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1 PROOF OF THEOREM 1

Theorem 1 Consider the single-letter Gaussian setting and fNoisy N2N(Z, y) obtained in (Eq.(2),
manuscript). Also, assume 0 < y = σ2
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2
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Proof: We consider the following chain of equalities:
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Now, by denoting the numerator of (5) as g(y), we have
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Then, we can easily see that

g(0) = −σ2
Nσ

2
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N < 0 (8)

g(1) = 4σ4
X > 0 (9)
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Therefore, in 0 < y < 1, we can see g(y) is an increasing function and has a root y0 in the interval.
Hence, the claim of the theorem: for all y ∈ (y0, 1), E(X − fNoisy N2N(Z, y))

2 < σ2
0 holds.

2 DETAILS ON THE EXPERIMENTAL SETTINGS

2.1 SMOOTH NOISY PATCH EXTRACTION

2.1.1 GCBD (CHEN ET AL., 2018) RULE EQ.(3)

The original GCBD paper (Chen et al., 2018) did not provide any source code or training data, hence,
we reproduced their noisy patch extraction algorithm. There are six hyperparameters for the rule

∗Corresponding author (E-mail: tsmoon@snu.ac.kr)

1



[Eq.(3), Manuscript], and we used the exact same hyperparameters given in their paper, which are
shown in Table 1. d and h denote the size of a patch, p, and its sub-patches, qj , given in [Eq.(3),
Manuscript], respectively. sp and sq are the stride sizes for extracting the patches, p and {qj}, from
a given image. µ and λ are the hyperparameters of the rule for selecting the smooth patches shown in
[Eq.(3), Manuscript].

Table 1: Hyperparameters for the patch extraction rule of GCBD
Hyperparameters d h sp sq µ γ

Values 64 16 32 16 0.1 0.25

2.1.2 G2G RULE EQ.(4)

There are three hyperparemeters for our extraction rule [Eq.(4 ), Manuscript], λ, d (the patch size),
and sd (the stride size for extracting patches from an image). The choices for our experiments are
shown in Table 3. Moreover, we stress that we did not tune λ using clean images, but the different λ
values in the table are determined by the pre-determined number of extracted patches by applying our
rule [Eq.(4), Manuscript]. Moreover, as argued in Section 3.1 (manuscript), we do not require any
sub-patches to be extracted, hence, have only half the hyperparameters compared to the GCBD rule.

Table 2: Hyperparameters for the extraction rule of G2G
Gaussian

Noise
Mixture
Noise

Correlated
Noise WF Medical

λ 0.03 0.1 0.15 0.42 0.015
d 96
sp 24

2.1.3 EFFECT OF λ

Table 3 shows the effect of λ in [Eq.(4), Manuscript] on the final performance of G2G2. Note the
smaller the λ, the less number of patches are extracted, but the homogeneity increases. The table
shows λ clearly affects the denoising performance of gθ2 , but as the iterative G2G training continues,
the performance of G2G2 becomes not very sensitive to λ. Hence, in our experiments, we did not
optimize λ based on any clean validation set, but just set λ based on the number of extracted patches
and checking the visual qualities of the patches.

Table 3: Effects of varying λ on the denoising performance.
Gaussian Noise (σ = 25) Mixture Noise (s = 25) Correlated Gaussian Noise (σ = 25)

λ # of patches gθ2 G2G2 λ # of patches gθ2 G2G2 λ # of patches gθ2 G2G2

0.03 100,000 26.30/0.7123 28.93/0.8293 0.1 80,000 32.73/0.9478 40.30/0.9845 0.15 100,000 25.68/0.7606 27.85/0.8185
0.01 61,000 27.20/0.7159 28.84/0.8045 0.005 45,000 35.84/0.9588 40.16/0.9838 0.11 30,000 26.61/0.7566 27.67/0.8203

0.0075 32,000 26.44/0.7085 28.80/0.8060 0.025 23,000 34.20/0.9398 40.28/0.9848 0.1 11,000 26.30/0.7440 27.65/0.8203

2.2 TRAINING A W-GAN BASED GENERATIVE MODEL

Here, we elaborate a couple of subtle points for training our generative model as mentioned in Section
3.2 (manuscript).

