
A Discussions on EMMA Loss500

EMMA may bear similarities to Lipschitz-margin training (LMT) [48], which adds
p
2✏K to all non-501

groundtruth logits and K is the global Lipschitz constant of F . However, here are two fundamental502

differences that distinguish EMMA. First, instead of employing the square-root bound, EMMA503

directly utilizes the Lipschitz constant for each margin, i.e. Kyi, which provides a tighter bound.504

Second, the robust radius used in EMMA is ✏̃ instead of the radius ✏ used in testing. By the definition505

of EMMA, 0  ✏̃  ✏ and ✏̃ is 0 if the model is not predicting the input correct. ✏̃ grows as the model506

becomes more robust at the corresponding input. As a result, when the model is not sufficiently507

robust at the input, EMMA uses ✏̃ < ✏ and imposes a milder robust regularization. On the other hand,508

LMT always adds
p
2✏K to all non-groundtruth logits even before the model is capable of predicting509

the label correct.510

The dynamic margin used in EMMA loss is important. If using a fixed margin, the loss function turns511

out to be:512

`fixed = � log
fy(x)P

i fi(x) + ✏Kyi

The fixed margin loss `Fixed penalties the margin Lipschitz between the ground truth class and all513

other classes. Therefore, this loss function imposes a stronger regularization on the Lipschitz constant514

of the model than EMMA loss, and limits the model capacity more. We find that models trained with515

the fixed margin loss require weaker data augmentation or smaller training ✏ to avoid underfitting.516

However, this will make the model robust overfitting. The gap between validation clean accuracy and517

validation VRA is increased for the fixed margin loss and the validation VRA is lower than models518

trained with the dynamic margin loss, i.e., EMMA loss.519

B Implementation Details for Table 1520

B.1 Training details521

Dataset details The input resolution is 32 for CIFAR10/100, 64 for Tiny-ImageNet and 224 for522

ImageNet respectively. We apply the following data augmentation to CIFAR datasets: random523

cropping, RandAugment [8], random horizontal flipping. For Tiny-ImageNet, we find this dataset is524

easy to overfit and add an extra Cutout [10] augmentation. For data augmentation hyper-parameters,525

we use the default PyTorch setting.526

Platform details Our experiments were conducted on an 8-GPU (Nvidia A100) machine with 64527

CPUs (Intel Xeon Gold 6248R). Each experiment on CIFAR10/100 and Tiny-ImageNet takes one528

GPU and each experiment on ImageNet takes 8 GPUs. Our implementation is based on PyTorch [37].529

Training details On the first 3 datasets, all models are trained with the NAdam [12] with the530

Lookahead optimizer wrapper [60] with a batch size of 256 and a learning rate of 10�3 for 800531

epochs. We use a cosine learning rate decay [33] with linear warmup [18] in the first 20 epochs. On532

ImageNet, we only change the batch size to 1024 and training epochs to 400.533

During training, we schedule the training ✏ to ramp up from small values and slightly overshoot the
test epsilon. Let the total number of epochs be T and the test certification radius be ✏, we use

✏train(t) =

✓
min(

2t

T
, 1)⇥ 1.9 + 0.1

◆
✏, ✏ = 36/255.

at epoch t. As a result, ✏train(t) begins at 0.1✏ and increases linearly to 2✏ before arriving halfway534

through the training. Later, ✏train remains 2✏ to the end.535

B.2 Model architecture details536

Model stem is used to convert the input images into feature maps. On CIFAR10/100, we use a537

convolution with kernel size 5, stride 2, and padding 2, followed by a MinMax activation as the stem.538

On Tiny ImageNet, we use a convolution with kernel size 7, stride 4, and padding 3, followed by539

a MinMax activation as the stem. On ImageNet, we follow the ViT-like patching [11] and use a540
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Table 3: Clean accuracy and VRA performance (%) of a ConvNet and a LiResNet on three datasets
with different loss functions

loss TRADES EMMA

Clean (%) VRA (%) Clean (%) VRA (%)

CIFAR-10 (✏ = 36/255, 10 classes)

