
A SUPPLEMENTARY MATERIAL

A.1 RELATED WORKS

Machine Unlearning. Machine unlearning requires removing information of forgetting data in the
original model while preserving the knowledge contained in the remaining data (Bourtoule et al.,
2021; Xu et al., 2024). Currently works on machine unlearning can be summarized into two branches
based on the unlearning objectives. The first type is exact unlearning, which requires achieving the
same model as the train-from-scratch model on remaining data. Exact unlearning is mainly applied
to classical machine learning models (Bourtoule et al., 2021; Kim & Woo, 2022). In deep models,
the parameters and model structures can be much more complex. Therefore, the exact unlearning is
hard to be realized. The current works of exact unlearning on deep models usually take the retraining
strategy and focus on improving the algorithm efficiency, for example, the SISA algorithm which
retrains the model via a distributed approach on different devices (Bourtoule et al., 2021). The second
type is approximate unlearning, which requires the unlearned model to get similar performances
to the retrained model on both the remaining data and the forgetting data. Approximate unlearning
methods are widely applied to deep models (Nguyen et al., 2020; Tarun et al., 2023; Golatkar et al.,
2020b; Thudi et al., 2022; Graves et al., 2021; Chen et al., 2023; Kurmanji et al., 2023; Chundawat
et al., 2023; Golatkar et al., 2020a; Liu et al., 2021). The cutting-edged works on approximate
unlearning includes: (Chundawat et al., 2023) which employs two teacher models that are trained on
the remaining and forgetting data to guide the unlearning; (Chen et al., 2023) which explores a new
perspective of unlearning by shifting the decision boundary of different classes for unlearning, and
(Thudi et al., 2022) which recovers the changes of parameters occurring in the training of data to be
forgotten. Compared with the exact unlearning on deep models, approximate unlearning has wider
applications.

Unsupervised Representation Learning. Unsupervised representation learning aims to learn the
representations of the input data without using labels. The unsupervised representation learning has
attracted more attention from researchers. The variational autoencoder (VAE) (Kingma & Welling,
2014) and contrastive learning (van den Oord et al., 2018) are two critical techniques. The VAE
can project the input features into low-dimensional Gaussian representations. Currently, the strong
ability for representation learning makes the VAE have wide applications on deep learning tasks.
For instance, (Liang et al., 2018) explores the application of VAE on representation learning in
collaborative filtering while (Kipf & Welling, 2016) applies the VAE on the representation learning
of graph data. Contrastive learning reduces the distances of the embeddings of data that share similar
characteristics and increases the distances of the embeddings of data that are dissimilar from each
other. For instance, (van den Oord et al., 2018) introduces the Noise Contrastive Estimation to
differentiate the distance between the similar and dissimilar samples and (Chen et al., 2020) employs
cosine similarity during contrastive learning.

A.2 NOTATIONS

We provide a table of all notations of the main paper in Table 1.

A.3 IMPLEMENTATION DETAILS

A.3.1 OVERALL WORKFLOW

Figure. 1 presents the workflow of the whole LAF framework. The LAF first trained two VAEs h
and hf on the representations of training data X and representations of forgetting data Xf . Then
by fixing the parameters of h and hf , Next, to align the representation distribution of geU with the
classifier, LAF compares the similarities between the representations of remaining data and forgetting
data in the model before and after unlearning and maximizes the representation alignment loss LRA.
LUE and LRA can be updated alternately. We output the updated model as the final model geU .

Subsequently, the LAF framework focuses on aligning the representation distributions between the
post-unlearning extractor geU and the classifier gcD. This is achieved by the representation alignment
loss LRA, aligning the representations of the remaining data before and after the unlearning process

1



Table 1: Table of Notations Used in The Main Paper

Notation Explanation

D Training data
P Training data distribution
Dr Remaining data
Pr Training data distribution
Df Forgetting data
Pf Training data distribution
x Instance of data
X Instance space
y Label of data
Y Label space
gD Trained deep model
geD Extractor of the trained deep model
gcD Classifier of the trained deep model
gU Post-unlearning deep model
geU Extractor of the post-unlearning deep model
Q(Dr) Distribution that post-unlearning deep model follows on Dr