Firstly, given the overall optimization objective [Eq.(8), manuscript], we use (α, β, γ) = (1, 1, 0)
for the inner maximization for critics, and use (α, β, γ) = (5, 1, 10) for the outer minimization
for generators. The main intuition for using different (α, β, γ) for training the generators is due to
different levels of confidence in the generator loss terms. Namely, we assign the largest weight to
[Eq.(7), Manuscript] since it is a deterministic loss and its value has a clear meaning. The generator
loss [Eq.(5), Manuscript], which is in the form of the standard W-GAN loss, gets the medium level
weight since the meaning of its value is less certain than [Eq.(6), Manuscript]. In contrast, the
generator loss in [Eq.(5), Manuscript], which consists of two generators, can become somewhat
unstable during training, hence, it gets the least weight. Figure 2.2 compares the performance of
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Figure 1: Ablation study on (α, β, γ)

gθ2 ’s on BSD68 (σ = 25) when using (α, β, γ) = (5, 1, 10), for the outer minimization, as proposed,
and using (α, β, γ) = (1, 1, 1). We observe there is a significant gap between the two.

Secondly, the output layer of gθ2 must have the sigmoid activation function. Note gθ2 itself can be
thought of another denoiser, but since we are not training it with any target, we need to ensure the
outputs of gθ2 have values between [0, 1] to prevent from obvious errors of generating negative or
out-of-bound pixel values. Without the sigmoid activation, it turned out all the generators cannot be
trained properly at all.

Finally, using the right architectures for the generators and critics, e.g., number of layers and filters,
was critical since the training procedure got very sensitive to the architectural variations. Tables 4
shows the details on the architecture of our first generator, gθ1 , which aims to generate noise patches.
The dimension of r (the input random vector) was set to 128, and C denotes the channel of the
generated noise patch. The architectures of the gθ2 and gθ3 in our generative model are equal to
that of the DnCNN model (Zhang et al., 2018), however, gθ2 had 15 layers with sigmoid activation
in the output layer, and gθ3 had 17 layers and linear activation in the output layer. In addition, the
architectures of the two critics, {fw1

,fw2
}, in our generative model are given in Table 5.

Table 4: Architectural details on gθ1 .
Input shape : (128, ) Details of DeConv layer

Layer Num Layer composition Input channel Output channel Kernel size Stride Padding
1 DeConv + BatchNorm + ReLU 128 64 4 1 0
2 DeConv + BatchNorm + ReLU 64 32 4 2 1
3 DeConv + BatchNorm + ReLU 32 16 4 2 1
4 DeConv + BatchNorm + ReLU 16 8 4 1 1
5 Conv + Tanh 8 C 4 2 1

Output shape : (64x64xC) -

Table 5: Architectural details on the critics, {fw1
, fw2

}.
Input shape : (64x64xC) Details of Conv layer Details of LeakyReLU

Layer Num Layer composition Input channel Output channel Kernel size Stride Padding α
1 Conv + BatchNorm + LeakyReLU C 128 4 2 1

0.22 Conv + BatchNorm + LeakyReLU 128 256 4 2 1
3 Conv + BatchNorm + LeakyReLU 256 512 4 2 1
4 Conv 512 1 4 1 0 -

Output shape : (64x64x1) - -

For training, we carry out the random cropping of the given patches to the size of 64 × 64, and
the data augmentation was done by flipping the cropped patches horizontally and vertically. For
optimization, we used Adam (Kingma & Ba, 2015) optimizer for the three generators and RMSProp
(Tieleman & Hinton, 2012) optimizer for the two critics. The initial learning rates were set to 0.0004
and 0.0005 for Adam and RMSProp, respectively. Also, the learning rate decay, dropping the learning
rate linearly starting from epoch 10, is applied to the Adam optimizer. The parameter clipping was
done for the critics and the range was set to [−0.02, 0.02], and the number of training iterations for
the critics was 5. The total number of training epochs was 30 and the mini-batch size was 64.
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Figure 2: Figure (a) and (b) compares the PSNR and SSIM performances between starting from gθ2
and gθ2(No Lcyc), respectively.