ConvNet 71.7 58.8 72.5 59.2
LiResNet 79.6 66.2 80.4 66.3

CIFAR-100 (✏ = 36/255, 100 classes)

ConvNet 53.4 34.0 50.6 35.0
LiResNet 57.8 37.3 54.2 37.8

Tiny-ImageNet (✏ = 36/255, 200 classes)

ConvNet 42.2 26.6 40.0 27.4
LiResNet 45.8 28.8 43.6 30.0

convolution with kernel size 14, stride 14, and padding 0, followed by a MinMax activation as the541

stem. Thus the output feature map size from the stem layer is 16⇥ 16 for all 4 datasets. The number542

of filters used in the convolution is equal to the model width W .543

Model backbone is used to transform the feature maps. It is a stack of L LiResNet blocks followed by
the MinMax activation, i.e., (LiResNet block ! MinMax)⇥L. We keep the feature map resolutions
and the number of channels constant in the model backbone. We find some tricks in normalization-
free residual network studies [40, 59] can improve the performance of our LiResNet as our method
is also a normalization-free residual network. Specifically, we add an affine layer � that applies
channel-wise learnable multipliers to each channel of the feature map (similar to the affine layer of
batch normalization) and a scaler of 1/

p
L to the residual branch where L is the number of blocks:

y = x+
1p
L
�Conv(x)

Model neck is used to convert the feature maps into a feature vector. In our implementation, the544

model neck is a 2 layer network. The first layer is a convolution layer with kernel size 4, stride 4, and545

padding 0, followed by a MinMax activation. The number of input channels is the model width W546

and the number of output channels is 2W . Then we reshape the feature map tensor into a vector. The547

second layer is a dense layer with output dimension d where d = 2048 for the three small datasets548

(CIFAR10/100 and Tiny-ImageNet) and d = 4096 for ImageNet.549

Model head is used to make classification predictions. We apply the last layer normalization (LLN)550

proposed by [42] to the head.551

B.3 Metric details552

We report the clean accuracy, i.e., the accuracy without verification on non-adversarial inputs and553

the verified-robust accuracy (VRA), i.e., the fraction of points that are both correctly classified and554

certified as robust. Our results are averaged over 5 runs for CIFAR10/100 and TinyImageNet and 3555

runs for ImageNet.556

C Details for Table 2a557

In Table 2a, we use an L12W256 configuration, i.e., the backbone has 12 blocks and the number of558

filters is 256. For ConvNet, the only difference is that the LiResNet block is replaced by a convolution559

of kernel 3, stride 1, and padding 1. All other settings are the same. Table 3 is a more detailed version560

of Table 2a with the clean accuracy.561

14



Table 4: Clean accuracy and VRA (%) performance on CIFAR-10/100 with different architectures (L
is the number of blocks in the model backbone). We use EMMA loss for Gloro training. ⇥ stands for
not converging at the end.

Dataset L ConvNet ResNet LiResNet
Clean(%) VRA(%) Clean(%) VRA(%) Clean(%) VRA(%)

6 77.9 64.0 74.2 60.3 79.9 65.5
CIFAR-10 12 72.5 59.2 74.0 60.0 80.4 66.3

18 ⇥ ⇥ 73.9 60.1 81.0 66.6

6 51.8 36.5 48.4 33.5 53.6 37.2
CIFAR-100 12 50.6 35.0 48.1 33.5 54.2 37.8

18 ⇥ ⇥ 48.2 33.6 54.3 38.0

Table 5: Clean accuracy and VRA (%) performance of LiResNet of different depths (L is the number
of blocks in the model backbone).

L CIFAR10 CIFAR100 Tiny-ImageNet
Clean(%) VRA(%) Clean(%) VRA(%) Clean(%) VRA(%)

6 79.9 65.5 53.6 37.2 43.1 29.8
12 80.4 66.3 54.2 37.8 43.6 30.3
18 81.0 66.6 54.3 38.0 43.9 30.6
24 81.2 66.8 55.0 38.2 44.2 30.7
30 81.3 66.9 54.9 38.4 44.2 30.6
36 81.2 66.9 55.0 38.3 44.3 30.4