Q(Df ) Distribution that post-unlearning deep model follows on Df

∆(·, ·) Distribution discrepancy
h VAE that learns the distribution of the training data representations
hf VAE that learns the distribution of the forgetting data representations
N (0, I) Standard Gaussian distribution
µh, σh Mean and std estimated by h on its encoding layer for geD(x), x ∈ Dr

µ̃h, σ̃h Mean and std estimated by h on its encoding layer for geU (x), x ∈ Dr

µhf , σhf Mean and std estimated by hf on its encoding layer for geD(x), x ∈ Df

µ̃hf , σ̃hf Mean and std estimated by hf on its encoding layer for geU (x), x ∈ Df

and differentiating the representations of the forgetting data before and after the unlearning. The
LUE and LRA losses are updated in an alternating fashion.

The culmination of this process is the final updated model, denoted as geU , which effectively embodies
the refined balance between learning and forgetting, as dictated by the LAF framework.

Figure 1: Workflow for LAF consisting of VAE training, extractor unlearning and representation
alignment stages.

A.3.2 ENVIRONMENT

All the experiments are conducted on one server with NVIDIA RTX A6000 GPU (48GB GDDR6
Memory) and 12th Gen Intel(R) Core(TM) i9-12900K (16 cores and 128GB Memory) and two servers
with NVIDIA RTX A5000 GPUs (24GB GDDR6 Memory) and 12th Gen Intel Core i7-12700K
CPUs (12 cores and 128GB Memory). The code of LAF was implemented in Python 3.9.16 and

2



Cuda 11.6.1. The main Python packages’ versions are the following: Numpy 1.23.5; Pandas 2.0.1;
Pytorch 1.13.1; Torchvision 0.14.1. The datasets in experiments: DIGITS (LeCun, 1998), FASHION
(Xiao et al., 2017), CIFAR10 (Krizhevsky et al., 2009), and SVHN dataset (Netzer et al., 2011) are
all downloaded from the Torchvision library. Moreover, all the comparison methods provide open
resources for their implementation code: Boundary 1, T-S 2, SCRUB 3, SISA 4, Unrolling 5.

A.3.3 INITIALIZATIONS

For the experiment models, we choose the CNN(LeCun et al., 1995) with two convolutional layers
for the two MNIST datasets. The output channels for the two convolutional layers are 16 and 32
respectively. Then the other parts of the CNN consist of three linear layers with the output dimensions
256, 128 and 10. For the two CIFAR datasets, we choose an 18-layer ResNet (He et al., 2016)
with two linear layers with the output dimensions 256, and 10 and the ResNet does not contain the
pre-trained weights. We construct two VAEs with three and four linear layers in the encoders and
decoders. The first type of VAE is used for the two MNIST datasets consisting of three linear layers’
encoder with the input dimensions 256, 128, and 32 and a three linear layers’ decoder with the input
dimensions 8, 32, and 128. The second type of VAE is used for the other two datasets consisting of
the same structure encoder as the first one and a three linear layers’ decoder with the input dimensions
16, 32, and 128.

All the experiments are based on the original models trained in the four datasets. We train two
CNN models on two MNIST datasets for 10 epochs with a learning rate of 1e-3 while we train
another two 18-layer ResNet models on two CIFAR datasets for 20 epochs with a learning rate
of 5e-5. For the golden standard baselines Retrain, we retrain the CNN models on two MNIST
datasets for 20 epochs with a learning rate of 1e-3. We retrain the 18-layer ResNet models on
two CIFAR datasets for 40 epochs with a learning rate of 5e-5. Then for the other six comparison
baselines:NegGrad, Boundary(Chen et al., 2023), T-S(Chundawat et al., 2023), SCRUB(Kurmanji
et al., 2023), SISA(Bourtoule et al., 2021), Unroll(Thudi et al., 2022), we keep the hyperparameters of
the unlearning process the same as in the original paper and adjust other necessary parameters for the
unlearning stage to get as high performances as we can. NegGrad adjusts the deep model parameters
with positive gradients on remaining data and negative gradients on forgetting data; Boundary (Chen
et al., 2023) shift the decision boundaries of the forgetting data and remaining data to eliminate the
forgetting data information; SISA (Bourtoule et al., 2021) proposes to retrain the model using the
small data shards from the remaining dataset and ensemble the final results; Unroll (Thudi et al.,
2022) records gradients when learning the first epoch and adds recorded gradients on weights after
the incremental training; T-S (Chundawat et al., 2023) proposes to retrain two teacher models on
forgetting data and remaining data and adjust the student model through the differences between
the output space of the two teacher models; SCRUB (Kurmanji et al., 2023) force the model to be
consistent with the teacher model trained on remaining data and inconsistent with another teacher
model trained on forgetting data.

