA on895

proper bad segments. But, even before this, we establish an elementary lemma.896

Lemma 14. Let [si,j(a), si,j+1(a)) be a proper bad segment defined w.r.t. arm a. Let m ∈ N be897

such that rsi,j+1(a)−si,j(a) = 2−m. Then, for some c22 = c22(d) > 0 depending on the dimension d:898

si,j+1(a)∑
t=si,j+1(a)−K2(m−2)(2+d)−1

δt(a
♯
i(B), a) ≥ c22 log(T ) ·K

1
2+d (si,j+1(a)− si,j(a))

1+d
2+d . (27)

Proof. First, we may assume si,j+1(a)− si,j(a) ≥ 4 ·K by choosing c4 in (26) large enough (this899

will make m− 1 sensible).900

First, observe K2(m−1)(2+d) ≤ si,j+1(a) − si,j(a) < K2m(2+d). Let s̃ = si,j+1(a) −901

K2(m−2)(2+d)−1. Then, we have by (26) in the construction of the si,j(a)’s (Definition 11) that:902

si,j+1(a)∑
t=s̃

δt(a
♯
i(B), a) =

si,j+1(a)∑
t=si,j(a)

δt(a
♯
i(B), a)−

s̃∑
t=si,j(a)

δt(a
♯
i(B), a)

≥ c21 log(T )K
1

2+d

(
(si,j+1(a)− si,j(a))

1+d
2+d − (s̃− si,j(a))

1+d
2+d

)

Let mi,j(a)
.
= si,j+1(a)− si,j(a). Then, we have903

mi,j(a) ≤ K2m(2+d) =⇒ s̃−si,j(a) = mi,j(a)−K2(m−2)(2+d)−1 ≤ mi,j(a)(1−2−2(2+d)−1).

Plugging this into our earlier bound the constants become904

1−
(
1− 1

22(2+d)+1

) 1+d
2+d

> 0.

Note this last term is positive and only depends on d.905

Lemma 15 (Bin-Count Dominates Concentration Error on Bad Segment). On event E1, letting906

s̃ = si,j+1(a)−K2(m−2)(2+d)−1, we have for bin B′ ⊇ B at level rsi,j+1(a)−s̃:907

nB′([s̃, si,j+1(a)]) ≥ 2c1

(
log(T ) +

√
log(T )(si,j+1(a)− s̃)µ(B′)

)
.

Proof. Let W = si,j+1(a) − s̃. We first claim that W ≥ 2−2(2+d) · (si,j+1(a) − si,j(a)). this908

follows from si,j+1(a)− si,j(a) ≤ K · 2m(2+d) and909

si,j+1(a)−s̃ = K ·2(m−2)(2+d)−1 = 2−2(2+d)−1·(K ·2m(2+d)) ≥ 2−2(2+d)−1·(si,j+1(a)−si,j(a)).

This will allow us to conflate W and si,j+1(a)− si,j(a) up to constants.910

Since δ
B

t (a
♯
i(B), a) ≤ 1, we have that (27) of the previous lemma and concentration (namely, (11) of911

Proposition 7; note that although a♯i(B) is a random variable, it is a fixed and unchanging arm within912

[τi, τi+1) and hence [s̃, si,j(a)]) on nB′([s̃, si,j+1(a)]) gives913

nB′([s̃, si,j+1(a)]) ≥
si,j+1(a)∑

t=s̃

δt(a
♯
i(B), a) · 111{Xt ∈ B′}

≥ c4 log(T ) ·K
1+d
2+d (si,j+1(a)− si,j(a))

1
2+d

≥ c4

(
log(T ) +

√
log(T ) ·W · (K/W )

d
2+d

)
≥ c1

(
log(T ) +

√
log(T )(si,j+1(a)− s̃)µ(B′)

)
,

where the last inequality follows from the strong density assumption (Assumption 2).914

29



Now, we define a well-timed or perfect replay which, if scheduled, will be able to detect the badness915

of arm a in bin B over a proper bad segment [si,j(a), si,j+1(a)).916

Definition 12 (Perfect Replay). For a fixed proper bad segment [si,j(a), si,j+1(a)), define a917

perfect replay as a Base-Alg (tstart,m) with tstart ∈ [si,j+1(a) − K2(m−2)(2+d) + 1, si,j+1(a) −918