D Details for Table 2b562

In Table 2b, we use the configuration of W256, i.e., the number of channels in the backbone is
256. The only difference between conventional ResNet and LiResNet is the block. The block for
conventional ResNet is

y = x+ �Conv(MinMax(Conv(x)))

where � is the affine layer. We find use zeros to initialize � works the best for conventional ResNet.563

The number of input and output channels of the two convolution layers are the same as that of the564

LiResNet block. Table 4 is a more detailed version of Table 2b with clean accuracy.565

E Details for Figure 1566

We make LiResNet further deeper and study how network depth influences the performance on567

CIFAR-10/100 and Tiny-ImageNet. Table 5 shows the clean accuracy and VRA of LiResNet (with568

EMMA loss) on three datasets. All models use a W256 configuration, i.e., the number of convolutional569

channels is 256. On CIFAR-10/100, the VRA performance of the LiResNet generally improves with570

depth. On Tiny-ImageNet, the performance remains with the increase of depth.571

Figure 1 compares the VRA performance of LiResNet with some existing method for verification572

robustness on CIFAR-100 (i.e., the 5th of Table 5). The numbers of these methods are taken from573

their best-reported configurations. The VRA performance of these methods degrades at certain depths,574

limiting the maximum model capacity of the methods.575

F Number of Classes vs. VRA576

Despite the fact that EMMA loss improves the ability of GloRo Nets to handle learning problems577

with many classes, datasets with a large number of classes still stand out as particularly difficult for578

certified training. In principle, a data distribution with less classes is not guaranteed to have more579
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Figure 4: Plot of LiResNet performance on subsets of ImageNet with different number of classes
with ✏ = 1

separable features than more classes—indeed, the state-of-the-art clean accuracy for both CIFAR-10580

and CIFAR-100 are comfortably in the high 90’s despite the large difference in the number of classes.581

However, training a certifiably robust model with many classes appears more difficult in practice582

(as observed, e.g., by the large performance gap between CIFAR-10 and CIFAR-100). To test this583

observation further, we provide an empirical study on various class-subsets of ImageNet to study the584

relationship between the number of classes and VRA.585

We randomly shuffle the 1000 classes of ImageNet and select the first 100 · k classes, where k 2 [10],586

to build a series of subsets for training and testing. For each value of k, we train a GloRo LiResNet587

with EMMA loss (✏ = 1) and report the clean accuracy and VRA (at ✏ = 1) on the test set. For588

reference, we also train a standard (i.e., not robust) LiResNet with Cross Entropy and report its clean589

accuracy on the test set. The final results are shown in Figure 4 with additional details in Appendix F.590

Compared to the clean accuracy of a standard model, increasing the number of classes leads to a591

steeper drop in both the VRA and the clean accuracy of the robustly trained models. Specifically,592

while the performance of the standard model differs only by 10% between a 100-class subset and the593

full ImageNet, the performance of the GloroNet (both clean accuracy and VRA), drops by 30%.594

These results add weight to the observation that, even when mitigated by EMMA loss, large numbers595

of classes present a particular challenge for certifiably robust learning. This may arise from the need596

to learn a 2✏-margin between all regions with different labels, which becomes progressively more597

challenging as boundaries between a growing number of classes become increasingly difficult to push598

off the data manifold.599

G Going Wider with LiResNet600

We study how network width (i.e., the number of channels in the model backbone) can influence601

the performance of LiResNet on CIFAR-10, CIFAR-100 and Tiny-ImageNet. Table 6 shows the602

results. All models use a L12 configuration. Unlike the network depth, increasing the width can603

stably improve the model performance within a certain range.604

H Extra data from DDPM605

We use codes from the improved DDPM [35] to train generative models on CIFAR10, CIFAR100606

and Tiny-ImageNet. The models are only trained on the training set of each dataset and no external607

data is used. We use the recommended hyper-parameters from [35] and the models are conditional,608

i.e., generated samples are with labels. We generate 1 million samples for each dataset.609
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Table 6: VRA (%) of LiResNet of different widths (W).

