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ABSTRACT

We introduce Transfusion, a recipe for training a multi-modal model over discrete
and continuous data. Transfusion combines the language modeling loss function
(next token prediction) with diffusion to train a single transformer over mixed-
modality sequences. We pretrain multiple Transfusion models up to 7B parameters
from scratch on a mixture of text and image data, establishing scaling laws with
respect to a variety of uni- and cross-modal benchmarks. Our experiments show
that Transfusion scales significantly better than quantizing images and training a
language model over discrete image tokens. By introducing modality-specific en-
coding and decoding layers, we can further improve the performance of Transfusion
models, and even compress each image to just 16 patches. We further demonstrate
that scaling our Transfusion recipe to 7B parameters and 2T multi-modal tokens
produces a model that can generate images and text on a par with similar scale
diffusion models and language models, reaping the benefits of both worlds.

1 INTRODUCTION

Multi-modal generative models need to be able to perceive, process, and produce both discrete
elements (such as text or code) and continuous elements (e.g. image, audio, and video data). While
language models trained on the next token prediction objective dominate discrete modalities (OpenAI
et al., 2024; Dubey et al., 2024), diffusion models (Ho et al., 2020; Rombach et al., 2022a) and their
generalizations (Lipman et al., 2022) are the state of the art for generating continuous modalities (Dai
et al., 2023; Esser et al., 2024b; Bar-Tal et al., 2024). Many efforts have been made to combine these
approaches, including extending a language model to use a diffusion model as a tool, either explicitly
(Liu et al., 2023) or by grafting a pretrained diffusion model onto the language model (Dong et al.,
2023; Koh et al., 2024). Alternatively, one can quantize the continuous modalities (Van Den Oord
et al., 2017) and train a standard language model over discrete tokens (Ramesh et al., 2021; Yu et al.,
2022; 2023), simplifying the model’s architecture at the cost of losing information. In this work, we
show it is possible to fully integrate both modalities, with no information loss, by training a single
model to both predict discrete text tokens and diffuse continuous images.

We introduce Transfusion, a recipe for training a model that can seamlessly generate discrete and
continuous modalities. We demonstrate Transfusion by pretraining a transformer model on 50% text
and 50% image data using a different objective for each modality: next token prediction for text and
diffusion for images. The model is exposed to both modalities and loss functions at each training
step. Standard embedding layers convert text tokens to vectors, while patchification layers represent
each image as a sequence of patch vectors. We apply causal attention for text tokens and bidirectional
attention for image patches. For inference, we introduce a decoding algorithm that combines the
standard practices of text generation from language models and image generation from diffusion
models. Figure 1 illustrates Transfusion.

In a controlled comparison with Chameleon’s discretization approach (Chameleon Team, 2024),
we show that Transfusion models scale better in every combination of modalities. In text-to-image
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Figure 1: A high-level illustration of Transfusion. A single transformer perceives, processes, and
produces data of every modality. Discrete (text) tokens are processed autoregressively and trained on
the next token prediction objective. Continuous (image) vectors are processed together in parallel
and trained on the diffusion objective. Marker BOI and EOI tokens separate the modalities.

generation, we find that Transfusion exceeds the Chameleon approach at less than a third of the
compute, as measured by both FID and CLIP scores. When controlling for FLOPs, Transfusion
achieves approximately 2× lower FID scores than Chameleon models. We observe a similar trend in
image-to-text generation, where Transfusion matches Chameleon at 21.8% of the FLOPs. Surprisingly,
Transfusion is also more efficient at learning text-to-text prediction, achieving perplexity parity on
text tasks around 50% to 60% of Chameleon’s FLOPs.

Ablation experiments reveal critical components and potential improvements for Transfusion. We
observe that the intra-image bidirectional attention is important, and that replacing it with causal
attention hurts text-to-image generation. We also find that adding U-Net down and up blocks to
encode and decode images enables Transfusion to compress larger image patches with relatively
small loss to performance, potentially decreasing the serving costs by up to 64×.

Finally, we demonstrate that Transfusion can generate images at similar quality to other diffusion
models. We train from scratch a 7B transformer enhanced with U-Net down/up layers (0.27B
parameters) over 2T tokens: 1T text tokens, and approximately 5 epochs of 692M images and their
captions, amounting to another 1T patches/tokens. Figure 7 shows some generated images sampled
from the model. On the GenEval (Ghosh et al., 2023) benchmark, our model outperforms other
popular models such as DALL-E 2 and SDXL; unlike those image generation models, it can generate
text, reaching the same level of performance as Llama 1 on text benchmarks. Our experiments thus
show that Transfusion is a promising approach for training truly multi-modal models.

2 BACKGROUND

Transfusion is a single model trained with two objectives: language modeling and diffusion. Each of
these objectives represents the state of the art in discrete and continuous data modeling, respectively.
This section briefly defines these objectives, as well as background on latent image representations.

2.1 LANGUAGE MODELING

Given a sequence of discrete tokens y = y1, ..., yn from a closed vocabulary V , a language model
predicts the probability of the sequence P (y). Standard language models decompose P (y) into a
product of conditional probabilities

∏n
i=1 Pθ(yi|y<i). This creates an autoregressive classification

task, where the probability distribution of each token yi is predicted conditioned on the prefix of a
sequence y<i using a single distribution Pθ parameterized by θ. The model can be optimized by
minimizing the cross-entropy between Pθ and the empirical distribution of the data, yielding the
standard next-token prediction objective, colloquially referred to as LM loss:

LLM = Ey

[
− 1

n

n∑
i=1

logPθ(yi|y<i)
]

(1)

Once trained, language models can also be used to generate text by sampling token by token from the
model distribution Pθ, typically using temperature and top-p truncation.

2.2 DIFFUSION

Denoising diffusion probabilistic models (a.k.a. DDPM or diffusion models) operate on the principle
of learning to reverse a gradual noise-addition process (Ho et al., 2020). Unlike language models that
typically work with discrete tokens (y), diffusion models operate over continuous vectors (x), making
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Figure 2: Generated images from a 7B Transfusion trained on 2T multi-modal tokens. Captions are:
(a) A bread, an apple, and a knife on a table. (b) A corgi. (c) Three spheres made of glass falling into
ocean. Water is splashing. Sun is setting. (d) A wall in a royal castle. There are two paintings on
the wall. The one on the left a detailed oil painting of the royal raccoon king. The one on the right a
detailed oil painting of the royal raccoon queen. (e) A kangaroo holding a beer, wearing ski goggles
and passionately singing silly songs. (f) “Transfusion" is written on the blackboard. (g) an egg and a
bird made of wheat bread. (h) A cloud in the shape of two bunnies playing with a ball. The ball is
made of clouds too.

them particularly suited for tasks involving continuous data like images. The diffusion framework
involves two processes: a forward process that describes how the original data is turned into noise,
and a reverse process of denoising that the model learns to perform.