K2(m−2)(2+d)−1] and tstart +m ≥ si,j+1(a).919

The following proposition analyzes the behavior of a perfect replay and shows it will in fact evict920

arm a from A(B) within a proper bad segment [si,j(a), si,j+1(a)).921

Proposition 16. Suppose event E1 holds. Let [si,j(a), si,j+1(a)) be a proper bad segment defined922

with respect to arm a. Let Base-Alg (tstart,m) be a perfect replay as defined above which becomes923

active at tstart (i.e., Ztstart,m = 1). Fix an integer m ≥ si,j+1(a)− si,j(a). Then:924

(i) Base-Alg (tstart,m) will not evict arm a♯i(B) from A(B) before round si,j+1(a) + 1 while925

active.926

(ii) If a ∈ At for all rounds t ∈ [s̃, si,j+1(a)) where Xt ∈ B, where s̃ = si,j+1(a) −927

K2(m−2)(2+d)−1, then arm a will be excluded from A(B) by round si,j+1(a).928

Proof. Suppose event E1 (i.e., our concentration bound (9) holds). For (i), if a♯i(B) is evicted over929

[s1, s2] ⊆ [si,j(a), si,j+1(a)] from A(B′) for bin B′ ⊇ B at level rs2−s1 by Line 11 of Algorithm 2,930

then a♯i(B) incurs significant regret in bin B′ over [s1, s2] (following same reasoning as in Lemma 11).931

This is a contradiction to the definition of the last safe arm a♯i(B) (Definition 8). This shows (i).932

For (ii), we first observe E[δ̂Bt (a♯i(B), a) | Ft−1] = δt(a
♯
i(B), a) for any round t ∈ [s̃, si,j+1(a)]933

such that Xt ∈ B if a♯i(B), a ∈ At. Let B′ ⊇ B be the bin at level rsi,j+1(a)−s̃.934

Let W = si,j+1 − s̃. Then, by Lemma 14, we have by smoothness that:935

si,j+1(a)∑
t=s̃

δt(a
♯
i(B), a) · 111{Xt ∈ B′} ≥ c4 log(T )K

1+d
2+d ·W

1
2+d − nB′([s̃, si,j+1(a)]) · r(B′)

Next, note that936

log(T )

√√√√K

si,j+1∑
s=s̃

µs(B′) + log(T ) · r(B′)

si,j+1∑
s=s̃

µs(B
′), (28)

is bounded above by the same order.937

Next, we bound (28) below by an empirical analogue. Applying concentration on nB′([s̃, si,j+1(a)])938

which dominates the Bernstein error by the previous lemma, the above is further lower bounded by939

log(T )

(√
K · nB′([s̃, si,j+1(a)]) + r(B′) · nB′([s̃, si,j+1(a)])

)
,

meaning arm a will be evicted in B′ over [s̃, si,j+1(a)].940

Furthermore, within Base-Alg (tstart,m)’s play, arms a and a♯i(B) will not be evicted in any child of941

B′ before round si,j+1(a) because such an eviction can only happen through a child base algorithm942

of Base-Alg (tstart,m) which will necessarily use a level at least rW . This is because of the way943

perfect replays are defined. By definition, the tstart is ‘close enough” to the critical round si,j+1(a)−944

K2(m−2)(2+d)−1 so that it will not use a different level than the perfect replay which starts exactly at945

this critical round.946

Formally, we have that the maximum level a perfect replay is si,j+1(a)− tstart ≤ K · 2(m−2)(2+d)− 1947

and so948 (
K

si,j+1(a)− tstart

) 1
2+d

≥
(

K

K · 2(m−2)(2+d) − 1

) 1
2+d

≥ 2−(m−2).

On the other hand,949 (
K

si,j+1(a)− s̃

) 1
2+d

=
1

2m−2− 1
2+d

∈ [2−(m−2), 2−(m−3)).
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Thus, 2−(m−2) = rsi,j+1(a)−s̃ is also the level used to detect that arm a is bad in bin B′.950

Next, we show for any arm a (in particular, a = ar(B)), a perfect replay characterized by Defini-951

tion 12 is scheduled with high probability if too many bad segments w.r.t. a elapse, thus bounding952

the regret of a to a♯i(B) over the phases [τi, τi+1) intersecting block [sℓ(r), eℓ(r).953