W CIFAR-10 CIFAR-100 Tiny-ImageNet

64 64.6 36.5 28.7
128 65.6 37.5 29.8
256 66.3 37.8 30.0
512 66.9 38.3 30.6

During the training of Gloro Net, we sample 256 samples from the original dataset and 256 samples610

from the generated data for each batch. Due to the large total number of generated data, we do not611

need strong data augmentation on the generated data. Compared to the original dataset, we do not612

use the RandAugment augmentation for the generated data. All other settings are the same for the613

original dataset and the generated data.614

I Extend to Transformers615

Transformers are built with self-attention blocks (SA) and feed-forward layers (FFN). Between the616

blocks, layer normalization layers are applied to make the training of transformers stable.617

To make transformers compatible for Lipschitz based robustness certification, layer normalization618

must be removed from the model since it is not Lipschitz. In fact, no existing Lipschitz based methods619

for robustness certification use any form of normalization layers. However, normalization is essential620

for transformers. It will lead to a great performance drop if normalization layers are removed from621

transformers [56].622

The SA operation does not have Lipschitz continuity, thus cannot be applied to Lipschitz based623

robustness certification. Several studies propose alternatives of SA to make this operation Lipschitz,624

to name a few: OLSA [53] and L2-MHA [25]. Another idea is to use spatial MLP [46] that performs625

static “attention” weights.626

In terms of FFN, it is a residual block whose residual branch is an MLP: y = x+W�(Nx) where627

W and N are the weights of two linear layers and � is the activation. It is Lipschitz and can be628

applied to Lipschitz based robustness certification. However, according to the theorem of this paper,629

the Lipschitz estimation of FFN is very loose, thus not a perfect building block for Lipschitz based630

robustness certification. We propose to use a single layer residual branch, y = �(x+Wx), as the631

alternative, which is aligned with the motivation of this paper.632

We conduct experiments on CIFAR10 and CIFAR100 to see the possibility to use transformers for633

Lipschitz based robustness certification. For the SA block, we use either OLSA or spatial MLP. For634

the FFN layer, we use either original FFN, or the single layer FFN, denoted as LiFFN. We use the635

L12W256 configuration and Table 7 shows the results.636

Table 7: VRA (%) of different variants of transformers.
dataset SA FFN VRA(%)

Spatial MLP LiFFN 63.3
CIFAR10 Spatial MLP FFN 62.6

OLSA FFN 56.6

Spatial MLP LiFFN 36.5
CIFAR100 Spatial MLP FFN 33.7

OLSA FFN 28.4

As shown in Table 7, all variants of transformers performs significantly worse than LiResNet of the637

same configuration. The combination of “Spatial MLP” and “LiFFN” performs the best among all638

variants of transformers. This architecture is also most aligned with the motivation of this paper: use639

linear operations for the weights to obtain tight Lipschitz constant estimation.640
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To summarise, transformers can be applied to Lipschitz based robustness certification, but the641

performance is not satisfied. The reasons are that layer normalization layers can not be used642

and the SA and FFN blocks cannot obtain a tight Lipschitz constant estimation. Some studies643

apply transformers to non-Lipschitz based methods, such as randomized smoothing [52]. However,644

stochastic smoothing methods are very slow compared to Lipschitz-based methods.645

J Broader Impact646

The advancements detailed in this research could have profound societal implications, especially647

in applications where robust and reliable AI systems are paramount. By introducing the Linear648

ResNet (LiResNet) architecture and the Efficient Margin MAximization (EMMA) loss function, the649

authors have significantly increased the robustness of AI models against adversarial attacks. This650

progress marks a critical step towards ensuring the trustworthiness of AI systems, which is crucial651

in high-stakes areas such as healthcare, finance, and autonomous vehicles. Furthermore, the ability652

to scale up fast deterministic robustness guarantees to ImageNet – a dataset more reflective of the653

complexity and diversity of real-world images –indicates that this approach to robust learning can be654

applied to practical, real-world applications. This is a significant stride towards making AI systems655

more secure, reliable, and beneficial for society at large.656

Nevertheless, while these advancements are promising, they also emphasize the need for ongoing657

vigilance and research in the face of increasingly sophisticated adversarial attacks. Ensuring that658

AI systems are robust and trustworthy will remain a critical task as these technologies continue to659

permeate society.660
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