A.3.4 HYPERPARAMETERS

In all experiments, we configure the batch size to 32. During the training of VAEs, we assign the
latent dimensions as 8 for the DIGITS and FASHION datasets and 16 for the CIFAR10 and SVHN
datasets. The learning rate for VAE training is established at 1e-3, with the number of training epochs
set to 10. For representation alignment, we assign the value of τ as 2, 20, and 20 for data removal,
class removal, and noisy label removal tasks, respectively for CNN. We assign the value of τ as 20,
20, and 5 for ResNet. Subsequently, in the supervised repairing stage, we designate the repairing
epoch as 1, applying a learning rate of 1e-3 for all tasks on the DIGITS and FASHION datasets, and
5e-5 on the CIFAR10 and SVHN datasets.

1https://www.dropbox.com/s/bwu543qsdy4s32i/Boundary-Unlearning-Code.zip?dl=0
2https://github.com/vikram2000b/bad-teaching-unlearning
3https://github.com/meghdadk/SCRUB
4https://github.com/cleverhans-lab/machine-unlearning
5https://github.com/cleverhans-lab/unrolling-sgd

3



(a) Time cost on DIGITS (b) Time cost on FASHION

(c) Time cost on CIFAR10 (d) Time cost on SVHN

Figure 3: Time cost comparison in the data removal task. The red columns stand for the time costs of
the proposed LAF and the orange columns stand for LAF-R. The green columns denote the retraining
and the blue columns denote other methods.

A.4 EFFICIENCY ANALYSIS

A.4.1 TIME COST ANALYSIS

Figure 2: Time cost proportion. VAE_1 stands for the training of h and VAE_2 stands for the training
of hf

Figure 3 presents a comparative analysis of the time efficiency of our LAF framework against other
methods in data removal tasks. The results indicate that LAF does not hold a distinct advantage in
terms of efficiency. Specifically, in experiments conducted on two MNIST datasets, LAF exhibits a
slightly higher time cost compared to the seven other evaluated methods. However, in trials involving
the CIFAR10 and SVHN datasets, LAF’s time consumption is close to the average time cost of other
methods and is notably less than that required for retraining and the TS (Teacher-Student) approaches.

This variation in time efficiency primarily stems from the time-intensive process of training the VAEs.
As illustrated in Figure 2, the training phase of VAE h accounts for nearly half of the total algorithm
runtime, pinpointing a key area for future enhancements. It’s important to note, though, that the
training of h is conducted on the entire training dataset and is independent of the selection of data
to be forgotten. Hence, this training phase can be executed separately from the unlearning process,
offering a substantial opportunity to reduce overall time expenditure.

4



(a) Storage cost on DIGITS (b) Storage cost on FASHION

(c) Storage cost on CIFAR10 (d) Storage cost on SVHN

Figure 4: Storage workload comparison in the data removal task. The red columns stand for the time
costs of the proposed LAF and the orange columns stand for LAF-R. The green columns denote the
retraining and the blue columns denote other methods.

Figure 5: Memory workload changes of LAF during the whole procedure on the random data removal
task on DIGITS

A.4.2 STORAGE WORKLOAD ANALYSIS

Figure 4 provides a comparative overview of the storage workload associated with our LAF framework
and other data unlearning methods. The analysis indicates that LAF’s storage demands are broadly
comparable to those of most other unlearning methods. Notably, the Retrain method exhibits the
lowest storage workload, as it does not necessitate any additional memory-intensive components.
Conversely, while the Unroll method achieves the lowest time cost, it demands the most storage,
particularly in experiments involving ResNet. This increased requirement is due to Unroll’s need to
store gradients for all parameters across the entire training dataset. Moreover, the SISA approach
involves training multiple models concurrently, each mirroring the structure of the original model,
thereby escalating the storage requirements. In contrast, our LAF framework avoids the need to store
extensive gradients or maintain complex additional models. Although LAF includes the training
of two additional VAEs, these are structurally simple, comprising merely five or four linear layers
each. For context, the CNN model encompasses 450K parameters, and ResNet-18 contains 11.3M
parameters, while the two VAEs collectively have only 150K parameters.