D.7 Bounding the Regret of the Last Master Arm ar(B) to the Last Safe Arm a♯t954

Next, we bound the the regret of a fixed arm a to a♯i(B) over the bad segments w.r.t. a in B. it should955

be understood that in what follows, we condition on sℓ(r). First, fix an arm a and define the bad956

round s(a) > sℓ(r) as the smallest round which satisfies, for some fixed c23 > 0:957 ∑
(i,j)

(si,j+1(a)− si,j(a))
1+d
2+d > c23 log(T )(s(a)− tℓ)

1+d
2+d (29)

where the above sum is over all pairs of indices (i, j) ∈ N × N such that [si,j(a), si,j+1(a)) is a958

proper bad segment with si,j+1(a) < s(a). We will show that arm a is evicted within episode ℓ with959

high probability by the time the bad round s(a) occurs.960

For each proper bad segment [si,j(a), si,j+1(a)), let s̃i,j(a)
.
= si,j+1(a)−K2(m−2)(2+d)−1 denote961

the special point of the bad segment and also let mi,j
.
= 2n where n ∈ N satisfies:962

2n ≥ si,j+1(a)− si,j(a) > 2n−1.

Next, recall that the Bernoulli Zm,t decides whether Base-Alg (t,m) activates at round t (see Line 6963

of Algorithm 1). If for some t ∈ [ŝi,j(a), s̃i,j(a)] where ŝi,j(a) := si,j+1(a)−K2(m−2)(2+d) + 1,964

Zmi,j .t = 1, i.e. a perfect replay is scheduled, then a will be evicted from A(B) by round si,j+1(a)965

(Proposition 16). We will show this happens with high probability via concentration on the sum966 ∑
(i,j)

∑
t Zmi,j ,t where j, i, t run through all t ∈ [ŝi,j(a), s̃i,j(a)) and all proper bad segments967

[si,j(a), si,j+1(a)) with si,j+1(a) < s(a). Note that these random variables only depend on the fixed968

arm a, the block start time sℓ(r), and the randomness of scheduling replays on Line 6. In particular,969

the Zmi,j ,t are independent conditional on tℓ.970

Then, a Chernoff bound over the randomization of CMETA on Line 6 of Algorithm 1 conditional on971

tℓ yields972

P

∑
(i,j)

∑
t

Zmi,j ,t ≤
E[
∑

(i,j)

∑
t Zmi,j ,t | sℓ(r)]
2

∣∣∣∣∣sℓ(r)
 ≤ exp

(
−
E[
∑

(i,j)

∑
t Zmi,j ,t | sℓ(r)]
8

)
.

We claim the error probability on the R.H.S. above is at most 1/T 3. To this end, we compute:973

E

∑
(i,j)

∑
t

Zmi,j ,t

∣∣∣∣∣sℓ(r)
 ≥∑

(i,j)

s̃i,j(a)∑
t=ŝi,j(a)

(
1

mi,j

) 1
2+d
(

1

t− tℓ

) 1+d
2+d

≥ 1

4

∑
(i,j)

m
1+d
2+d

i,j

(
1

s(a)− tℓ

) 1+d
2+d

≥ c7
4
log(T ),

where the last inequality follows from (29). The R.H.S. above is larger than 24 log(T ) for c23 large974

enough, showing that the error probability is small. Taking a further union bound over the choice975

of arm a ∈ [K] gives us that
∑

(i,j)

∑
t Zmi,j ,t > 1 for all choices of arm a (define this as the good976

event E3(sℓ(r))) with probability at least 1−K/T 3.977

Recall on the event E1 the concentration bounds of Proposition 7 hold. Then, on E1 ∩ E3(sℓ(r)),978

we must have eℓ(r) ≤ s(ar(B)) since otherwise ar(B) would have been evicted in A(B) by some979

perfect replay before the end of the block eℓ(r) by virtue of
∑

(i,j)

∑
t Zmi,j ,t > 1 for arm ar(B).980

Thus, by the definition of the bad round s(ar(B)) (29), we must have:981 ∑
[si,j(ar(B)),si,j+1(ar(B))):si,j+1(ar(B))<eℓ(r)

(si,j+1(ar(B))−si,j(ar(B)))
1+d
2+d ≤ c23 log(T )(eℓ(r)−tℓ)

1+d
2+d

(30)
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Thus, by (26) in Definition 11, over the proper bad segments [si,j(ar(B)), si,j+1(ar(B))) which982

elapse before the end of the block eℓ(r) in phase [τi, τi+1): the regret is at most983

eℓ(r)∑
t=sℓ(r)

