
Appendix

A Preliminaries

In this section, we discuss the hyperbolic operations used in HNN formulations and set up the meta-
learning problem.

Hyperbolic operations: The hyperbolic gyrovector operations required for training neural net-
works, in a Poincaré ball with curvature c, are defined by Möbius addition (�c), Möbius subtraction
(c), exponential map (expcx), logarithmic map (logcx), Möbius scalar product (�c), and Möbius
matrix-vector product (⌦c).

g
H

x := �
2
x g

E where �x :=
2

1� kxk2
(3)

x�c y :=

�
1 + 2chx, yi+ ckyk

2
�
x+

�
1� ckxk

2
�
y

1 + 2chx, yi+ c2kxk2kyk2
(4)

x c y := x�c �y (5)

expcx(v) := x�c

✓
tanh

✓
p
c
�
c
xkvk

2

◆
v

p
ckvk

◆
(6)

logcx(y) :=
2
p
c�c

x

tanh�1 �p
ck � x�c yk

� �x�c y

k � x�c yk
(7)

r �c x := expc0(rlog
c
0(x)), 8r 2 R, x 2 H

d (8)

M ⌦c x :=
1
p
c
tanh

✓
kMxk

kxk
tanh

�1
�p

ckxk
�◆ Mx

kMxk
(9)

Here, := denotes assignment operation for Möbius operations. The operands x, y 2 H
d are hyper-

bolic gyrovectors. gE = In is the Euclidean identity metric tensor and kxk is the Euclidean norm of
x. �x is the conformal factor between the Euclidean and hyperbolic metric tensor [13].

Meta-Learning setup: In meta-learning, the dataset consists of multiple tasks Ti 2 D. The dataset
is divided into training (Dtrain), test (Dtest), and validation (Dval) sets, and each task Ti is divided
into a support set (T s

i) and query set (T q
i) with corresponding labels Ys and Yq , respectively. The

size of query label set is given by N = |Yq| and the size of support set in meta-testing is given by
K = |T

s
i 2 Dtest|. This particular setup is also known as the N-ways K-shot learning problem.

In the meta-training phase of MAML [12], the model trains on tasks T s
i 2 Dtrain and is evaluated

on T
q
i 2 Dtrain to learn the meta-information. For few-shot evaluation, the model is trained on

T
s
i 2 Dtest and evaluated on T

q
i 2 Dtest, where |T

s
i | ⌧ |T

q
i |. The goal is to learn the initial

parameters ✓⇤ from Dtrain such that they can quickly transition to the parameters ✓ for new tasks in
Dtest. The hyper-parameters of the meta-learning setup are tuned using Dval.

B Theorem Proofs

This section provides the theoretical proofs of the theorems presented in our main paper.

B.1 Proof of Theorem 1

Theorem. For a set of paths Puv between nodes u and v, let us define D
pi
gµ as the geometric

mean of degree of nodes in a path pi 2 Puv , puv as the shortest path, and Iuv as the influ-
ence of node v on u. Also, let us say define D

min
gµ = min

�
D

pi
gµ8pi 2 Puv

, then the relation

Iuv  exp
c
u

⇣
K/
�
D

min
gµ

�kpuvk
⌘

(where K is a constant) holds for message propagation in HGCN
models.

Proof. The aggregation in HGCN model is defined as:

x
H

u = exp
c
xH
u

0

@ 1

Du

X

i2N (u)

wuilog
c
xH
u

�
x
H

i

�
1

A

15

where xu, Du, and N (u) are the embedding, degree, and neighborhood of the root node, respec-
tively. Note that points in the local tangent space follow Euclidean algebra. For simplicity, let us
define the Euclidean vector as xi = log

c
xH
u

�
x
H

i

�
. Simplifying the aggregation function:

x
H

u = exp
c
xH
u

0

@ 1

Du

X

i2N (u)

wuixi

1

A

Expanding the aggregation function to cover all possible paths from u to its connected nodes.

x
H

u =exp
c
xH
u

1

Du

X

i2N (u)

wui
1

Di

X

j2N (i)

wij ...