2.2.1 ABLATION STUDY ON LCYC

As shown in the synthetic noise case of Figure 6(b) (manuscript), the iterative G2G training is
powerful such that there is a negligible performance difference between the schemes with and without
gθ2 , when the number of iterations is sufficiently large. Consequently, the cycle loss Lcyc also does
not have significant effect in the final performance for the synthetic noise case. However, for the
real noise case, Lcyc becomes more critical. As shown in Figure 2(a) and 2(b), on WF(Avg= 1)
dataset, we observe that when there is no Lcyc in our generative model, the final PSNR or SSIM
performances cannot reach the model with Lcyc even after many iterations of G2G training. Hence,
this result shows the necessity of Lcyc.

2.3 ITERATIVE GAN2GAN TRAINING OF A DENOISER

We do the same random cropping and data augmentation as in the generative model training. Moreover,
for every minibatch in the G2G training, we generated new synthetic noisy image pairs using our
trained generators as was done in the noise augmentation of (Zhang et al., 2017). Adam optimizer
with an initial learning rate 0.001 was used, and the learning rate scheduling, which halves the
learning rate every 20 epochs, was applied. The total number of training epochs was 50, and the
mini-batch size was 4. We also stress that we set the architecture of X̂θ(Z) identical to that of
17-layers DnCNN in (Zhang et al., 2017) to make a fair comparison. The pseudo algorithm for
training a generative model is in Algorithm 1

Algorithm 1 Training G2G, all experiments in this paper used the defaults values, nepoch = 50,
αG2G = 1e−3

1: Require D, gθ1 , gθ2 , φ, num_iter, m
2: for j ← 1, num_iter do
3: for ep← 1, nepoch do
4: Sample {r(i)j,1, r

(i)
j,2}mi=1 ∼ N(0, I), {Z(i)}mi=1 ∼ D

5: φj ← argminφ LG2G(φ, D̂j),
6: end for
7: end for
8: return φnumiter

2.4 NOISE2VOID (KRULL ET AL., 2019)

We used the publicly available source code of Noise2Void (N2V) (Krull et al., 2019) to obtain the
denoising results of N2V. Most of the hyperparameters were set to the default ones, but we changed
three things to make a fair comparison with our method.

Firstly, while the CNN architecture for the original N2V was a UNet3, we used the DnCNN (Zhang
et al., 2018) with 17 layers such that it has the same structure as our G2G model. Secondly, as also is
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done in (Krull et al., 2019), we had to use a validation set to do a proper model selection for N2V (i.e.,
the best epoch), while our G2G does not require any validation set (since we always use a model at
the last epoch). The reason why N2V needs a validation is that its learning curve is very unstable and
a proper model selection greatly affects the final denoising performance. To that end, since we used
20,500 patches with 120× 120 size for training our G2G and other baselines, we divided the 20,500
patches into 18,000 training patches and 2,500 validation patches for training and selecting the best
N2V model. Thirdly, we set ’mini_batch_size’ to 4 (as our G2G) and ’train_steps_per_epoch’ to
’num_of_training_data / mini_batch_size’, hence, 4,500. Other hyperparameters are given in Table 6.

Table 6: Hyperparameters for N2V
Hyperparameter Value

train_steps_per_epoch 4,500
train_loss ’mse’

train_scheme ’Noise2Void’
train_batch_size 4
n2v_num_pix 64

n2v_patch_shape (64,64)
n2v_manupulator ’uniform_withCP’

n2v_neighborhood_radious ’5’

