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ABSTRACT

Recommender systems play a crucial role in internet economies by connecting
users with relevant products or services. However, designing effective recom-
mender systems faces two key challenges: (1) the exploration-exploitation trade-
off in balancing new product exploration against exploiting known preferences,
and (2) context-aware Bayesian incentive compatibility in accounting for users’
heterogeneous preferences and self-interested behaviors. This paper formalizes
these challenges into a Context-aware Bayesian Incentive-Compatible Recom-
mendation Problem (CBICRP). To address the CBICRP, we propose a two-stage
algorithm (RCB) that integrates incentivized exploration with an efficient offline
learning component for exploitation. In the first stage, our algorithm explores
available products while maintaining context-aware Bayesian incentive compat-
ibility to determine sufficient sample sizes. The second stage employs inverse
proportional gap sampling integrated with arbitrary efficient machine learning
method to ensure sublinear regret. Theoretically, we prove that RCB achieves
O(V KdT) regret and satisfies Bayesian incentive compatibility (BIC). Empiri-
cally, we validate RCB’s strong incentive gain, sublinear regret, and robustness
through simulations and a real-world application on personalized warfarin dosing.
Our work provides a principled approach for incentive-aware recommendation in
online preference learning settings.

1 INTRODUCTION

In the current era of the internet economy, recommender systems have been widely adopted across
various domains such as advertising, consumer goods, music, videos, news, job markets, and travel
routes (Koren et al., 2009; Li et al., 2010; Covington et al., 2016; Wang et al., 2017; Zheng et al.,
2018; Mclnerney et al., 2018; Naumov et al., 2019; Lewis et al., 2020; Bao et al., 2023). Modern
recommendation markets typically involve three key stakeholders: products, users, and the plat-
form (which acts as a principal). The platform collects and analyzes user data to enhance future
distribution services and to respond effectively and promptly to user feedback. In these context-
aware markets, the platform serves as the planner and fulfills a dual role: recommending the best
available product (i.e., exploitation) and experimenting with lesser-known products to gather more
information (i.e., exploration). This exploration is crucial because users often have heterogeneous
preferences, and many products may initially seem unappealing. However, exploration feedback can
be valuable it provides critical insights into the products and helps determine whether they might
be worthwhile for future users with similar interests. Unlike in service-oriented scenarios, these are
marketplaces where choices are ultimately made by users rather than imposed by the platform.

The key challenge arises from the fact that heterogeneous users exhibit various interests to explo-
ration and are usually lack incentives to adhere to the platform’s recommendations due to varying
interests. A myopic user is likely to choose products based solely on immediate benefits, demonstrat-
ing a bias toward exploitation over exploration. How can the platform effectively keep a balance be-
tween exploration and exploitation while taking individualized incentive compatibility into account?
In other words, recommender systems commonly face two significant obstacles: (1) exploration-
exploitation tradeoff: How can the platform design recommender systems that maximize rewards
but also consider that failing to sufficiently explore all available products initially may lead to sub-
optimal decisions? (2) context-aware incentive compatibility: How can we strategically address the
tendency of heterogeneous users to behave myopically?



In this paper, we first formalize those challenges into a Context-aware Bayesian Incentive-
Compatible Recommendation Problem (CBICRP). This protocol assumes that the platform can com-
municate directly with users, for example, by sending individualized product recommendations, and
then observing the user’s actions and the outcomes. The key difference between this protocol and
standard bandit algorithm is that user’s actions incorporate not only their personalized interests and
a common public prior over all products but also the individualized message sent by the platform.
That is, users will continuously evaluate the difference between products after receiving the mes-
sage/recommendation sent by the platform which is formalized in a Bayesian way.