1

Dm

X

n2N (m)

wmn...
1

Do

X

o2N (k)

wkoxo

!

The influence of a node v on u is given by:

Iuv = exp
c
0

 �����
@log

c
x

�
x
H

u

�

@logcx (x
H
v)

�����

!

Simplifying tangent space vectors,

Iuv = exp
c
0

✓����
@xu

@xv

����

◆

����
@xu

@xv

���� =

�����
@

@xv

1

Du

X

i2N (u)

wui
1

Di

X

j2N (i)

wij ...

1

Dm

X

n2N (m)

wmn...
1

Do

X

o2N (k)

wkoxo

!�����

Given that the partial derivative is with respect to xv , only paths between u and v will be non-zero,
all other paths shall be zero, i.e.,

����
@xu

@xv

���� =

�����
@

@xv

1

Du
wup1

i

1

Dp1
i

wp1
i p

1
j
...

1

Dp1
k

wp1
kv
xv + ...

+
1

Du
wupm

i

1

Dpm
i

wpm
i pm

j
...

1

Dpm
k

wpm
k vxv

!�����

where (u, pti, p
t
j , ..., p

t
k, v)8t 2 [1,m] are the paths between node u and v. Aggregating the terms

together and getting the constants out of the derivative,
����
@xu

@xv

���� =

�����
wup1

i
wp1

i p
1
j
...wp1

kv

DuDp1
i
...Dp1

k

+ ...+
wupm

i
wpm

i pm
j
...wpm

k v

DuDpm
i
...Dpm

k

�����.

�����
@xv

@xv

�����

=

�����
wup1

i
wp1

i p
1
j
...wp1

kv

DuDp1
i
...Dp1

k

+ ...+
wupm

i
wpm

i pm
j
...wpm

k v

DuDpm
i
...Dpm

k

�����



�����m ⇤max

wup1

i
wp1

i p
1
j
...wp1

kv

DuDp1
i
...Dp1

k

, ...,

wupm
i
wpm

i pm
j
...wpm

k v

DuDpm
i
...Dpm

k

!�����

Let us say,

t
⇤ = argmax

t

0

@
(
wupt

i
wpt

ip
t
j
...wpt

kv

DuDp1
i
...Dpt

k

)t=m

t=1

1

A (10)

16

Then,
����
@xu

@xv

���� 

�����m ⇤
wupt⇤

i
wpt⇤

i pt⇤
j
...wpt⇤

k v

DuDpt⇤
i
...Dpt⇤

k

�����
Aggregating the constants and substituting the geometric mean, we get;

����
@xu

@xv

���� K ⇥

0

B@
1

⇣
DuDpt⇤

i
...Dpt⇤

k

⌘1/n⇤

1

CA

n⇤

=
K�

Dt⇤
gµ

�n⇤

Substituting the variables with shortest paths and minimum degree,����
@xu

@xv

���� 
K�

Dt⇤
gµ

�n⇤ 
K

�
Dmin

gµ

�kpuvk

With transitive property and adding exponential map on both sides;

exp
c
u

✓����
@xu

@xv

����

◆
exp

c
u

⇣
K/
�
D

min
gµ

�kpuvk
⌘

Iuv exp
c
u

⇣
K/
�
D

min
gµ

�kpuvk
⌘

B.2 Proof of Theorem 2

Theorem. Given the subgraph Su of graph G centered at node u, with the corresponding label
Yu, let us define a node v 2 G with maximum influence on u, i.e., v = argmaxt({Iut, t 2
N (u) \ u}). For a set of paths Puv between nodes u and v, let us define D

pi
gµ as the geo-

metric mean of degree of nodes in a path pi 2 Puv , kpuvk is the shortest path length, and
D

min
gµ = min

�
D

pi
gµ8pi 2 Puv

. Then, the information loss between encoding the G and Su is

bounded by �H(G, Su)  exp
c
u

⇣
K/
�
D

min
gµ

�kpuvk+1
⌘

(where K is a constant).