Forward Process From a mathematical perspective, the forward process defines how the noised data
(which serves as the model input) is created. Given a data point x0, Ho et al. (2020) define a Markov
chain that gradually adds Gaussian noise over T steps, creating a sequence of increasingly noisy ver-
sions x1,x2, ...,xT . Each step of this process is defined by q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI),

where βt increases over time according to a predefined noise schedule (see below). This process can
be reparameterized in a way that allows us to directly sample xt from x0 using a single sample of
Gaussian noise ϵ ∼ N (0, I):

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (2)

Here, ᾱt =
∏t

s=1(1− βs), providing a useful abstraction over the original Markov chain. In fact,
both the training objective and the noise scheduler are eventually expressed (and implemented) in
these terms.

Reverse Process The diffusion model is trained to perform the reverse process pθ(xt−1|xt),
learning to denoise the data step by step. There are several ways to do so; in this work, we follow
the approach of Ho et al. (2020) and model the Gaussian noise ϵ in Equation 2 as a proxy for the
cumulative noise at step t. Specifically, a model ϵθ(·) with parameters θ is trained to estimate the
noise ϵ given the noised data xt and timestep t. In practice, the model often conditions on additional
contextual information c, such as a caption when generating an image. The parameters of the noise
prediction model are thus optimized by minimizing the mean squared error loss:

LDDPM = Ex0,t,ϵ

[
||ϵ− ϵθ(xt, t, c)||2

]
(3)

Noise Schedule When creating a noised example xt (Equation 2), ᾱt determines the variance of the
noise for timestep t. In this work, we adopt the commonly used cosine scheduler Nichol & Dhariwal
(2021), which largely follows

√
ᾱt ≈ cos( t

T · π
2 ) with some adjustments.
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Figure 3: We convert images to and from
latent representations using a pretrained
VAE, and then into patch representations
with either a simple linear layer or U-Net
down blocks.
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Figure 4: Expanding on the causal mask, Trans-
fusion allows patches of the same image to con-
dition on each other.

Inference Decoding is done iteratively, pealing away some of the noise at each step. Starting
with pure Gaussian noise at xT , the model ϵθ(xt, t, c) predicts the noise accumulated at timestep
t. The predicted noise is then scaled according to the noise schedule, and the proportional amount
of predicted noise is removed from xt to produce xt−1. In practice, inference is done over fewer
timesteps than training. Classifier-free guidance (CFG) (Ho & Salimans, 2022) is often used to
improve generation by contrasting the prediction of the model conditioned on the context c with the
unconditioned prediction, at the cost of doubling the computation.

2.3 LATENT IMAGE REPRESENTATION

Early diffusion models worked directly in pixel space (Ho et al., 2020), but this proved computation-
ally expensive. Variational autoencoders (VAEs) (Kingma & Welling, 2013) can save compute by
encoding images into a lower-dimensional latent space. Implemented as deep CNNs, modern VAEs
are trained on a combination of reconstruction and regularization losses (Esser et al., 2021), allowing
downstream models like latent diffusion models (LDMs) (Rombach et al., 2022a) to operate efficiently
on compact image patch embeddings; e.g. represent every 8×8 pixel patch as an 8-dimensional
vector. For autoregressive language modeling approaches (Ramesh et al., 2021; Yu et al., 2022),
images must be discretized. Discrete autoencoders, such as vector-quantized VAEs (VQ-VAE) (Van
Den Oord et al., 2017), achieve this by introducing a quantization layer (and related regularization
losses) that maps continuous latent embeddings to discrete tokens.

3 TRANSFUSION

Transfusion is a method for training a single unified model to understand and generate both discrete
and continuous modalities. Our main innovation is demonstrating that we can use separate losses
for different modalities – language modeling for text, diffusion for images – over shared data and
parameters. Figure 1 illustrates Transfusion.

Data Representation We experiment with data spanning two modalities: discrete text and continu-
ous images. Each text string is tokenized into a sequence of discrete tokens from a fixed vocabulary,
where each token is represented as an integer. Each image is encoded as latent patches using a
VAE (see §2.3), where each patch is represented as a continuous vector; the patches are sequenced
left-to-right top-to-bottom to create a sequence of patch vectors from each image. For mixed-modal
examples, we surround each image sequence with special beginning of image (BOI) and end of image
(EOI) tokens before inserting it to the text sequence; thus, we arrive at a single sequence potentially
containing both discrete elements (integers representing text tokens) and continuous elements (vectors
representing image patches).
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Model Architecture The vast majority of the model’s parameters belong to a single transformer,
which processes every sequence, regardless of modality. The transformer takes a sequence of high-
dimensional vectors in Rd as input, and produces similar vectors as output. To convert our data into
this space, we use lightweight modality-specific components with unshared parameters. For text,
these are the embedding matrices, converting each input integer to vector space and each output vector
into a discrete distribution over the vocabulary. For images, we experiment with two alternatives for
compressing local windows of k × k patch vectors into a single transformer vector (and vice versa):
(1) a simple linear layer, and (2) up and down blocks of a U-Net (Nichol & Dhariwal, 2021; Saharia
et al., 2022). Figure 3 illustrates the overall architecture.

Transfusion Attention Language models typically use causal masking to efficiently compute
the loss and gradients over an entire sequence in a single forward-backward pass without leaking
information from future tokens. While text is naturally sequential, images are not, and are usually
modeled with unrestricted (bidirectional) attention. Transfusion combines both attention patterns
by applying causal attention to every element in the sequence, and bidirectional attention within the
elements of each individual image. This allows every image patch to attend to every other patch
within the same image, but only attend to text or patches of other images that appeared previously in
the sequence. We find that enabling intra-image attention significantly boosts model performance
(see §4.3). Figure 4 shows an example Transfusion attention mask.