The basic multi-armed bandit (MAB) model of incentivized exploration has been examined in (Kre-
mer et al., 2014; Che & Horner, 2018; Mansour et al., 2020; Sellke & Slivkins, 2023), which model
the recommendation policy within the framework of MAB problems and incorporating incentive
compatibility constraints by agents’ Bayesian priors, but these models assume independent prior
preference over products but in reality, these products share correlated prior beliefs. Subsequently,
Hu et al. (2022); Sellke (2023) propose BIC recommendation policies for customers with dependent
priors with Thompson sampling algorithm. However, Hu et al. (2022) considered the combinatorial
semi-bandits which didn’t consider the users’ contextual information and corresponding personal-
ized preferences over products. Similarly, Sellke (2023); Kalvit et al. (2024) considered the fixed
design setting where feature x; are product-owned and fixed rather than our setting that feature x; ;
is user-possessed and online sampled which introduces more technical difficulty since fixed design
of x can be transformed into the MAB setting and randomized design of x can not. In addition, their
settings only need to learn one parameter and our setting needs to learn K arms’ parameters (Latti-
more & Szepesvari, 2020; Bastani & Bayati, 2020). Besides, our framework can easily incorporate
any efficient offline marching learning methods, which greatly strengthens its applicability.

Recommendation context bandit algorithm (RCB) is composed of a two-stage design’s algorithm. In
the first stage, the platform explores all available products, taking into account context-aware incen-
tive compatibility, and determines the minimal amount of information (sample size) that needs be
collected for the subsequent stage. The second stage employs an inverse proportional gap sampling
bandit integrated with any efficient plug-in offline machine learning method. This approach aims to
simultaneously ensure sublinear regret and maintain context-aware BIC.

Our main contributions can be delineated into three parts:

1. We formalize the context-aware online recommendation problem under BIC constraints in §3.
This formulation accommodates context-aware user preferences and incorporates BIC con-
straints.

2. We introduce a two-stage context-aware BIC bandit algorithm (RCB) for addressing CBICRP (see
Algorithms 1 and 2). This algorithm adapts to any efficient offline machine learning algorithm as
a component of the exploitation stage. RCB is also a decision length T-free algorithm, as long as
T is greater than a constant. Moreover, we demonstrate that RCB achieves an O(v/ KdT) regret
bound (Theorem 2), where K is the number of products and d is the feature dimension. It also
maintains the BIC constraints (Theorem 1).

3. Lastly, we validate the effectiveness of RCB through its performance in terms of incentive gain
and sublinear regret, and its robustness across various environmental and hyperparameter settings
in §6.1. Additionally, we apply our algorithm to real-world data (personalized warfarin dose
allocation) and compare it with other methods to demonstrate its efficacy in §6.2.

In §2, we provide related works. In §3, we introduce the heterogeneous recommendation protocol
featuring BIC and the associated challenges. §4 details the design of our algorithm. In §5, we
demonstrate that RCB upholds the BIC constraint and suffers sublinear regret. §6 showcases the
effectiveness and robustness of RCB through simulations and real-data studies.

Notations. We denote [N] = [1,2, ..., N] where N is a positive integer. Define z € R< be a d-
dimensional random vector. The capital X € R?*4 represents a d x d real-valued matrix. Let I
represent a d X d diagonal identity matrix. We use O(-) to denote the asymptotic complexity. We
denote T as the time horizon.



2 RELATED WORKS

Incentivized Exploration. There is a growing literature about a three-way interplay of exploration,
exploitation, and incentives, comprising a variety of scenarios. The study of mechanisms to in-
centivized exploration has been initiated by (Kremer et al., 2014). They mainly focus on deriv-
ing the Bayesian-optimal policy for the case of only two actions and deterministic rewards, where
Che & Horner (2015) also propose a model to derive a BIC policy to this setting. Frazier et al.
(2014) considers a different setting with monetary transfers between the platform and agents. Later,
exploration-exploitation problems with multiple self-interested agents have also been studied: mul-
tiple agents engaging in exploration without a planner to coordinate them e.g., (Keller et al., 2005),
context-aware pricing with model uncertainty e.g., (Besbes & Zeevi, 2009; Badanidiyuru et al.,
2018), dynamic auctions e.g., (Ostrovsky & Schwarz, 2023; Han & Dai, 2023), pay-per-click ad
auctions with unknown click probabilities e.g., (Babaioff et al., 2015), as well as human computa-
tion e.g., (Ho et al., 2014).