Proof. The information loss between encoding the entire graph G and node-centric local subgraph
Su with root node u is given by;

�H(G, Su) =exp
c
0 (�(G, Su))

�(G, Su) =log
c
0 (IG(u))� log

c
0 (ISu(u))

=

✓����
@xu

@x1

����+ ...+

����
@xu

@xn

����

◆
�

✓����
@xu

@xi1

����+ ...+

����
@xu

@xim

����

◆

Delete the overlapping nodes in the paths,

=

����
@xu

@xt1

����+
����
@xu

@xt2

����+ ...+

����
@xu

@xtn�m

����

Using Theorem 1,


Kt1

�
D

t1
gµ
�kpt1

uvk
+

Kt2
�
D

t2
gµ
�kpt2

uvk
+ ...+

Ktn�m

⇣
D

tn�m
gµ

⌘kptn�m
uv k

(n�m)⇥Kmin/
�
D

min
gµ

�kpmin
uv +1k

(n�m)⇥Kmin/
�
D

min
gµ

�kpuv+1k
= K/

�
D

min
gµ

�kpuv+1k

�(G, Su) K/
�
D

min
gµ

�kpuv+1k

exp
c
0 (�(G, Su)) exp

c
0

⇣
K/
�
D

min
gµ

�kpuv+1k⌘

�H(G, Su) exp
c
u

⇣
K/
�
D

min
gµ

�kpuvk+1
⌘

17

Table 5: Hyper-parameter setup of real-world datasets. The columns present the number of tasks
in each batch (# Tasks), HNN update learning rate (↵), meta update learning rate (�), and size of
hidden dimensions (d).

Dataset # Tasks ↵ � d
arxiv-ogbn 32 10�2 10�3 256
Tissue-PPI 4 10�2 5⇥ 10�3 128
Fold-PPI 16 5⇥ 10�3 10�3 128
FirstMM-DB 8 10�2 5⇥ 10�4 128
Tree-of-Life 8 5⇥ 10�3 5⇥ 10�4 256

C H-GRAM Algorithm

Algorithm 1 provides the details of the procedure of the H-GRAM model.

Algorithm 1: H-GRAM meta-learning algorithm

Input: Graphs G[= {Gi}
kG[k
i=1 , Ground truth Y ;

Output: Predictor P✓, parameters ✓;
1 Initialize ✓⇤ and ✓ as HGCN model and meta-update parameters, respectively ;
2 # Partition graphs into node-centric subgraphs
3 S1, S2, ...SkV k = Partition (G[) ;
4 # Batch graphs into tasks for meta-learning
5 T = {T1, T2, ..., TkT k};
6 while not converged do
7 Ttrain sample(T);
8 for Ti 2 Ttrain do
9 # Batch of support and query set from the tasks

10 {Su}
s
, {Yu}

s
 T

s
i ;

11 {Su}
q
, {Yu}

q
 T

q
i ;

12 for j 2 [1, ⌘] do
13 # Update ✓

⇤ using support set
14 h

s
u = HGCN✓⇤

j�1
(Su

s)

15 e
s
u =

PkV k
i=1 �iuh

s
iuPkV k

i=1 �iu

16 c
s
k =

P
Yu=yk

�ie
s
iP

Yu=yk
�i

17 p
s
k = e(�dc

H
(esu,csk))

P
k e(�dc

H
(esu,cs

k
))

18 L
s = L(ps, Y s

u) =
P

j y
s
i log p

s
j

19 ✓
⇤
j exp

c
✓⇤
j�1

(�↵rLs)

20 # Record evaluation with ✓
⇤ on query set

21 h
q
u = HGCN✓⇤

j
(Su

q)

22 e
q
u =

PkV k
i=1 �iuh

q
iuPkV k

i=1 �iu

23 c
q
k =

P
Yu=yk

�ie
q
iP

Yu=yk
�i

24 p
q
k = e(�dc

H
(e

q
u,c

q
k
))

P
k e(�dc

H
(e

q
u,c

q
k
))

25 L
q
ij = L(pq, Y q

u) =
P

j y
q
i log p

q
j

26 end
27 end
28 # Update meta-learning parameter ✓
29 ✓ exp

c
✓(��r

P
i L

q
iu)