To provide a clearer depiction of the storage workload dynamics within LAF, Figure 5 visualizes the
changes in storage requirements throughout the entire LAF process. It reveals that the peak workload

5



occurs during the VAE training stage, after which the storage demands stabilize during the actual
unlearning phase.

A.5 ADDITIONAL EXPERIMENTS

In this section, we add three parts of additional experiments. A.5.1 is to evaluate the impact of the
two approximations in the extractor unlearning process: replacing D by Dr for the training of the
first VAE, and dropping of the two KL divergence terms in Eq.8. A.5.2 is to evaluate two different
optimization strategies, alternately updating and two-stage updating. A.5.3 is set up to examine the
efficacy of the proposed methods on the low-quality representations.

Table 2: Ablation study results in data removal. ‘Add KL’ adds two KL divergence terms in Eq.8 in
the main paper for optimization and Dr denotes training the VAE h using the remaining data. The
bold results stand for the best. The following tables take the same notations.

Method Data Trainr Trainf Test ASR Data Trainr Trainf Test ASR

Retrain

D
IG

IT
S 99.56±0.05 98.84±0.10 99.04±0.10 49.80±0.53

FA
SH

IO
N 96.43±0.35 92.15±0.41 90.23±0.22 47.32±0.76

Add KL 53.36±3.54 85.78±5.14 58.90±1.40 41.19±0.32 59.97±0.06 11.93±2.94 48.93±0.23 41.57±0.06
Dr 99.52±0.01 99.43±0.30 98.98±0.09 56.67±2.61 92.49±0.37 90.17±1.57 88.22±0.42 44.57±0.87
LAF 98.03±0.68 97.29±1.43 97.30±0.78 47.92±0.84 91.54±2.67 90.91±7.00 87.53±3.26 46.89±0.88

Retrain

C
IF

A
R

10 84.03±0.20 78.05±1.34 87.20±0.65 57.48±0

SV
H

N

83.88±0.23 75.16±0.76 93.41±0.40 58.76±0.48
Add KL 44.88±32.38 40.81±39.4546.33±36.3357.30±5.20 81.92±0.30 75.79±0.34 91.93±0.32 58.09±0.29
Dr 77.70±0.67 75.59±1.81 81.79±0.84 55.73±0.73 81.77±0.36 75.37±0.82 91.88±0.13 58.19±0.12
LAF 78.03±1.55 73.30±3.96 82.22±2.57 57.65±0.70 81.63±0.49 76.11±1.49 92.32±0.58 57.85±0.89

Table 3: Ablation study results in class removal.
Method Data Testr Testf ASR Data Testr Testf ASR

Retrain

D
IG

IT
S 98.81±0.15 0±0 26.49±1.41

FA
SH

IO
N 92.66±0.29 0±0 38.24±3.13

Add KL 98.16±0.18 0.26±0.05 24.83±0.76 88.43±1.24 0.75±0.44 31.71±0.74
Dr 98.18±0.17 0.31±0.10 24.74±0.80 89.78±0.39 2.35±1.04 31.45±0.19
LAF 98.03±0.68 0.26±0.11 52.25±2.61 91.54±2.67 2.46±1.46 31.35±0.71

Retrain

C
IF

A
R

10 86.01±0.64 0±0 67.76±1.58

SV
H

N

94.07±0.67 0±0 59.33±1.31
Add KL 47.11±36.02 0.10±0.05 48.45±1.67 91.14±0.76 2.38±2.32 54.33±2.47
Dr 76.83±0.38 2.05±1.65 47.14±1.48 90.76±0.14 6.31±3.89 47.19±3.63
LAF 82.38±0.97 2.15±1.96 50.46±1.96 85.80±1.14 0.33±0.51 56.33±0.49

A.5.1 FURTHER ABLATION STUDY

Tables 2, 3, and 4 present the findings from our expanded ablation study, focusing on various
unlearning tasks. The results highlight that LAF, both in its standard form and with Dr utilized
during VAE training, achieves comparable outcomes across most unlearning scenarios. This is
particularly evident in tasks involving random data removal. Such consistency validates our approach
of substituting D with Dr, which offers the advantage of pre-training the VAE, thereby reducing time
costs associated with unlearning requests.