Training Objective To train our model, we apply the language modeling objective LLM to pre-
dictions of text tokens and the diffusion objective LDDPM to predictions of image patches. LM
loss is computed per token, while diffusion loss is computed per image, which may span multiple
elements (image patches) in the sequence. Specifically, we add noise ϵ to each input latent image
x0 according to the diffusion process to produce xt before patchification, and then compute the
image-level diffusion loss.1 We combine the two losses by simply adding the losses computed over
each modality with a balancing coefficient λ:

LTransfusion = LLM + λ · LDDPM (4)

This formulation is a specific instantiation of a broader idea: combining a discrete distribution loss
with a continuous distribution loss to optimize the same model. We leave further exploration of this
space, such as replacing diffusion with flow matching (Lipman et al., 2022)), to future work.

Inference Reflecting the training objective, our decoding algorithm also switches between two
modes: LM and diffusion. In LM mode, we follow the standard practice of sampling token by token
from the predicted distribution. When we sample a BOI token, the decoding algorithm switches
to diffusion mode, where we follow the standard procedure of decoding from diffusion models.
Specifically, we append a pure noise xT in the form of n image patches to the input sequence
(depending on the desired image size), and denoise over T steps. At each step t, we take the noise
prediction and use it to produce xt−1, which then overwrites xt in the sequence; i.e. the model
always conditions on the last timestep of the noised image and cannot attend to previous timesteps.
Once the diffusion process has ended, we append an EOI token to the predicted image, and switch
back to LM mode. This algorithm enables the generation of any mixture of text and image modalities.

4 EXPERIMENTS

We demonstrate in a series of controlled experiments that Transfusion is a viable, scalable method for
training a unified multi-modal model. The setup of our experiments is detailed in Appendix B.1.

4.1 SETUP

Evaluation We evaluate model performance on a collection of standard uni-modal and cross-modal
benchmarks (Table 7 in Appendix). For text-to-text, we measure perplexity on 20M held-out tokens
from Wikipedia and the C4 corpus (Raffel et al., 2019), as well as accuracy on the pretraining
evaluation suite of Llama 2 (Touvron et al., 2023b). For text-to-image, we use the MS-COCO
benchmark (Lin et al., 2014), where we generate images on randomly selected 30k prompts from
validation set and measure their photo-realism using zero-shot Frechet Inception Distance (FID)

1Ergo, downstream tokens condition on noisy images during training. See §B.2 for further discussion.
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(Heusel et al., 2017) as well as their alignment with the prompts using CLIP score (Radford et al.,
2021).2 We also evaluate the model’s ability to generate image captions; we report CIDEr (Vedantam
et al., 2015) scores on the Karpathy test split of MS-COCO (Lin et al., 2014). These evaluations
provide signal for investigation of scaling laws (§4.2) and ablations (§4.3). To compare with recent
work in diffusion models, we evaluate our largest scale model (§4.4) also on GenEval (Ghosh et al.,
2023), a benchmark that examines a model’s ability to generate an accurate depiction of the prompt.

Baseline At the time of writing, the prominent open-science method for training a single mixed-
modal model that can generate both text and images is to quantize images into discrete tokens, and
then model the entire token sequence with a standard language model (Ramesh et al., 2021; Yu
et al., 2022; 2023). We follow the recipe of Chameleon (Chameleon Team, 2024) to train a family of
data- and compute-controlled baseline models, which we can directly compare to our Transfusion
models. The key difference between Chameleon and Transfusion is that while Chameleon discretizes
images and processes them as tokens, Transfusion keeps images in continuous space, removing the
quantization information bottleneck. To further minimize any confounding variables, we train the
VAEs for Chameleon and Transfusion using exactly the same data, compute, and architecture, with
the only differentiator being the quantization layer and codebook loss of Chameleon’s VQ-VAE (see
details below). Chameleon also deviates from the Llama transformer architecture, adding query-key
normalization, post-normalization, denominator loss, and a lower learning rate of 1e-4 to manage
training instability, which incur an efficiency cost (see §4.2).3

Data For almost all of our experiments, we sample 0.5T tokens (patches) from two datasets at a 1:1
token ratio. For text, we use the Llama 2 tokenizer and corpus (Touvron et al., 2023b) of 2T tokens.
For images, we use a collection of 380M licensed Shutterstock images and captions. Each image is
center-cropped and resized to produce a 256×256 pixel image. We randomly order the image and
captions, ordering the caption first 80% of the time.

In one experiment (4.4) we scale up the total training data to 2T tokens (1T text tokens and about
3.5B caption-image pairs at 256 patches per image). To diversify, we add 220M publicly available
images with captions, prefiltered to not contain people. To rebalance the distribution, we upsample
80M Shutterstock images containing people. We also add data from Conceptual 12M (CC12M)
(Changpinyo et al., 2021), reaching a total mixture of 692M image-caption pairs per epoch. Finally,
we upweight the portion of high-aesthetic images in the last 1% of the training schedule.

Latent Image Representation We train a 86M parameter VAE following Esser et al. (2021).
We use a CNN encoder and decoder, and latent dimension 8. The training objective is combines
reconstruction and regularization losses ( Appendix C) For VQ-VAE training, we follow the same
setup described for VAE training, except we replace LKL with the standard codebook commitment
loss with β = 0.25 (Van Den Oord et al., 2017). We use a codebook of 16,384 token types.

Model Configuration To investigate scaling trends, we train models at five different sizes – 0.16B,
0.37B, 0.76B, 1.4B, and 7B parameters – following the standard settings from Llama (Touvron et al.,
2023a) (Table 8 in Appendix). In configurations that use linear patch encoding (§4.2 and §4.3), the
number of additional parameters is insignificant, accounting for fewer than 0.5% of total parameters
in every configuration. When using U-Net patch encoding (§4.3 and §4.4), these parameters add
up to 0.27B additional parameters across all configurations; while this is a substantial addition of
parameters to smaller models, these layers amount to only a 3.8% increase of the 7B configuration,
almost identical to the number of parameters in the embedding layers.

Optimization We use AdamW (β1 =0.9, β2 =0.95, ϵ =1e-8) with a learning rate of 3e-4, warmed
up for 4000 steps and decaying to 1.5e-5 using a cosine scheduler. We train on sequences of 4096
tokens in batches of 2M tokens for 250k steps, reaching 0.5T tokens in total. In our large-scale
experiment (§4.4), we train with a batch size of 4M tokens over 500k steps, totalling 2T tokens. We
set the λ coefficient in the Transfusion objective (Equation 4) to 5 following preliminary experiments.