δt(a
♯
t, ar(B)) ≤

∑
(i,j)

log(T ) ·K
1

2+dm
1+d
2+d

i,j

≤ log2(T ) ·K
1

2+d · (eℓ(r)− tℓ)
1+d
2+d

Over each non-proper bad segment [si,j(ar(B)), si,j−1(ar(B))) and the last segment984

[si,j(ar(B)), eℓ(r)], the regret of playing arm ar(B) to a♯i is at most log(T ) · r(B)d ·K
1

2+dm
1+d
2+d

i,j985

by a similar series of calcuations and since there is at most one non-proper bad segment per phase986

[τi, τi+1) (see (26) in Definition 11).987

So, we conclude that on event E1 ∩ E3(sℓ(r)):988

eℓ(r)∑
t=sℓ(r)

δt(a
♯
t, ar(B)) ≤ 2c23 log

2(T )
∑

i∈PHASES(r,ℓ)

K
1

2+d · (τi+1 − τi)
1+d
2+d .

Taking expectation (all expectations below are conditional on XT and the good event E2 over which989

we have concentration of covariate counts), we have by conditioning first on sℓ(r) and then on event990

E1 ∩ E3(sℓ(r)):991

E

 eℓ(r)∑
t=sℓ(r)

δt(a
♯
t, ar(B))


≤ Esℓ(r)

E
111{E1 ∩ E3(sℓ(r))} eℓ(r)∑

t=sℓ(r)

δt(a
♯
t, ar(B))

∣∣∣∣∣sℓ(r)
+ T · Etℓ

[
E

[
111{Ec1 ∪ Ec2(sℓ(r))}

∣∣∣∣∣sℓ(r)
]]

≤ 2c23 log
2(T )Esℓ(r)

E
111{E1 ∩ E3(tℓ)} ∑

i∈PHASES(ℓ,r)

K
1

2+d (τi+1 − τi)
1+d
2+d

∣∣∣∣∣sℓ(r)
+

K

T 2

≤ 2c23 log
2(T )E

111{E1} ∑
i∈PHASES(ℓ,r)

(τi+1 − τi)
1+d
2+dK

1
2+d

+
1

T
,

where in the last step we bound 111{E1 ∩ E3(tℓ)} ≤ 111{E1} and apply tower law again. Plugging this992

into our earlier concentration bound on
∑eℓ(r)

t=sℓ(r)
δt(a

♯
t, ar(B)) · 111{Xt ∈ B}, we conclude this part.993

994

E Proof of Corollary 5995

The proof of Corollary 5 will follow in a similar fashion to the proof of Corollary 2 in Suk and996

Kpotufe [2022], which relates the total-variation rates to significant shifts in the non-stationary MAB997

setting. A novel difficulty here is that our notion of significant shift τi(XT ), L̃(XT ) (Definition 6)998

depends on the full context sequence XT , and so it is not clear how the (random) significant phases999

[τi(XT ), τi+1(XT )) relate to the total-variation VT , which is a deterministic quantity.1000

Our strategy will be to first convert the regret rate of Theorem 3 into one which depends on a weaker1001

worst-case notion of significant shift which does not depend on the observed XT . Although this1002

notion of shift is weaker, it will be easier to relate to the total-variation quantity VT .1003

Let δat (x) := maxa′∈[K] f
a′

t (x)− fa
t (x) be the gap in mean rewards at the fixed context x ∈ X .1004

Definition 13 (worst-case sig shift). Let τ0 = 1. Then, recursively for i ≥ 0, the (i+ 1)-th worst-1005

case significant shift is recorded at time τ̃i+1, which denotes the earliest time τ̃ ∈ (τ̃i, T ] such1006

that there exists x ∈ X such that for every arm a ∈ [K], there exists round s ∈ [τ̃i, τ̃ ], such that1007

δas (x) ≥
(

K
t−τ̃i

) 1
2+d

.1008
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We will refer to intervals [τ̃i, τ̃i+1), i ≥ 0, as worst-case (significant) phases. The unknown number1009

of such phases (by time T ) is denoted L̃pop +1, whereby [τ̃L̃pop
, τ̃L̃pop+1), for τL̃pop+1

.
= T +1, denotes1010

the last phase.1011

We next claim that1012

EXT

L̃(XT )∑
i=0

(τi+1(XT )− τi(XT ))
1+d
2+d

 ≤ c24

L̃pop∑
i=0

(τ̃i+1 − τ̃i)
1+d
2+d .