Furthermore, upon integrating two KL divergence terms into the optimization process, we observe
that performance in class removal and noisy label removal tasks remains similar to both the standard
LAF and the LAF with Dr in VAE training. However, a notable difference emerges in random
data removal tasks, where we witness a marked decline in performance for the remaining data and
test data, along with a greater deviation in attack success rates compared to retrained models. This
phenomenon can be attributed to the KL divergence term of the VAE, which, when trained on the
entire dataset, acts as a regularization component. This effect makes unlearning more challenging,
inadvertently preserving information about the remaining data. It is this observation that led us to
exclude these two KL divergence terms from the final extractor unlearning loss formulation.

6



Table 4: Ablation study results in noisy label removal.
Method Data Trainr Trainf Test ASR Data Trainr Trainf Test ASR

Retrain

D
IG

IT
S 99.75±0.12 0.17±0.01 98.83±0.05 39.26±0.01

FA
SH

IO
N 97.04±0.83 2.16±0.06 88.15±0.45 37.65±1.88

Add KL 90.15±1.12 3.66±0.17 84.40±1.74 29.31±0.75 87.82±0.47 4.68±0.22 78.33±0.75 30.19±0.58
Dr 90.60±0.59 3.53±0.03 84.84±1.18 28.85±0.66 87.74±0.44 4.70±0.19 78.27±0.81 30.35±0.22
LAF 96.46±0.67 2.70±0.59 91.48±1.49 18.51±0.57 92.32±0.66 4.80±0.71 81.21±1.22 22.36±0.72

Retrain

C
IF

A
R

10 73.33±0.89 7.74±0.23 64.74±1.26 57.04±0.99

SV
H

N

82.46±0.15 2.37±0.23 93.38±0.35 59.55±1.22
Add KL 77.67±0.90 2.80±0.35 82.48±0.66 51.82±4.76 78.06±2.71 3.49±6.43 89.11±0.48 49.58±0.50
Dr 78.31±1.20 2.80±0.31 82.65±0.56 47.18±1.14 78.02±0.08 3.53±0.03 89.15±0.56 50.71±1.16
LAF 57.44±1.11 10.60±0.20 47.57±0.63 53.18±0.68 77.87±0.35 3.59±0.20 89.33±0.32 51.50±1.17

Table 5: Optimizing strategy comparison in data removal.
Method Data Trainr Trainf Test ASR Data Trainr Trainf Test ASR

Retrain

D
IG

IT
S 99.56±0.05 98.84±0.10 99.04±0.10 49.80±0.53

FA
SH

96.43±0.35 92.15±0.41 90.23±0.22 47.32±0.76
Two Stage 88.63±7.06 69.22±19.7484.22±9.45 44.01±1.29 81.82±0.16 71.26±1.37 91.28±0.30 56.92±0.96

LAF 98.03±0.68 97.29±1.43 97.30±0.78 47.92±0.84 91.54±2.67 90.91±7.00 87.53±3.26 46.89±0.88

Retrain

C
IF

A
R

10 84.03±0.20 78.05±1.34 87.20±0.65 57.48±0

SV
H

N 83.88±0.23 75.16±0.76 93.41±0.40 58.76±0.48
Two Stage 78.62±0.79 80.05±1.11 83.51±0.5 56.46±0.30 81.82±0.16 71.26±1.37 91.28±0.30 56.92±0.96

LAF 78.03±1.55 73.30±3.96 82.22±2.57 57.65±0.70 81.63±0.49 76.11±1.49 92.32±0.58 57.85±0.89

Table 6: Optimizing strategy comparison in class removal.
Method Data Testr Testf ASR Data Testr Testf ASR

Retrain

D
IG

IT
S 98.81±0.15 0±0 26.49±1.41

FA
SH

92.66±0.29 0±0 38.24±3.13
Two Stage 98.84±0.13 1.02±0.31 23.59±0.28 91.17±0.17 9.05±0.55 30.58±0.09