Bandit Algorithms. There are various strategies and algorithms to solve the sequential decision
making problem (Bubeck et al., 2012; Slivkins et al., 2019; Maillard, 2019; Lattimore & Szepesvari,
2020), such as the e-greedy (Auer et al., 2002; Chen et al., 2021; Han et al., 2022; Shi et al., 2022),
explore-then-commit (Robbins, 1952; Abbasi-Yadkori et al., 2009; Li et al., 2022), upper confidence
bound (UCB) (Lai & Robbins, 1985; Auer, 2002; Li et al., 2021; Wang et al., 2023), Thompson sam-
pling (Thompson, 1933; Russo & Van Roy, 2014; Li et al., 2023), boostrap sampling (Kveton et al.,
2019; Wang et al., 2020; Wu et al., 2022; Ramprasad et al., 2023), information directed sampling
(Russo & Van Roy, 2014; Hao & Lattimore, 2022), inversely proportional to the gap sampling (Abe
& Long, 1999; Foster & Rakhlin, 2020; Simchi-Levi & Xu, 2022), and betting (Waudby-Smith et al.,
2022; Li et al., 2024). Additional related works can be found in Appendix §A.

3 RECOMMENDATION PROTOCOL

We first illustrate the basic Context-aware Bayesian Incentive-Compatible Recommendation Prob-
lem (CBICRP). Assume a sequence of ' streaming users arrive sequentially to the platform and each
user p; with covariates (features) z; such as age, race, and location where these observed covariates
{z¢}4>1 are drawn independently from distribution Dx over a deterministic set X' C R?. The plat-
form has a set of products A, e.g., ads/music/video/medicine, where |A| = K. Each product (also
called as arms in bandit literature) is represented as the unknown vector 3; € R<. At time ¢, user
py arrives at the platform and the platform need to recommend arms to the user which follows the
following protocol:

1. The platform recommends the user with a best arm I; based on user’s covariates x;.

2. User myopically chooses an action a; € A and receives a stochastic reward y;(a;) C ) where
Y € [0,1], and leaves.

3. We assume the user provides reward y; (a;) following the linear model y; (a¢) = p(2¢, at) +1t.a,»
where p(7¢, a;) = 2 B, .!

and {74, }+>1 are o-subgaussian random variables if E[e!] < e”“1’/2 for every t € R, and inde-
pendent of the covariates {x; };>1. Besides, for notation simplicity, let y; denote the vector potential
reward in [0, 1]%, pu(z;) as the vector true personalized reward in [0, 1]%, and 7, as the vector noise
in R?. Without loss of generality, we assume X and /3 are bounded which means that it exists pos-
itive constants max and b such that ||z||, < L,Vx; € X and ||3;||, < bforall ¢ € [K], which is
a common assumption in literature (Abbasi-Yadkori et al., 2011; Bastani & Bayati, 2020; Li et al.,
2021) and usually assume L = b = 1. It’s important to note that the reward function contains
two stochastic sources: the covariate vector x; and the noise 1;, which is general harder than the
fixed design {J}t}t21 in bandit (Lattimore & Szepesvari, 2020). Besides, we define the data domain
Z = X x ) and denote Dz as the probability distribution over set Z.