Inference In text mode, we use greedy decoding for generating text. Ranked classification is used
for the Llama evaluation suite. For image generation, we follow the standard of 250 diffusion steps
(the model is trained on 1,000 timesteps). We follow Chameleon and use CFG with a coefficient of 5

2We follow common practice for ablations and use only 5k examples to compute FID and CLIP in §4.3.
3Removing these deviations in preliminary experiments encountered optimization instabilities in Chameleon.
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Figure 5: Performance of Transfusion and Chameleon models at different scales, controlled for
parameters, data, and compute. All axes are logarithmic.

in the controlled comparison experiments (§4.2). This value is suboptimal for Transfusion, and so
we use a CFG coefficient of 3 throughout the ablation experiments (§4.3), and follow the standard
practice of tuning the coefficient for each benchmark in our large scale experiment (§4.4).

4.2 CONTROLLED COMPARISON WITH CHAMELEON

We run a series of controlled experiments to compare Transfusion with Chameleon at different model
sizes (N ) and token counts (D), using the combination of both as a proxy for FLOPs (6ND). For
simplicity and parameter control, the Transfusion variant in these experiments uses simple linear
image encoder/decoder with patch size 2×2, as well as bidirectional attention. For each benchmark,
we plot all results on a log-metric over log-FLOPs curve and regress linear trendlines. We also
estimate relative compute efficiency by measuring the parity FLOP ratio: the ratio between the
number of FLOPs required by Transfusion and Chameleon to reach the same level of performance.

Figure 5 visualizes the scaling trends, and Table 1 shows the results of the largest models in this
controlled setting and their estimated parity FLOP ratio. In every benchmark, Transfusion consistently
exhibits better scaling laws than Chameleon. While the lines are close to parallel, there is a significant
gap in Transfusion’s favor. The difference in compute efficiency is particularly striking in image
generation, where FID Transfusion achieves parity with Chameleon using 34× less compute.

Surprisingly, text-only benchmarks also reveal better performance with Transfusion, even though
both Transfusion and Chameleon model text in the same way. We investigate this phenomenon by
ablating the various changes leading up to Transfusion and Chameleon from the original Llama 2
recipe. Table 2 shows that while Transfusion does come at a non-zero cost to text performance, the
Chameleon recipe suffers from both the stability modifications made to the architecture and from
the introduction of image tokens. Training on quantized image tokens degrades text performance

Model C4 Wiki Llama MS-COCO
PPL (↓) PPL (↓) Acc (↑) CDr (↑) FID (↓) CLIP (↑)

Transfusion 7.72 4.28 61.5 27.2 16.8 25.5
Chameleon 8.41 4.69 59.1 18.0 29.6 24.3

Parity FLOP Ratio 0.489 0.526 0.600 0.218 0.029 0.319

Table 1: Performance of the largest (7B) Transfusion and Chameleon models in a controlled setting.
Both models were trained on 0.5T tokens. Parity FLOP Ratio is the relative amount of Transfusion
FLOPs needed to match the results of Chameleon 7B.
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Model Batch C4 Wiki Llama
PPL (↓) PPL (↓) Acc (↑)

Llama 2 1M Text Tokens 10.1 5.8 53.7

Transfusion + Diffusion + 1M Image Patches (+0.3) 10.4 (+0.2) 6.0 (-1.0) 52.7

Chameleon + Stability Modifications 1M Text Tokens (+0.9) 11.0 (+0.5) 6.3 (-1.8) 51.9
+ LM Loss on Image Tokens + 1M Image Tokens (+0.8) 11.8 (+0.5) 6.8 (-3.0) 48.9

Table 2: Performance of the 0.76B Transfusion and Chameleon models on text-only benchmarks,
compared to the original Llama 2 recipe.

Enc/Dec Attention C4 Wiki Llama MS-COCO
PPL (↓) PPL (↓) Acc (↓) CDr (↑) FID (↓) CLIP (↑)

Linear Causal 10.4 6.0 51.4 12.7 61.3 23.0
Bidirectional 10.4 6.0 51.7 16.0 20.3 24.0

U-Net Causal 10.3 5.9 52.0 23.3 16.8 25.3
Bidirectional 10.3 5.9 51.9 25.4 16.7 25.4

Table 3: Performance of 0.76B Transfusion models with and without intra-image bidirectional
attention. Patch size is set at 2×2 latent pixels.

more than diffusion on all three benchmarks. One hypothesis is that this stems from the competition
between text and image tokens in the output distribution; alternatively, it is possible that diffusion is
more efficient at image generation and requires fewer parameters, allowing Transfusion models to
use more capacity than Chameleon to model text. We leave further investigation of this phenomenon
to future research.

4.3 ARCHITECTURE ABLATIONS

We explore improvements and extensions that are applicable to Transfusion alone in this section.

4.3.1 ATTENTION MASKING

We first examine the necessity of intra-image bidirectional attention. Table 3 shows that enabling this
attention pattern beyond the standard causal attention is advantageous throughout all benchmarks, and
using both image encoding/decoding architectures. In particular, we notice a significant improvement
in FID when using linear encoding layers (61.3→20.3). In the causal-only version of this architecture,
there is no flow of information from patches that appear later in the sequence to those before; since
U-Net blocks contain bidirectional attention within, independent of the transformer’s attention mask,
this gap is less pronounced when they are applied.

4.3.2 PATCH SIZE

Transfusion models can be defined over different sizes of latent pixel patches. Larger patch sizes allow
the model to pack more images in each training batch and dramatically reduce inference compute, but
may come at a performance cost. Table 4 and Table 9 in Appendix sheds light on these performance
trade-offs. While performance does decrease consistently as each image is represented by fewer
patches with linear encoding, models with U-Net encoding benefit from larger patches on tasks
involving the image modality. We posit that this is due to the greater amount of total images (and
diffusion noise) seen during training. We also observe that text performance deteriorates with larger
patches, perhaps because transfusion needs to exert more resources (i.e. parameters) to learn how to
process images with fewer patches and thus less inference compute.