LAF 98.03±0.68 0.26±0.11 52.25±2.61 91.54±2.67 2.46±1.46 31.35±0.71

Retrain

C
IF

A
R

10 86.01±0.64 0±0 67.76±1.58
SV

H
N 94.07±0.67 0±0 59.33±1.31

Two Stage 82.27±1.06 1.15±0.55 46.20±0.72 91.95±0.11 2.67±1.98 54.78±1.13
LAF 82.38±0.97 2.15±1.96 50.46±1.96 85.80±1.14 0.33±0.51 56.33±0.49

Table 7: Optimizing strategy comparison in noisy label removal.
Method Data Trainr Trainf Test ASR Data Trainr Trainf Test ASR

Retrain

D
IG

IT
S 99.75±0.12 0.17±0.01 98.83±0.05 39.26±0.01

FA
SH

97.04±0.83 2.16±0.06 88.15±0.45 37.65±1.88
Two Stage 90.42±0.15 3.79±0.16 84.12±0.30 58.54±0.01 85.52±1.03 5.94±0.35 73.86±1.63 30.08±0.53

LAF 96.46±0.67 2.70±0.59 91.48±1.49 18.51±0.57 92.32±0.66 4.80±0.71 81.21±1.22 22.36±0.72

Retrain

C
IF

A
R

10 73.33±0.89 7.74±0.23 64.74±1.26 57.04±0.99

SV
H

N 82.46±0.15 2.37±0.23 93.38±0.35 59.55±1.22
Two Stage 80.04±0.33 2.67±0.17 83.93±0.70 57.31±0.22 15.70±0.75 12.41±0.18 9.65±0.50 55.84±0.69

LAF 57.44±1.11 10.60±0.20 47.57±0.63 53.18±0.68 77.87±0.35 3.59±0.20 89.33±0.32 51.50±1.17

A.5.2 OPTIMIZING STRATEGY

Table 5, 6, 7 presents the results using two different optimizing strategies, alternately updating
and two-stage updating. On the DIGITS, FASHION, and SVHN datasets, the alternately updating
can reach better forgetting performances and knowledge preservation performances for all three
unlearning tasks. In addition, although the two-stage updating can achieve closer results to the
retrained models on the preservation of the knowledge from the remaining data, the performances
on the forgetting data and the ASR show large differences to the results of alternately updating.
Therefore, the experiment results can demonstrate the reasonability and correctness of alternately
updating instead of updating in two stages.

A.5.3 EXPERIMENT ON LOW-QUALITY REPRESENTATIONS

To further examine the efficacy of the proposed LAF, we test LAF with low-quality representations
on the different unlearning tasks. Considering that deep models can easily to reach high prediction
performances on the two MNIST datasets, we choose the other two datasets: CIFAR10 and SVHN
and train two insufficiently trained ResNet-18 models for the experiments. We set the training epochs
as 1 and keep the same values of the other hyperparameters as the experiment settings in the main
paper. The results are presented in Table 8 and 9.

The sufficiently retrained model and sufficiently trained SISA always reach significantly better
performances than all the post-unlearning models because the models provided for unlearning are
insufficiently trained. Therefore, the retrained results do not have much reference value in this
experiment setting. The results of the original model can prove that all the original models are
sufficiently trained and can provide baselines of the performances on the remaining and forgetting
data.

7



Then for the remaining approaches, the results demonstrate that LAF can LAF-R can achieve much
better performances than other methods. This can support that LAF can also work on low-quality
representation extractors.

Table 8: Comparison results with other state-of-the-art methods in data removal (avg%±std%).
Method Data Trainr Trainf Test ASR Data Trainr Trainf Test ASR

Retrain
C

IF
A

R
10

84.03±0.20 78.05±1.34 87.20±0.65 57.48±0

SV
H

N

83.88±0.23 75.16±0.76 93.41±0.40 58.76±0.48
Original 45.59±2.77 46.12±2.78 48.76±3.95 - 63.21±1.66 63.04±1.73 72.70±3.18 -
NegGrad 20.27±0.93 0±0 16.20±0.64 51.38±0.96 22.42±0.10 0±0 19.73±0.15 60.34±0.06
Boundary 21.32±1.34 10.40±0.37 19.62±2.03 54.72±0.81 42.09±1.31 12.66±0.19 47.21±2.78 55.53±1.73

SISA 66.78±0.10 53.12±0.74 54.30±0.05 37.53±0.02 82.48±0.17 67.79±0.34 82.57±0.83 50.19±0.38
Unrolling 27.02±0.16 2.28±2.23 29.72±0.16 57.25±0.87 49.74±1.16 14.78±4.44 53.43±1.35 56.34±0.13