The key difference between the above recommendation protocol with previous literature in sequen-
tial decision making (Sutton & Barto, 2018; Lattimore & Szepesvari, 2020) is that the user p; may
not follow the (best) recommendation arm I, that is, I; # a;. Users can switch to other recom-
mended options rather than simply click or not click the best recommended product provided by

!The discussion of the nonlinear is available in Appendix §F.



the algorithm. However, in CBICRP, the platform performs as a principal to recommend I; and the
decision a; is made by the user based on prior knowledge over arms, and the user have the option
to other products recommended by the platform. We assume the platform and all users share a
prior belief over arms Py = P1 X ... X Pg o where product prior parameter 3; ~ P; o with the
mean ;o = E[3;] and covariance matrix var(3;) = X, o. Additionally, given covariate x;, denote
to(xy,1) = E[u(ay, )] as the prior mean reward for arm ¢. It’s important to note that this setting is
different from the bandit setup whose arm parameter 3; is unknown and fixed.

Ideally, we hope users follow the (best) recommended arm I; even it is not the greedy option for
them given that the goal of each user is to maximize her expected reward conditional on her priors
over products. Here we define the event that best recommendations have been followed in the
past before time ¢ with prior knowledge Py as I't—; = {I; = as : s € [t — 1]} U Py, which
works as a public information. Then we can formally define the e-Context-aware Bayesian-Incentive
Compatible (CBIC) for users as follows.

Definition 1 (e-CBIC). Given an incentive budget ¢ > 0, a recommendation algorithm is e-Context-
aware Bayesian Incentive-Compatible (e-CBIC) if

E[H(xtal) - :u(xt;jﬂlf = i7Ft—1} > —¢€, vt € [T]7Z € [K} (1

If € = 0, we call it Context-aware Bayesian Incentive-Compatible (CBIC). For brevity, we use the
term CBIC to denote both CBIC and e-CBIC throughout the following paper, unless emphasized.

This definition implies that after receiving additional information, such as the recommended arm I;
and the historical information I';_;, the user always follow the recommended arm or at most with
expected reward (informally speaking, utility) loss less than e. Specifically, the user selects the arm
1 that maximizes the posterior mean reward, which is either the best recommended arm I; or another
arm whose posterior mean reward is within an e budget of the maximum. From the perspective of
the principal, it needs to contextually determine which arm to be recommended based on the current
covariate x; and all historical feedback &;.;_; at time ¢, where &1.; = {(x+, y#, a+) }1.+ denotes the
sigma-algebra generated by the history up to round ¢. The objective for the platform is to design
a sequential decision-making policy 7 = {m;(-) };>1 that maximizes the expected reward for each
user while adhering to the CBIC constraint, where 7 (24|S1.4—1) : X — A denote the arm chosen
at time ¢. Finally, let’s define the regret with respect to CBIC constraint when following the policy
7. The regret A () is defined as follows:

T

Regir)(m) = > Blu(ee, 7 () — plae, mi(a))] 2)

t=1

where 7} (z¢) is the posterior optimal arm given all information up to ¢t — 1, covariate x;, and
prior knowledge Py. The Reg (m) is taken over the randomness in the realized rewards and the
randomness inherent in the algorithm. Finally, we summarize the key challenge in the CBICRP:

Key challenge:

In CBICRP, users exhibit context-aware prior preferences over arms, requiring that recommended
products be more valuable than those selected myopically even still within an € margin of the max-
imum reward. Concurrently, the platform aims to maximize long-term expected rewards. There-
fore, the principal challenge lies in designing an algorithm that can simultaneously balance the
users’ incentive, the platform’s requirement for maximizing expected rewards, and the exploration.

4 ALGORITHMS

In this section, we introduce the Recommendation Contextual Bandit (RCB) algorithm, which is
structure into two stages, the cold start stage and the exploitation stage. The objective during the
cold start stage is to develop an algorithm that not only maintains CBIC for users to gain trust but
also fulfills the minimal sample size requirement necessary for the subsequent algorithm require-
ment for the platform with minimal budget and time cost. In the second stage, the design of RCB
focuses on constructing a sampling bandit algorithm that incorporate any efficient offline machine
learning methods for the long term goal of the balance of freshness and exploitation. This goal is
fulfilled by balancing the e-budget allocation strategically and a carefully designed of sequential
spread parameter {~,, }, over algorithm’s batches m.