4.3.3 PATCH ENCODING/DECODING ARCHITECTURE

Our experiments so far indicate an advantage to using the U-Net up and down blocks instead of a
simple linear layer. One possible reason is that the model benefits from the inductive biases of the
U-Net architecure; an alternative hypothesis is that this advantage stems from the significant increase
in overall model parameters introduced by the U-Net layers. To decouple these two confounders,
we scale up the core transformer to 7B parameters, while keeping the amount of U-Net parameters
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Enc/Dec Latent/ Pixel/ Patch/ C4 Wiki Llama MS-COCO
Patch Patch Image PPL (↓) PPL (↓) Acc (↓) CDr (↑) FID (↓) CLIP (↑)

None 1×1 8×8 1024 10.3 5.9 52.2 12.0 21.0 24.0

U-Net
2×2 16×16 256 10.3 5.9 51.9 25.4 16.7 25.4
4×4 32×32 64 10.7 6.2 50.7 29.9 16.0 25.7
8×8 64×64 16 11.4 6.6 49.2 29.5 16.1 25.2

Table 4: Performance of 0.76B Transfusion models with different patch sizes. Bolded figures indicate
global best, underlines indicate best within architecture.

Model Enc/Dec ∆ Enc/Dec C4 Wiki Llama MS-COCO
Params Params PPL (↓) PPL (↓) Acc (↑) CDr (↑) FID (↓) CLIP (↑)

0.37B Linear 0.4% 12.0 7.0 47.9 11.1 21.5 22.4
U-Net 71.3% 11.8 6.9 48.8 21.1 18.1 24.9

1.4B Linear 0.4% 9.5 5.4 53.8 19.1 19.4 24.3
U-Net 19.3% 9.4 5.4 53.4 28.1 16.6 25.7

7B Linear 0.3% 7.7 4.3 61.5 27.2 18.6 25.9
U-Net 3.8% 7.8 4.3 61.1 33.7 16.0 26.5

Table 5: Performance of linear and U-Net variants of Transfusion across different model sizes. Patch
size is set at 2×2 latent pixels. Model parameters refers to the transformer alone.

(almost) constant; in this setting, the additional encoder/decoder parameters account for only a 3.8%
increase of total model parameters, equivalent to the amount of token embedding parameters.

Table 5 Table 10 (Appendix) shows that even though the relative benefit of U-Net layers shrinks as the
transformer grows, it does not diminish. In image generation, for example, the U-Net encoder/decoder
allows much smaller models to obtain better FID scores than the 7B model with linear patchification
layers. We observe a similar trend in image captioning, where adding U-Net layers boosts the CIDEr
score of a 1.4B transformer (1.67B combined) beyond the performance of the linear 7B model.
Overall, it appears that there are indeed inductive bias benefits to U-Net encoding and decoding of
images beyond the mere addition of parameters.

4.4 COMPARISON WITH IMAGE GENERATION LITERATURE

Our experiments thus far have covered controlled comparisons with Chameleon and Llama, but we
have yet to compare Transfusion’s image generation capabilities to those of state-of-the-art image
generation models. To that end, we train a 7B parameter model with U-Net encoding/decoding
layers (2×2 latent pixel patches) over the equivalent of 2T tokens, comprising of 1T text corpus
tokens and 3.5B images and their captions. While the Transfusion variant in §4.2 favored simplicity
and experimental control, the design choices and data mixture (§4.1) of this variant lean a bit more
towards image generation. Figure 7 and Appendix D showcase generated images from this model.

We compare the performance of our model to reported results of other similar scale image generation
models, as well as some publicly available text generating models for reference. Table 6 shows
that Transfusion achieves similar performance to high-performing image generation models such
as DeepFloyd (Stability AI, 2024), while surpassing previously published models including SDXL
(Podell et al., 2023). While Transfusion does lag behind SD 3 (Esser et al., 2024a), this model
leveraged synthetic image captions through backtranslation (Betker et al., 2023), which enhances
its GenEval performance by 6.5% absolute (0.433→0.498) at smaller scale; for simplicity, our
experimental setup only included natural data. Finally, we note that our Transfusion model can also
generate text, and performs on par with the Llama models, which were trained on the same text data
distribution (§4.1).

4.5 IMAGE EDITING

Our Transfusion models, which have been pretrained on text-text, image-text, and text-image data,
perform well across these modality pairings. Can these models extend their capabilities to generate
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Model Model Text Images Llama COCO Gen
Params Tokens Acc (↑) FID (↓) Eval (↑)

Llama 1 (Touvron et al., 2023a) 7.1B 1.4T — 66.1 — —
Llama 2 (Touvron et al., 2023b) 7.1B 2.0T — 66.3 — —
Chameleon (Chameleon Team, 2024) 7.1B 6.0T 5.0B 67.1 26.74 0.39

Imagen (Saharia et al., 2022) 2.6B + 4.7B∗ — 5.0B — 7.27 —
Parti (Yu et al., 2022) 20B — 4.8B — r7.23 —
SD 2.1 (Rombach et al., 2022b) 0.9B + 0.1B∗ — 2.3B — — 0.50
DALL-E 2 (Ramesh et al., 2022) 4.2B + 1B∗ — 2.6B — 10.39 0.52
SDXL (Podell et al., 2023) 2.6B + 0.8B∗ — 1.6B — — 0.55
DeepFloyd (Stability AI, 2024) 5.5B + 4.7B∗ — 7.5B — 6.66 0.61
SD 3 (Esser et al., 2024b) 8B + 4.7B∗ — s2.0B — — 0.68

Transfusion (Ours) 7.3B 1.0T 3.5B 66.1 6.78 0.63

Table 6: Performance of a 7B Transfusion model (U-Net encoder/decoder layers, 2×2 latent pixel
patches) trained on the equivalent of 2T tokens, compared to similar scale models in the literature.
Except Chameleon, all the other models are restricted to generating one modality (either text or
image). ∗ Frozen text encoder parameters. r Parti samples 16 images for every prompt and then
reranks with an auxiliary scoring model. s SD 3 trains with synthetic caption data, which provides
boosts GenEval performance.

Remove the cupcake on the plate. Change the tomato on the right to a green olive.

Write the word "Zebra" in Arial bold. Change this to cartoon style.

Figure 6: Edited images from a fine-tuned 7B Transfusion model.

images based on other images? To investigate, we fine-tuned our 7B model (§4.4) using a dataset of
only 8k publicly available image editing examples, where each example consists of an input image,
an edit prompt, and an output image. This approach, inspired by LIMA (Zhou et al., 2024), allows us
to assess how well the model can generalize to image-to-image generation, a scenario not covered
during pretraining. Manual examination of random examples from the EmuEdit test set (Sheynin
et al., 2024), shown in Figure 6 and Appendix 4.5, reveals that our fine-tuned Transfusion model
performs image edits as instructed. Despite the limitations of this experiment, the findings suggest
that Transfusion models can indeed adapt to and generalize across new modality combinations. We
leave further exploration of this promising direction to future research.