3 COMPARISON OF THE PATCH EXTRACTION RULES

Here, we make a further, thorough comparison between the GCBD smooth patch extraction rule
[Eq.(3), manuscript] and ours [Eq.(4), manuscript]. We selected three noisy patches from [Figure
2(b), manuscript] and show the decision criterion of each rule for each image Figure 3. From the
figure, we can observe that while our G2G rule correctly excludes the patches in Figure 3(b) and 3(c)
as non-homogeneous patches, the GCBD rule wrongly determines them also as homogeneous patches.
That is, we note that since the DWT transform used in our rule can successfully disaggregate the
high and low frequency components in the patches, the patches with self-similar repeating patterns
would have significantly varying sub-band coefficient variances as shown in the figures. Hence, our
rule can exclude those patches. However, in the GCBD rule, there may exist a sub-patch qj that has
similar empirical mean and variance as the original patch p, thus, it may determine the patches with
the self-similar repeating patterns as homogeneous as well. We believe these examples clearly show
the stark difference between our rule and the GBCD rule for smooth patch extraction.
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3.1 RESULT TABLE FOR REAL MICROSCOPY NOISE

We report the detailed experimental results on the real microscopy images in Table 7. We observe
that Iterative G2G increases PSNR/SSIM in WF.

Table 7: Experimental results on the real microscopy dataset
Data
Type

Noise
Type DnCNN-S DnCNNB BM3D N2V

(DnCNN) gθ2 G2G1 G2G2 G2G3 G2G4 G2G5 G2G6 G2G7
N2C

(GCBD)
N2C

((Eq.(4))

WF

Raw 35.39
/0.8738

25.43
/0.3702

26.32
/0.4012

25.31
/0.3411

28.40
/0.5261

30.63
/0.6407

32.03
/0.6889

32.21
/0.7114

32.30
/0.7253

32.56
/0.7672

32.62
/0.7910

32.74
/0.8158

31.16
/0.7493

32.26
/0.8205

Avg = 2 36.11
/0.8969

28.36
/0.5292

29.21
/0.5642

28.23
/0.4500

29.73
/0.5844

31.84
/0.6717

32.41
/0.6920

32.80
/0.7161

32.85
/0.7500

32.90
/0.7697

32.92
/0.7783

32.85
/0.7808

31.88
/0.7575

33.23
/0.8218

Avg = 4 37.46
/0.9182

31.32
/0.6910

32.19
/0.7202

31.28
/0.6676

31.41
/0.6580

33.32
/0.7728

33.52
/0.7974

33.71
/0.8079

33.68
/0.8091

33.85
/0.8140

33.69
/0.8088

33.79
/0.8135

34.42
/0.8665

34.79
/0.8559

Avg = 8 39.81
/0.9374

34.63
/0.8218

35.76
/0.8444

34.85
/0.8097

34.81
/0.8084

35.16
/0.8315

35.16
/0.8315

35.27
/0.8325

35.21
/0.8321

35.27
/0.8333

35.25
/0.8330

35.22
/0.8316

36.92
/0.9126

36.86
/0.8800

Avg = 16 42.10
/0.9569

37.82
/0.9136

39.67
/0.9293

38.75
/0.9094

36.97
/0.9086

38.97
/0.9153

38.98
/0.9174

38.84
/0.9172

38.84
/0.9170

38.87
/0.9175

38.82
/0.9181

38.82
/0.9178

38.72
/0.9110

38.92
/0.9181

Average 38.17
/0.9166

31.52
/0.6652

32.63
/0.6919

31.68
/0.6365

32.26
/0.6971

33.98
/0.7664

34.41
/0.7855

34.57
/0.7970

34.58
/0.8067

34.69
/0.8203

34.66
/0.8258

34.68
/0.8324

34.62
/0.8394

35.21
/0.8592

3.2 DESCRIPTION AND THE RESULT TABLE ON RECONSTRUCTED CT DATASET

The reconstructed CT dataset consists of chest and head parts of 27 pediatric extended cardiac-torso
phantoms (Segars et al., 2015), which provide a highly realistic model of the human anatomy. We
extracted 60 image slices from each phantom, leading to 1620 image slices in total. The dataset was
generated in the following procedure. First, noiseless projection data were acquired in a parallel-beam
geometry with Siddon’s ray-driven algorithm (Sidky & Pan, 2008). To reduce view aliasing artifacts,
the detector quarter-offset was used during a CT scan. Second, Poisson noise was generated and
added to the noiseless projection data. Note that the mean number of detected photons was set to
2,500, 5,000, 7,500, and 10,000 to simulate 25%, 50%, 75%, and 100% of a normal dose, respectively.
Finally, the images were reconstructed by filtered backprojection (Hsieh, 2003). To preserve fine
anatomical structures in the images, the Ram-Lak filter was used as a reconstruction filter. Detailed
simulation parameters are summarized in Table 8.