4.1 COLD START STAGE

During the cold start stage, it needs to determine two important quantities, minimum sample size N
for each arm and exploration probability L. In addition, denote N;(t) as the current number of pulls
of arm 4 at time ¢, and B, = {i | N;(t) = N,Vi € [K|} as the set of arms that have been pulled N
times. Additionally, .S; represents the set collecting historical rewards and covariates for arm ¢, and
S = { Sk} ek encompasses the historical information for all arms.

The cold start stage’s process comprises two steps: (1) identify the most popular arm based on the
context-aware preference priors, and (2) recommend the remaining arms in a manner that economi-
cally allocates the incentive budget.

(1) The Most Popular Arm’s Sample Collection (MPASC). If no arm has collected N samples,
meaning B; is empty, the platform recommends arm ¢ to agent p;, where arm ¢ has the highest prior
mean reward with respect to agent p;. Subsequently, agent p; provides feedback ¥, ; according to
reward model. Afterwards, the platform updates the number of pulls V;(¢) and the data .S; respec-
tively: N;(t) = N;(t — 1) +1,5; = S; U (4, y,:). Once an arm has been pulled N times, it is
removed from further consideration and added to B;. The principle initially verifies whether any
arm has accumulated N samples. This step determines which arm is prior optimal, indicating the
most popular among heterogeneous users.

(2) Rest Arm Sample’s Collection (RASC). The platform initially samples a Bernoulli random
variable ¢; ~ Ber(1/L) to determine the recommendation strategy for the current user. With a prob-
ability of 1/L, the platform recommends exploring promoted (sample-poor) products, while with an
exploitation probability of 1 — 1/L, it suggests exploiting organic (sample-efficient) products. The
optimal value of L is determined based on prior information and the incentive budget ¢, as specified
in Theorem 1 in §5.

a) Promoted Recommendation. If ¢; = 1, the platform recommends agent p, to explore with a
promoted arm which is the highest prior mean reward arm within the set of [K]/B;, representing
that arms have not been pulled N times,

a; = argmax E[u(zy, 1)]. 3)

1€[K]/By

Then agent p; receives reward y; z, and the platform updates the number of pulls and samples of
pair of the covariate and reward respectively: Nz, (t) < Ng, (t — 1) + 1,55, < Sz, U (2, ye.a,)-
When arm a; has been pulled N times, arm a; is added to set B;.

b) Organic Recommendation. If ¢; = 0, the platform recommends the agent p; to exploit with the
organic arm a;, which is the highest expected mean reward arm conditional on Sp, .
ay = argmaxE[u(zy,1)|Sp,]- 4)
i€[K)
That is, arms in B;’s expected rewards are evaluated through posterior mean rewards and arms not in

B,’s expected rewards are evaluated through prior mean rewards. Then the agent p; receives reward
Yt,ax» but in this case, the principal will not update N,: () and S, .

4.2 EXPLOITATION STAGE

Given the data S (defined in §4.1) collected during the cold start stage, where each arm accumulates
N samples, the platform’s objective in the exploitation stage is to recommend arms with higher pos-
terior means while satisfying the CBIC constraint. Thus, the key challenge of the bandit algorithm’s
design lies in balancing exploitation efficiency with the allocation of the incentive budget €. The
general principle of the bandit algorithm involves first strategically dividing the decision points into
a series of epochs of increasing length. At the beginning of each epoch, samples collected in the
previous epoch are used to update the spread parameter ,, to control the balance of exploration and
exploitation tradeoff at epoch m, thereby informing the decisions for the current epoch. Here we
first denote the mth epoch’s rounds as 7,,, = {t € [2™71,2™) m > mg} and m(t) representing the
epoch where the current ¢ belongs to. The cold start stage’s epoch is demoted as my = [2+ logy N
and the final stage is denoted as m. The principal collected data at the mth epoch denoted as