This follows since the empirical significant phases [τi(XT ), τi+1(XT )) interleave the population1013

analogues [τ̃i, τ̃i+1) in the following sense: at each significant shift τi+1(XT ), for each arm a ∈ [K],1014

there is around s ∈ [τi(XT ), τi+1(XT )] such that for δs(Xτi+1) >
(

K
τi+1−τi

) 1
2+d

. This means there1015

must be a worst-case significant shift τ̃j in the interval [τi(XT ), τi+1(XT )] since the criterion of1016

Definition 13 is triggered at x = Xτi+1 . Thus, by the sub-additivity of the function x 7→ x
1+d
2+d . This1017

also allows us to conclude that each worst-case significant phase [τ̃i, τ̃i+1) can intersect at most two1018

significant phases [τi(XT ), τi+1(XT )).1019

Thus,1020

L̃(XT )∑
i=0

(τi+1(XT )− τi(XT ))
1+d
2+d ≤

L̃(XT )∑
i=0

∑
j:[τ̃j ,τ̃j+1)∩[τi(XT ),τi+1(XT )) ̸=∅

|[τ̃j , τ̃j+1) ∩ [τi(XT ), τi+1(XT ))|
1+d
2+d

≤ c24

L̃pop∑
j=0

(τ̃j+1 − τ̃j)
1+d
2+d ,

where we use Jensen’s inequality for ap + bp ≤ 21−p(a+ b)p for p ∈ (0, 1) and a, b ≥ 0 in the last1021

step to re-combine the subintervals of each worst-case significant phase [τ̃j , τ̃j+1).1022

Then, it suffices to show1023

L̃pop∑
j=0

(τ̃j+1 − τ̃j)
1+d
2+dK

1
2+d ≲ T

1+d
2+d ·K

1
2+d + (VT ·K)

1
3+d · T

2+d
3+d . (31)

We first transform the total variation into a more flexible quantity depending on the reward functions1024

fa
t (·) and the full sequence XT .1025

Lemma 17. Let Gt : X × [0, 1]K → [−1, 1] be any measurable function which takes the mean1026

reward vector ft : X → [0, 1]K at round t as input, and outputs a real number in [−1, 1]. Then,1027

recalling Dt is the joint distribution of Xt and Yt, we have for t = 2, . . . , T :1028

∥Dt −Dt−1∥TV ≥
1

2
(Gt(ft)−Gt(ft−1)) .

Proof. This follows from the variational representation of the total variation distance [Polyanskiy1029

and Wu, 2022, Theorem 7], which says for any measurable function H : X × [0, 1]K → [−1, 1],1030

∥Dt −Dt−1∥TV ≥
1

2

(
E(Xt,Yt)∼Dt

[H(Xt, Yt)]− E(Xt−1,Yt−1)∼Dt−1
[H(Xt−1, Yt−1)]

)
. (32)

In particular, we can take H to only depend on the mean reward functions.1031

Now, fix a worst-case significant phase [τ̃i, τ̃i+1) such that τi+1 < T + 1. By Definition 13, there1032

exists a context xi ∈ X such that for arm ai ∈ argmaxa∈[K] f
a
τ̃i+1

(xi) we have there exists a round1033

ti ∈ [τi, τi+1] such that:1034

δai
ti (xi) >

(
K

τ̃i+1 − τ̃i

) 1
2+d

.
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On the other hand, δai

τ̃i+1
(xi) = 0 by the definition of arm ai being the best at xi at round τ̃i+1. Thus,1035 (

K

τ̃i+1 − τ̃i

) 1
2+d

< δai
ti (xi)− δai

τ̃i+1
(xi) =

τi+1∑
t=ti+1

δt(ai, xi)− δt−1(ai, xi).

For each round t = 2, . . . , T , let Gt(ft) := δt(ai, xi), where xi is the associated context of the1036

unique worst-case significant shift τ̃i+1 such that t ∈ [τ̃i, τ̃i+1) and where ai is defined as above.1037

Then, Gt only depends on the mean reward function ft : X → [0, 1]K at round t and not on the1038

observed contexts XT . Then, since Gt(·) satisfies the condition of Lemma 17, we must have1039

L̃pop∑
i=1

(
K

τ̃i+1 − τ̃i

) 1
2+d

<

T∑
t=2

Gt(ft)−Gt−1(ft−1) ≤
T∑

t=2

∥Dt −Dt−1∥TV. (33)

Now, by Hölder’s inequality for p ∈ (0, 1) and q ∈
(
0, 1+d

2+d

)
:1040

L̃pop∑
i=1

(τ̃i+1 − τ̃i)
1+d
2+dK

1
2+d ≤ T

1+d
2+dK

1
2+d +

(∑
i

K
1

2+d (τ̃i+1 − τ̃i)
−q/p

)p(∑
i

K
1

2+d (τ̃i+1 − τ̃i)
( 1+d

2+d+q)· 1
1−p

)1−p

.