5 CONCLUSION
This work explores how to bridge the gap between the state of the art in discrete sequence modeling
(next token prediction) and continuous media generation (diffusion). We propose a simple, yet
previously unexplored solution: train a single joint model on two objectives, tying each modality to
its preferred objective. Our experiments show that Transfusion scales efficiently, incurring little to no
parameter sharing cost, while enabling the generation of any modality.
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Input Output Benchmark Metric

Text Text
Wikipedia Perplexity (↓)
C4 Perplexity (↓)
Llama 2 Eval Suite Accuracy (↑)

Image Text MS-COCO 5k CIDEr (↑)

Text Image MS-COCO 30k FID (↓), CLIP (↑)
GenEval GenEval score (↑)

Table 7: An overview of the evaluation suite used in this
work.

Size Layers Emb Dim Att Heads

0.16B 16 768 12
0.37B 24 1024 16
0.76B 24 1536 24
1.4B 24 2048 16
7B 32 4096 32

Table 8: Model sizes and configurations
for both Transfusion and baselines.

A RELATED WORK

Most existing multi-modal models are built on the idea of attaching two or more modality-specific
architectures together, often pretraining each component separately in advance. State-of-the-art
image and video generation models, for instance, use large pretrained text encoders to represent their
input prompts in latent space, which can then be used to condition diffusion models (Saharia et al.,
2022). In fact, recent work fuses representations from multiple off-the-shelf encoders to enhance
performance (Podell et al., 2023; Esser et al., 2024b). A similar pattern can be observed in the
vision language model literature, where typically a pretrained language model is complemented
by pretrained modality-specific encoders/decoders via projection layers to/from the pretrained text
space. Examples include Flamingo (Alayrac et al., 2022) and LLaVA (Liu et al., 2024) for visual
understanding, GILL (Koh et al., 2024) for visual generation, and DreamLLM (Dong et al., 2024)
for both visual comprehension and generation. In contrast, Transfusion has one unified architecture
learned end-to-end to generate both text and images.

Prior work on end-to-end multi-modal models includes examples such as Fuyu (Bavishi et al., 2023),
which uses image patches as inputs for visual understanding, and Chameleon (Chameleon Team,
2024), which converts each image to a sequence of discretized tokens and then trains over the
combined text-image token sequences. However, these approaches are either restricted to input-
level multi-modal tasks, or lag behind state-of-the-art models (i.e. diffusion models) in continuous
data generation. Transfusion provides a simple, end-to-end solution to multi-modal learning that
understands and generates high-quality multi-modal data.

An interesting area of recent acrive research is the application diffusion models and their generaliza-
tions to discrete text generation (Li et al., 2022; Gat et al., 2024). However, this approach has yet to
achieve the performance and scale of standard autoregressive language models. Future research in
this direction may unlock new ways to fuse discrete and continuous modalities in a single model.

B EXPERIMENTS

B.1 SETUP

Evaluation We evaluate model performance on a collection of standard uni-modal and cross-
modal benchmarks (Table 7). For text-to-text, we measure perplexity on 20M held-out tokens from
Wikipedia and the C4 corpus (Raffel et al., 2019), as well as accuracy on the pretraining evaluation
suite of Llama 2 (Touvron et al., 2023b).4 For text-to-image, we use the MS-COCO benchmark
(Lin et al., 2014), where we generate images on randomly selected 30k prompts from validation set
and measure their photo-realism using zero-shot Frechet Inception Distance (FID) (Heusel et al.,
2017) as well as their alignment with the prompts using CLIP score (Radford et al., 2021).5 We also
evaluate the model’s ability to generate image captions; we report CIDEr (Vedantam et al., 2015)
scores on the Karpathy test split of MS-COCO (Lin et al., 2014). These evaluations provide signal for

4The Llama 2 evaluation suite includes HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap
et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-e and -c (Clark et al., 2018), and BoolQ (Clark et al.,
2019). We report the average 0-shot task accuracy on these benchmarks.

5We follow common practice for ablations and use only 5k examples to compute FID and CLIP in §4.3.
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investigation scaling laws (§4.2) and ablations (§4.3). To compare with recent literature in diffusion
models, we evaluate our largest scale model (§4.4) also on GenEval (Ghosh et al., 2023), a benchmark
that examines a model’s ability to generate an accurate depiction of the prompt.

Baseline At the time of writing, the prominent open-science method for training a single mixed-
modal model that can generate both text and images is to quantize images into discrete tokens, and
then model the entire token sequence with a standard language model (Ramesh et al., 2021; Yu
et al., 2022; 2023). We follow the recipe of Chameleon (Chameleon Team, 2024) to train a family of
data- and compute-controlled baseline models, which we can directly compare to our Transfusion
models. The key difference between Chameleon and Transfusion is that while Chameleon discretizes
images and processes them as tokens, Transfusion keeps images in continuous space, removing the
quantization information bottleneck. To further minimize any confounding variables, we train the
VAEs for Chameleon and Transfusion using exactly the same data, compute, and architecture, with
the only differentiator being the quantization layer and codebook loss of Chameleon’s VQ-VAE (see
details below). Chameleon also deviates from the Llama transformer architecture, adding query-key
normalization, post-normalization, denominator loss, and a lower learning rate of 1e-4 to manage
training instability, which incur an efficiency cost (see §4.2).6

Data For almost all of our experiments, we sample 0.5T tokens (patches) from two datasets at a 1:1
token ratio. For text, we use the Llama 2 tokenizer and corpus (Touvron et al., 2023b), containing 2T
tokens across a diverse distribution of domains. For images, we use a collection of 380M licensed
Shutterstock images and captions. Each image is center-cropped and resized to produce a 256×256
pixel image.7 We randomly order the image and captions, ordering the caption first 80% of the time.

In one experiment (4.4) we scale up the total training data to 2T tokens (1T text tokens and about
3.5B caption-image pairs at 256 patches per image). To diversify, we add 220M publicly available
images with captions, prefiltered to not contain people. To rebalance the distribution, we upsample
80M Shutterstock images containing people. We also add data from Conceptual 12M (CC12M)
(Changpinyo et al., 2021), reaching a total mixture of 692M image-caption pairs per epoch. Finally,
we upweight the portion of high-aesthetic images in the last 1% of the training schedule.