Table 8: Simulation parameters
Parameters Values

Source to iso-center distance 595 mm
Source to detector distance mm

Detector cell size 0.7 mm
Detector array size 736 x 1

Data acquisition angle 360 dares
Number of projection views 736
Reconstructed pixel width 0.67 mm
Reconstructed matrix size 512x512

We divided 27 phantoms into training and test data and the phantom number for each dataset is in Fig
9. Also, We visualized the first image of Female 1 in Fig 4. We can clearly see that each dose has a
different noise level, and the noise is source independent and correlated. Finally, Table 10 shows the
details of experimental results on Reconstructed CT dataset.

Table 9: Training and test data information of Reconstructed CT dataset
Training data Test data

Female 1,3,4,5,6,7,8,9,10,11 13,14,15
Male 1,2,3,4,5,6,7,8,9,10,11 12,13

# of images 21x60 = 1260 60x5 = 300
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Figure 4: Clean, noisy and noise images from Reconstructed CT

Table 10: Experimental results on the reconstructed CT
Data
Type

Noise
Type

N2C
(UNnet) DnCNNB BM3D N2V

(UNet) gθ2 G2G1 G2G2 G2G3

Reconstructed
CT

Dose 25 48.43
/0.9609

35.50
/0.6055

42.40
/0.7575

31.57
/0.5416

34.66
/0.5759

40.49
/0.8301

46.04
/0.9579

47.47
/0.9707

Dose 50 49.07
/0.9600

38.48
/0.7440

45.14
/0.8510

34.17
/0.6931

37.70
/0.7202

43.38
/0.9063

47.78
/0.9702

48.06
/0.9705

Dose 75 49.45
/0.9591

40.09
/0.8111

46.55
/0.8929

35.90
/0.7756

39.49
/0.7919

44.96
/0.9320

48.80
/0.9744

49.20
/0.9733

Dose 100 49.63
/0.9565

41.19
/0.8513

47.48
/0.9169

37.26
/0.8118

40.75
/0.9350

46.11
/0.9492

49.19
/0.9760

48.83
/0.9718

Average 49.15
/0.9591

38.82
/0.5730

45.39
/0.8546

34.73
/0.7055

38.15
/0.7558

43.74
/0.9044

47.95
/0.9696

48.39
/0.9715

4 ANALYSIS ON REAL MICROSCOPY IMAGE

In this section, we analyze why our G2G also works well on the real microscopy image dataset
(WF) Zhang et al. (2019). although the source-dependent noise does not satisfy our assumption on
the noise. The real microscopy image dataset consists of three different types of dataset, which are
Wide-Focal(WF), Two-Photon(TP) and Con-Focal(CF), and It is generally known that the real noise
follows the Poisson-Gaussian model Zhang et al. (2019),

Zi = xi +Ni, i = 1, 2, . . . , (11)

in which Ni ∼ N (0, σ2
i ) and

σ2
i = αxi + σ2 (12)

with a scaling factor α > 0. Thus, the noise variance depends on the underlying clean source pixel
value, and α determines the level of the dependence.

In Table 7, we observe that our G2G performs well for WF compared to other baselines, hence, we
visualize clean, noisy, noise images from each set and examine if there are any notable difference
in the noise distributions. Figure 5 shows two image samples (Avg= 1 cases) from the Wide-Focal
(WF) set. The noise images are obtained by subtracting the clean images from its noisy versions.
Note even though the intensities in the source images change significantly among pixels (particularly
for the top image), the noise images do not show any source-dependent patterns. Hence, we can
deduce that α may be small for the WF images. Also, we could see that there is a correlated pattern
in the noise. We belive that these back the good performance of G2G for the WF set.