In particular, letting p = 1
3+d and q = 1

(2+d)(3+d) and plugging in our earlier bound (33) makes the1041

above RHS1042

V
1

3+d

T ·K
1

3+d · T
2+d
3+d .

1043

F Proof of Theorem 11044

We first note that it suffices to show (3) for integer L ∈ [0, T ] ∩ N as lower bounds for all other1045

L follow via approximation and modifying the constant c > 0 in (3). Thus, going forward, fix1046

V ∈ [0, T ] and L ∈ Z ∩ [0, T ].1047

At a high level, our construction will repeat L + 1 a hard environment for stationary contextual1048

bandits. In particular, within each stationary phase of length T/(L+ 1) one is forced to pay a regret1049

of
(

T
L+1

) 1+d
2+d

, summing to a total regret lower bound of (L+ 1) ·
(

T
L+1

) 1+d
2+d ≈ L

1
2+d · T

1+d
2+d .1050

To get the rate in terms of V in (3), we will choose L ∝ V
2+d
3+d · T

1
3+d appropriately and argue that1051

the total-variation VT is less than V , so that our constructed environment indeed lies in the family1052

P(V,L, T ). This is similar to the arguments of the analogous lower bound [Besbes et al., 2019,1053

Theorem 1] for the non-contextual non-stationary bandit problem.1054

We start by establishing a lower bound for stationary Lipschitz context bandits. The construction is1055

identical to that of Rigollet and Zeevi [2010, Theorem 4.1]. We only highlight a minor novelty in1056

circumventing the reliance of the cited result on a positive “margin parameter” α > 0.1057

Proposition 18. Suppose there are K = 2 arms. Then, there exists a stationary Lipschitz contextual1058

bandit environment E(n) over n rounds such that for any algorithm π taking as input random variable1059

U , independent of E(n), we have for some constant c > 0:1060

EE(n),U [R(π,XT )] ≥ c · n
1+d
2+d .

Proof. Let the covariates Xt be uniformly distributed on [0, 1]d at each round t ∈ [n], so that1061

µX ≡ Unif{[0, 1]d}. For ease of presentation, let us reparametrize the two arms as +1 and −1.1062

At each round t ∈ [n], let arm −1 have reward Y −1
t ∼ Ber(1/2) and let arm 1 have reward1063

Y 1
t ∼ Ber(f(Xt)) where f : X → [0, 1] is some function to be defined. Let1064

M :=

⌈( n

8e

) 1
2+d

⌉
.
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We next partition X = [0, 1]d into a regular grid Q = {q1, . . . , qMd}, where qk denotes the center1065

of bin Bk, k = 1, . . . ,Md. Specifically, for each index k = (k1, . . . , kd) ∈ {1, . . . ,M}d, we define1066

the bin Bk as:1067

Bk =

{
x ∈ X :

kℓ − 1

M
≤ xℓ ≤

kℓ
M

, ℓ = 1, . . . , d

}
.

Define Cϕ
.
= 1/4. Then, let ϕ : Rd → R+ be a smooth function defined by:1068

ϕ(x) =

{
1− ∥x∥∞ 0 ≤ ∥x∥∞ ≤ 1

0 ∥x∥∞ > 1
.

It’s straightforward to verify ϕ is 1-Lipschitz over Rd.1069

Now, define the integer m =
⌈
µ ·Md

⌉
where µ ∈ (0, 1) is chosen small enough to ensure m ≤Md.1070

Define Σm = {−1, 1}m and for any ω ∈ Ωm, define the function fω on [0, 1]d via1071

fω(x) = 1/2 +

m∑
j=1

ωj · ϕj(x),

where ϕj(x)
.
= M−1 · Cϕ · ϕ(M · (x− qj)) · 111{x ∈ Bj}. Then, the optimal arm at context x ∈ X1072

in this environment is given by π∗
f (x)

.
= sgn(f(x)− 1/2).1073

Then, define the family C of environments induced by fω for ω ∈ Ωm. Next, let Int(Bk) be the ℓ∞1074

ball centered at qk of radius 1
2M . Then, we have for any x ∈ Int(Bk),1075

|fω(x)− 1/2| ≥M−1 · Cϕ/2.