Latent Image Representation We train a 86M parameter VAE following Esser et al. (2021).
We use a CNN encoder and decoder, and latent dimension 8. The training objective is combines
reconstruction and regularization losses.8 Our implementation reduces an image of 256×256 pixels
to a 32×32×8 tensor, where each latent 8-dimensional latent pixel represents (conceptually) an 8×8
pixel patch in the original image, and trains for 1M steps. For VQ-VAE training, we follow the same
setup described for VAE training, except we replace LKL with the standard codebook commitment
loss with β = 0.25 (Van Den Oord et al., 2017). We use a codebook of 16,384 token types.

Model Configuration To investigate scaling trends, we train models at five different sizes – 0.16B,
0.37B, 0.76B, 1.4B, and 7B parameters – following the standard settings from Llama (Touvron et al.,
2023a). Table 8 describes each setting in detail. In configurations that use linear patch encoding (§4.2
and §4.3), the number of additional parameters is insignificant, accounting for fewer than 0.5% of
total parameters in every configuration. When using U-Net patch encoding (§4.3 and §4.4), these
parameters add up to 0.27B additional parameters across all configurations; while this is a substantial
addition of parameters to smaller models, these layers amount to only a 3.8% increase of the 7B
configuration, almost identical to the number of parameters in the embedding layers.

Optimization We randomly initialize all model parameters, and optimize them using AdamW
(β1 =0.9, β2 =0.95, ϵ =1e-8) with a learning rate of 3e-4, warmed up for 4000 steps and decaying
to 1.5e-5 using a cosine scheduler. We train on sequences of 4096 tokens in batches of 2M tokens for
250k steps, reaching 0.5T tokens in total. In our large-scale experiment (§4.4), we train with a batch
size of 4M tokens over 500k steps, totalling 2T tokens. We regularize with weight decay of 0.1 and

6Removing these deviations in preliminary experiments encountered optimization instabilities in Chameleon.
7Depending on the compression rate of the patch encoder (see Model Architecture in §3), each image will be

represented by either 1024, 256, 64, or 16 elements in the sequence. Since the text/image ratio is constant during
training, higher compression rates enable training on more images in total, at the cost of less compute per image.

8See Appendix C for details.
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Enc/Dec Latent/ Pixel/ Patch/ C4 Wiki Llama MS-COCO
Patch Patch Image PPL (↓) PPL (↓) Acc (↓) CDr (↑) FID (↓) CLIP (↑)

None 1×1 8×8 1024 10.3 5.9 52.2 12.0 21.0 24.0

Linear
2×2 16×16 256 10.4 6.0 51.7 16.0 20.3 24.0
4×4 32×32 64 10.9 6.3 49.8 14.3 25.6 22.6
8×8 64×64 16 11.7 6.9 47.7 11.3 43.5 18.9

U-Net
2×2 16×16 256 10.3 5.9 51.9 25.4 16.7 25.4
4×4 32×32 64 10.7 6.2 50.7 29.9 16.0 25.7
8×8 64×64 16 11.4 6.6 49.2 29.5 16.1 25.2

Table 9: Performance of 0.76B Transfusion models with different patch sizes. Bolded figures indicate
global best, underlines indicate best within architecture.

Model Enc/Dec ∆ Enc/Dec C4 Wiki Llama MS-COCO
Params Params PPL (↓) PPL (↓) Acc (↑) CDr (↑) FID (↓) CLIP (↑)

0.16B Linear 0.5% 14.8 8.8 44.2 6.2 37.6 20.0
U-Net 106.1% 14.4 8.5 45.7 15.3 18.8 23.9

0.37B Linear 0.4% 12.0 7.0 47.9 11.1 21.5 22.4
U-Net 71.3% 11.8 6.9 48.8 21.1 18.1 24.9

0.76B Linear 0.4% 10.4 6.0 51.7 16.0 20.3 24.0
U-Net 35.5% 10.3 5.9 51.9 25.4 16.7 25.4

1.4B Linear 0.4% 9.5 5.4 53.8 19.1 19.4 24.3
U-Net 19.3% 9.4 5.4 53.4 28.1 16.6 25.7

7B Linear 0.3% 7.7 4.3 61.5 27.2 18.6 25.9
U-Net 3.8% 7.8 4.3 61.1 33.7 16.0 26.5

Table 10: Performance of linear and U-Net variants of Transfusion across different model sizes. Patch
size is set at 2×2 latent pixels. Model parameters refers to the transformer alone.

clip gradients by norm (1.0). We set the λ coefficient in the Transfusion objective (Equation 4) to 5
following preliminary experiments; we leave further tuning of λ to future work.

Inference In text mode, we use greedy decoding for generating text. Ranked classification is used
for the Llama evaluation suite. For image generation, we follow the standard of 250 diffusion steps
(the model is trained on 1,000 timesteps). We follow Chameleon and use CFG with a coefficient of 5
in the controlled comparison experiments (§4.2). This value is suboptimal for Transfusion, and so
we use a CFG coefficient of 3 throughout the ablation experiments (§4.3), and follow the standard
practice of tuning the coefficient for each benchmark in our large scale experiment (§4.4).

B.2 IMAGE NOISING

Our experiments order 80% of image-caption pairs with the caption first, and the image conditioning
on the caption, following the intuition that image generation may be a more data-hungry task than
image understanding. The remaining 20% of the pairs condition the caption on the image. However,
these images are noised as part of the diffusion objective. We thus measure the effect of limiting the
diffusion noise to a maximum of t = 500 (half of the noise schedule) in the 20% of cases where
images appear before their captions. Table 11 shows that noise limiting significantly improves image
captioning, as measure by CIDEr, while having a relatively small effect (less than 1%) on other
benchmarks.

19



Published as a conference paper at ICLR 2025

Model Noise C4 Wiki Llama MS-COCO
Params Limit PPL (↓) PPL (↓) Acc (↑) CDr (↑) FID (↓) CLIP (↑)

0.76B 10.3 5.9 51.9 25.4 16.7 25.4
✓ 10.3 5.9 52.1 29.4 16.5 25.4

7B 7.8 4.3 61.1 33.7 16.0 26.5
✓ 7.7 4.3 60.9 35.2 15.7 26.3

Table 11: Performance of Transfusion with and without limiting the amount of sampled diffusion
noise to a maximum of t = 500 when images appear before the caption. The models are U-Net
variants encoding 2×2 latent pixel patches. Metrics that change by over 1% are bolded.