Figure 6, on the other hand, visualizes an image from TP set for Avg= {1, 16} cases. Comparing
with Figure 5, we can clearly see the source-dependent patterns in the noise images, particularly
severely for the Avg = 1 case. Also, CP set showed the similar source-dependent noise patterns.
This source-dependent noise is not in our assumption so we did not apply GAN2GAN to TP and CP.
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Figure 5: Clean, noisy and noise images from the WF set. (Best viewed in PDF.)
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Figure 6: Clean, noisy and noise images from the TP set. (Best viewed in PDF.)

However, we want to stress out that the source independent real noise also exists and GAN2GAN
shows the best result compared to any other baselines.
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5 VISUALIZATIONS

5.1 VISUALIZATION OF Z̃

Figure 7 and 8 visualize the simulated noisy image pairs (Ẑ1, Ẑ2), generated from our generative
model, for synthetic and real noise cases, respectively. A close examination shows that the images are
not simple copies of the original noisy image Z but are successfully synthesized with the independent
noise processes.
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Figure 7: Visualizations of synthesized synthetic noisy image pairs.
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Figure 8: Visualizations of synthesized real noise image pairs.

5.2 VISUALIZATION OF DENOISED IMAGES ON BSD68

Figure 9 visualizes the denoising results of a BSD68 image for different types of noise. Note the clear
difference in the noise characteristics for Gaussian, mixture, and correlated noises. The visualization
of G2G3 certiainly seems better than N2V and BM3D, in line with the PSNR results. DnCNN-B and
Noise2Noise use more information than G2G3, but the visualzation as well as the PSNR of G2G3 are
comparable to those of the two methods.
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PSNR : 29.25 PSNR : 29.73PSNR : 23.22 PSNR : 23.09 PSNR : 30.09PSNR : 29.44

PSNR : 26.70 PSNR : 27.37PSNR : 22.28 PSNR : 25.52 PSNR : 27.76PSNR : 27.14

Figure 9: Denoising results on the synthetic noise images.
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5.3 ADDITIONAL VISUALIZATIONS ON THE REAL MICROSCOPY IMAGES

We also visualize additional denoised images of WF images in Figure 10. We can see that the
denoising results of the baselines for WF (Avg = 1) are very noisy, but G2G3 shows relatively clean
denoising results than others.
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Figure 10: Denoising results on the real noisy microscopy images.
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5.4 ADDITIONAL VISUALIZATIONS ON THE RECONSTRUCTED CT

We visualize the denoising result of a Reconstructed CT image in Figure 11. We observed that BM3D
and N2V shows a stil noisy result on this image but G2G3 shows a clearly denoised result.
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Figure 11: Denoising results on Reconstructed CT images.

6 EXPERIMENTAL RESULTS OF G2G3 WITH (Ẑ
(i)
j1 , X̂φj−1

(Z(i)))

Table 11: Experimental results for Reviewer 3’s Q.(2).

PSNR / SSIM
G2G3

(Ẑ
(i)
j1 , X̂φj−1

(Z(i))) (Ẑ
(i)
j1 , Ẑ

(i)
j2 )

Gaussian (σ = 25) 29.02 / 0.8153 28.96 / 0.8080
Mixture (s = 30) 30.70 / 0.8621 30.49 / 0.8538

Correlated (σ = 25) 24.04 / 0.8673 28.00 / 0.8447
WF (Avg = 1) 16.24 / 0.4490 34.57 / 0.7970

Medical (Dose = 25) 18.52 / 0.7397 47.47 / 0.9707

We did the experiments on G2G3 with (Ẑ
(i)
j1 , X̂φj−1(Z

(i))) and Table 11 shows the experimental
results. From the table, we observe the suggested approach (left column) can in fact achieve
slightly improved results for synthetic Gaussian and Mixture noise. However, we observe that the
performances of the approach for the Correlated and WF/Medical datasets deteriorate significantly
compared to ours.
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