Then, the worst-case regret over the family of environments in C is at least1076

sup
f∈C

E
n∑

t=1

|f (1)(Xt)− f (2)(Xt)| · 111{πt(Xt) ̸= π∗(Xt)}

≥ Cϕ

2M
sup
f∈C

E
n∑

t=1

m∑
j=1

111{πt(Xt) ̸= π∗(Xt), Xt ∈ Int(Bj)}.

Lower bounding the remaining supremum on the above RHS display by Ω(n) follows the same1077

steps as the proof of Theorem 4.1 in Rigollet and Zeevi [2010]. In particular, the algorithm π may1078

depend on additional randomness U , independent of the environment, which is ignorable in the KL1079

calculations by use of chain rule. Plugging in the earlier choice of M this makes the above RHS at1080

least Ω(n
1+d
2+d ).1081

1082

Given Proposition 18, the (L+ 1) ·
(

T
L+1

) 1+d
2+d

lower bound immediately follows by constructing a1083

random environment which consists of L+ 1 independent repetitions of the stationary environment1084

E(T/(L+ 1)). Any such constructed environment clearly has at most L global shifts. Note that the1085

regret over a given stationary phase of length T
L+1 is lower bounded by

(
T

L+1

) 1+d
2+d

regardless of1086

the information learned prior to that phase, as such information can be formalized as exogeneous1087

randomness U in Proposition 18 w.r.t. the fixed stationary phase.1088

Next, we tackle the lower bound V
1

3+d · T
2+d
3+d in terms of total-variation budget V . First, if V <1089 (

1
T

) 3+d
2+d , then we’re already done as1090 (

T
1+d
2+d + T

2+d
3+d · V

1
3+d

)
∧
(
(L+ 1)

1
2+dT

1+d
2+d

)
is minimized by the first term which is of order T

1+d
2+d . Thus, using Proposition 18 with a single1091

stationary phase E(T ) gives lower bound of the right order. Such an environment clearly has1092

total-variation VT = 0 ≤ V .1093
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Let ∆ .
=

⌈(
T
V

) 2+d
3+d

⌉
≤
⌈
T

1
3+d

⌉
and consider L+1 = T/∆ stationary phases of length ∆. Then, by1094

the previous arguments we have the regret is lower bounded by1095

(L+ 1)
1

2+d · T
1+d
2+d =

T

∆
1

2+d

≥ T

2
1

3+d (T/V )
1

3+d

∝ T
2+d
3+d · V

1+d
3+d .

Additionally, T
2+d
3+d · V

1+d
3+d dominates T

1+d
2+d since V ≥

(
1
T

) 3+d
2+d . Thus, the regret lower bound is1096

proven in terms of V .1097

It remains to show the total-variation VT is at most V in the above constructed environments so that1098

it lies in the family P(V,L, T ).1099

Clearly, the instantaneous total-variation ∥Dt − Dt−1∥TV = 0 for all rounds t not being the start1100

of a new stationary phase. On the other hand, for such a round t, we have that since conditioning1101

increases the TV [Polyanskiy and Wu, 2022, Theorem 7.5(c)], the instantaneous TV is at most:1102

∥Dt −Dt−1∥TV ≤ Ex∼µX
[∥Dt(Yt|Xt = x)−Dt−1(Yt−1|Xt−1 = x)∥TV] .

Since Y a
t |Xt = x ∼ Ber(fa

t (x)), we have the RHS’ inner TV quantity is just the total variation1103

between Bernoulli’s or maxa∈[2] |fa
t (x)− fa

t−1(x)|. Carefully analyzing the variations int he con-1104

structed Lipechitz reward functions in the proof of Proposition 18 reveals this TV between Bernoulli’s1105

is at most e
1

2+d

8
1+d
2+d

·
(
L+1
T

) 1
2+d (note the attached constant is < 1 for all d ∈ N ∪ {0}).1106

Summing over phases, we have1107

VT ≤ (L+ 1)
3+d
2+d · T− 1

2+d = T ·
(

1

∆

) 3+d
2+d

= V.

1108
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