C AUTOENCODER DETAILS

The training objective for our VAE closely follows that of Esser et al. (2021):

LVAE = L1 + LLPIPS + 0.5LGAN + 0.2LID + 0.000001LKL

where L1 is L1 loss in pixel space, LLPIPS is perceptual loss based on LPIPS similarity Zhang
et al. (2018), LGAN is a patch-based discriminator loss, LID is a perceptual loss based on internal
features of the Moco v2 model Chen et al. (2020), and LKL is the standard KL-regularization term to
encourage encoder outputs towards a normal distribution. We delay the beginning of GAN training
(i.e. including the adversarial loss in the loss function) to 50,000 steps, in order to let the VAE achieve
sufficiently good reconstruction performance. We use a latent dimension of 8.

The training objective for the VQ-GAN matches that of the VAE, with one notable exception:
we replace the LKL loss with the standard codebook commitment loss Lcodebook (Van Den Oord
et al., 2017), which encourages encoder outputs and codebook vectors to be close together. We use
β = 0.25, and use loss weighting 1.0. The final loss function for the VQ-VAE is therefore:

LVQ-VAE = L1 + LLPIPS + 0.5LGAN + 0.2LID + Lcodebook

The vector quantization layer is applied after projecting the encoder outputs to 8-dimensional space.
Outside of the loss function change and the quantization layer, the training setup for the VAE (for
Transfusion) and VQ-VAE (for Chameleon) are the same (e.g. same amount of training compute,
same training data, and same encoder/decoder architecture).

D EXAMPLES: IMAGE GENERATION

Figure 8 and Figure 9 show examples of images generated from a 7B Transfusion model trained on
2T multi-modal tokens (§4.4).

E EXAMPLES: IMAGE EDITING

Figure 10 show random examples of image editing by a fine-tuned 7B Transfusion model.
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An armchair in the shape
of an avocado

A bread, an apple, and a
knife on a table

A corgi. human life depicted en-
tirely out of fractals

A blue jay standing on a
large basket of rainbow
macarons.

“Transfusion" is written
on the blackboard.

A close up photo of a hu-
man hand, hand model.
High quality

A cloud in the shape of
two bunnies playing with
a ball. The ball is made of
clouds too.

the word ‘START’ on a
blue t-shirt

A Dutch still life of an
arrangement of tulips in
a fluted vase. The light-
ing is subtle, casting gen-
tle highlights on the flow-
ers and emphasizing their
delicate details and natu-
ral beauty.

A wall in a royal castle.
There are two paintings
on the wall. The one on
the left a detailed oil paint-
ing of the royal raccoon
king. The one on the right
a detailed oil painting of
the royal raccoon queen.

Three spheres made of
glass falling into ocean.
Water is splashing. Sun
is setting.

A transparent sculpture of
a duck made out of glass.

A chromeplated cat sculp-
ture placed on a Persian
rug.

A kangaroo holding a
beer, wearing ski goggles
and passionately singing
silly songs.

an egg and a bird made of
wheat bread

Figure 7: Generated images from a 7B Transfusion trained on 2T multi-modal tokens.
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Downtown Seattle at sun-
rise. detailed ink wash.

A car made out of vegeta-
bles.

A sign that says “Diffu-
sion".

A black basketball shoe
with a lightning bolt on it.

an espresso machine that
makes coffee from human
souls, high-contrast paint-
ing.

Intricate origami of a fox
and a unicorn in a snowy
forest.

a yellow wall with two
framed sketches

A crab made of cheese on
a plate.

A single beam of light en-
ter the room from the ceil-
ing. The beam of light is
illuminating an easel. On
the easel there is a Rem-
brandt painting of a rac-
coon.

White Cycladic houses
with blue accents and vi-
brant magenta bougainvil-
lea in a serene Greek is-
land setting.

The saying “BE EX-
CELLENT TO EACH
OTHER" written in a
stained glass window.

dark high contrast render
of a psychedelic tree of
life illuminating dust in a
mystical cave.

A photo of a person with
the head of a cow, wear-
ing a tuxedo and black
bowtie. Beach wallpaper
in the background.

Photo of a lychee-inspired
spherical chair, with a
bumpy white exterior and
plush interior, set against
a tropical wallpaper.

An old rusted robot wear-
ing pants and a jacket rid-
ing skis in a supermarket.

Film still of a long-legged
cute big-eye anthropomor-
phic cheeseburger wear-
ing sneakers relaxing on
the couch in a sparsely
decorated living room.

Figure 8: Generated images from a 7B Transfusion trained on 2T multi-modal tokens.
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A woman on a bed under-
neath a blanket.

A small blue book sitting
on a large red book.

A horse reading a book. A light bulb containing a
sailboat floats through the
galaxy.

a monarch butterfly. A rowboat on a lake with
a bike on it.

An expressive oil painting
of a chocolate chip cookie
being dipped in a glass of
milk, depicted as an ex-
plosion of flavors.

An angry duck doing
heavy weightlifting at the
gym.

An emoji of a baby panda
wearing a red hat, green
gloves, red shirt, and
green pants.

A tranquil, anime-style
koi pond in a serene
Japanese garden, featur-
ing blossoming cherry
trees.

a massive alien space ship
that is shaped like a pret-
zel.

graffiti of a funny dog on
a street wall.

A spacious, serene room
influenced by modern
Japanese aesthetics with
a view of a cityscape out-
side of the window.

A raccoon wearing cow-
boy hat and black leather
jacket is behind the back-
yard window. Rain
droplets on the window.

A relaxed garlic with a
blindfold reading a news-
paper while floating in a
pool of tomato soup.

photo of a bear wearing a
suit and tophat in a river
in the middle of a forest
holding a sign that says “I
cant bear it".

Figure 9: Generated images from a 7B Transfusion trained on 2T multi-modal tokens.

23



Published as a conference paper at ICLR 2025

Change the closest keyboard to be all black. Change the graffiti on the truck into calligraphy
writing.

Can we have mountains on the background? Replace the airplane with a blackhawk helicopter.

Add a blue rug to the floor. Delete the overhead lights on top of the sink.

Change the roll of thread into a roll of wire. Change the baseball bat to all brown.

Figure 10: Edited images from a fine-tuned 7B Transfusion model.
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