30 end

18

Table 6: Performance of H-GRAM and the baselines on synthetic and real-world datasets. The
top three rows define the task, problem setup (Single Graph (SG), Multiple Graphs (MG), Shared
Labels (SL) or Disjoint Labels (DL)) and dataset. The problems with disjoint labels use a 2-way
meta-learning setup, and in the case of shared labels, the cycle and BA graph have 17 and 10 labels,
respectively. In our evaluation, we use 5 and 10 gradient update steps in meta-training and meta-
testing, respectively. The columns present the average multi-class classification accuracy and 95%
confidence interval over five-folds. Note that the baselines are only defined for certain tasks, “-”
implies that the baseline is not defined for the task and setup. Meta-Graph is only defined for link
prediction.

Task Node Classification Node Classification Node Classification Node Classification Link Prediction
Setup hSG,DLi hMG,SLi hMG,DLi hSG,DLi hMG,SLi hMG,DLi hMG,SLi hMG,SLi
Dataset Syn. Cycle Syn. BA Syn. Cycle Syn. BA Syn. Cycle Syn. BA ogbn-arxiv Tissue-PPI Fold-PPI FirstMM-DB Tree-of-Life
Meta-Graph - - - - - - - - - .719±.018 .705±.004
Meta-GNN .720±.191 .694±.098 - - - - .273±.107 - - - -
FS-GIN .684±.126 .749±.093 - - - - .336±.037 - - - -
FS-SGC .574±.081 .715±.088 - - - - .347±.004 - - - -
ProtoNet .821±.173 .858±.126 .282±.039 .657±.030 .749±.160 .866±.186 .372±.015 .546±.022 .382±.027 .779±.018 .697±.009
MAML .842±.181 .848±.186 .511±.044 .726±.020 .653±.082 .844±.177 .389±.018 .745±.045 .482±.054 .758±.022 .719±.011
G-META .872±.113 .867±.129 .542±.039 .734±.033 .767±.156 .867±.183 .451±.028 .768±.025 .561±.052 .784±.025 .722±.028
H-GRAM .883±.145 .873±.120 .555±.041 .746±.028 .779±.132 .888±.182 .472±.035 .786±.031 .584±.044 .804±.021 .742±.013

D Confidence Intervals

In the results presented in Table 6, the reported mean demonstrates the predictive power of H-GRAM
and the 95% confidence interval estimates the degree of uncertainty. The large confidence interval
in the results on synthetic datasets is because in meta-testing, we only sampled two-labels in each
fold. In some cases where the structure of the local subgraphs in meta-training is significantly differ-
ent compared to meta-testing, our model has poor performance due to limited scope of knowledge
transfer. We observe that, in the limited number of data split possibilities in synthetic datasets, there
generally is a case where our model does not perform well which results in a larger confidence in-
terval. Real-world datasets contain many more labels, and hence, we are able to sample more for
meta-testing, e.g., 5 labels for 3-way classification. This reduces the possibility of atypical results,
thus leading to smaller intervals.

E Broader Impacts

Our model has the potential to impact various applications that involve graph-structured data, such
as social network analysis, bioinformatics, and recommendation systems. Furthermore, the ability
to generalize information from subgraph partitions of large datasets can be especially beneficial for
applications with limited labeled data, such as in the fields of healthcare and finance. Moreover, H-
GRAM also addresses several challenges in HNNs, including inductive learning, over-smoothing,
and few-shot learning. These capabilities can be used to improve the performance of HNNs in
various tasks such as node classification, link prediction, and graph classification. However, it is
important to note that this model also has certain limitations. In particular, H-GRAM is based on a
specific type of hyperbolic space, which may not be applicable to certain types of graph-structured
data, and there are some assumptions made in the proof of our theoretical results which may not
hold in general. Additionally, the meta-learning setup may not be suitable for all types of tasks, and
further research is needed to test the performance of H-GRAM on other types of tasks. As a future
direction, it would be interesting to investigate the effect of inadequate local subgraphs, scalability
of H-GRAM on even larger datasets and explore the effectiveness of H-GRAM on other types of
tasks with temporal or multi-modal graph data.

19