T-S 46.48±1.87 50.20±4.59 50.61±3.14 52.98±0.52 64.52±2.20 55.16±2.13 73.13±4.59 55.02±0.25
SCRUB 30.00±0.12 0±0 26.84±0.84 53.86±0.55 30.23±0.17 0±0 27.82±1.04 60.30±0.05
LAF+R 48.11±1.36 44.19±1.00 52.32±0.50 53.43±0.34 68.31±0.55 54.77±5.10 78.75±0.96 55.70±0.57

LAF 43.55±0.75 44.51±0.21 46.06±0.87 54.95±0.66 63.89±1.20 53.94±2.81 72.30±3.05 54.23±1.41

Table 9: Comparison results with other state-of-the-art methods in class removal (avg%±std%)
Method Data Testr Testf ASR Data Testr Testf ASR

Retrain

C
IF

A
R

10

86.01±0.64 0±0 67.76±1.58

SV
H

N

94.07±0.67 0±0 59.33±1.31
Original 63.86±9.61 47.08±5.27 - 61.27±17.36 73.52±3.22 -
NegGrad 17.87±0.34 0±0 46.46±0.43 34.36±0.21 0±0 64.13±1.74
Boundary 35.24±9.22 1.52±2.89 49.03±1.64 54.36±0.71 12.13±1.81 61.99±1.20

SISA 99.10±0.03 0±0 50.12±0.23 92.14±0.07 0±0 50.00±0.02
Unrolling 42.35±0.67 0±0 58.55±0.01 60.78±2.68 0±0 56.85±2.59

T-S 48.81±3.05 32.30±10.20 45.86±2.26 72.10±3.09 25.83±14.94 57.77±8.49
SCRUB 31.45±1.56 0±0 51.57±0.29 22.53±1.54 0±0 68.76±2.94
LAF+R 47.04±0.16 0±0 47.34±2.35 76.34±0.10 0±0 56.81±0.65

LAF 43.07±4.63 1.3±0.20 43.29±0.34 61.51±4.63 0.06±0.06 56.67±2.61

8



REFERENCES

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu
Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In SP, 2021.

Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid forgetting of
deep networks via shifting the decision boundary. In CVPR, 2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for contrastive
learning of visual representations. In ICML, 2020.

Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, and Mohan S. Kankanhalli. Can bad teaching induce
forgetting? unlearning in deep networks using an incompetent teacher. In AAAI, 2023.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing deep networks
of information accessible from input-output observations. In Andrea Vedaldi, Horst Bischof, Thomas Brox,
and Jan-Michael Frahm (eds.), ECCV, 2020a.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective
forgetting in deep networks. In CVPR, 2020b.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In EAAI, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
ECCV, 2016.

Junyaup Kim and Simon S. Woo. Efficient two-stage model retraining for machine unlearning. In CVPR, 2022.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. Arxiv, 1611.07308, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
https://www.cs.toronto.edu/ kriz/cifar.html, 2009.

Meghdad Kurmanji, Peter Triantafillou, and Eleni Triantafillou. Towards unbounded machine unlearning. Arxiv,
2302.09880, 2023.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The handbook
of brain theory and neural networks, 1995.

Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. Variational autoencoders for
collaborative filtering. In WWW, 2018.

Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Federaser: Enabling efficient
client-level data removal from federated learning models. In IWQOS, 2021.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet. Variational bayesian unlearning. In NeurIPS,
2020.

Ayush K. Tarun, Vikram S. Chundawat, Murari Mandal, and Mohan S. Kankanhalli. Fast yet effective machine
unlearning. TNNLS, 2023.

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling SGD: understanding
factors influencing machine unlearning. In EuroS&P, 2022.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding.
Arxiv, 1807.03748, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. Arxiv, 1708.07747, 2017.

Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine unlearning: A survey. ACM
Comput. Surv., 2024.

9


	Supplementary Material
	Related works
	Notations
	Implementation Details
	Overall Workflow
	Environment
	Initializations
	Hyperparameters

	Efficiency analysis
	Time cost analysis
	Storage workload analysis

	Additional Experiments
	Further Ablation Study
	Optimizing Strategy
	Experiment On low-quality representations