Wr,, = {xtyatyyt(at)}tETm-

At epoch m € [mg,my], the platform then obtains the posterior mean estimator BZ =
Ep,~p(s:\wr,,_)[Bi], where p(3;|Wr,, ) represents the posterior distribution based on data from
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Algorithm 1: Cold Start Stage
Input : K,N, L, B, S, {N;(t) }ie[x), t = 1.
STEP 1 - THE MOST POPULAR ARM SAMPLE COLLECTION (MPASC)
while there is no arm been pulled N times do
Agent p; is recommended with arm ¢ = argmax ;¢ g E[p(x, j)] and receives reward y; ;.
The platform updates pulls and rewards: N;(t) <= N;(t — 1) +1,.S; < S; U (24, yr.i)-
If N;(t) =N, add i to B;. t < ¢t + 1. STEP I stopped.
Update t <t + 1.
STEP 2 - REST ARM SAMPLE COLLECTION (RASC)
while there exists an arm i such that the number of pulled N;(t) has not reached N do
Samples ¢, ~ Ber(1/L).
if ¢; = 1 then
py is recommended to explore with the arm a, based on Eq.3 and receives y; g, .
Updates N, (t) <— Ng, (t — 1) + 1 and dataset Sz, < Sz, U (z+, Y13, )-
If]V~ ( ) = N addat to Bt
else
\ py is recommended to exploit with the arm a; based on Eq.4 and receives y; ,» .
Update t <—t + 1.

Algorithm 2: Exploitation Stage

Input : .S, epochs mg, my, function class F, learning algorithm Of £ , confidence level 4.
for epoch m € [mg, m] do

Set v, = 4/ K/EFx s (| Trm—1])-

Feed m — 1 epoch’s data W, _, into the Of fPos and get {Bm,i}ie[lﬂ'

fort € 7, do
Agent p; arrives with covariate ;. Compute estimate fi,,, ;) (z¢,1) = mtTBm,i, Vi € [K].
Obtain the optimal arm b; = argmax;¢ s Hom (t) (Tt 1)-
Sample a; ~ p,, (i) according to Eq.5 and observe reward y;(a;).

Wi _,). Subsequently, the platform computes the predictive estimate reward (T, i) = xy T B;

for all arms. We denote b; = argmax;c (g it (2, %) as the best predictive arm. The platform then
randomly selects arm a; according to the distribution p;(7), for t € Tp,:
1-— if i = b;.
pnli) = 1 iz 220 T 5)
L/[K + ym (e (24, be) — g (e, 3))],  if i # by

where the spread parameter v, = 41/ K/Er 5(|Tm—1|) regulates the balance between exploration
and exploitation, and £x 5(|T,—1|) denotes the mean squared prediction error (MSPE) at epoch
m — 1. A smaller y,, results in a more dispersed p;, enhancing exploration. Conversely, a larger ,,
leads to a more concentrated p;, focusing recommendations on the best predictive arm b;. As the
epoch progresses, v, increases and is inversely proportional to the square root of the MSPE. The
MSPE is typically derived via cross-validation using an efficient offline statistical learning method.
Below, we present the formal definition of £ 5(n) with n i.i.d. training samples.

Definition 2. Let p be an arbitrary action selection kernel. Given a sample size of n data of the
format (z;, a;, ;. 4, ), Which are i.i.d. according to (z;,y;) ~ D,a; ~ p(-|x;), the offline learning
algorithm Off r based on the data and a general function class F returns a predictor fiz(z,a) :
X x A — R. For any 6 > 0, with probability at least 1 — 0, we have E,p ap(.|2) [t (T, a) —

Wz, a)]* < Ex5(n).

Computational Cost: The cold start stage’s computational cost is O(K LN) in expectation and
the exploitation stage’s computational cost are mainly based on the offline sample efficient machine
learning method. Usually it needs O(K/¢’?) samples in expectation for non-parametric methods
and O(Kd/€") samples in expectation for parametric methods to get the desired offline error €’.



5 THEORY

In this section, we first provide necessary assumptions in §5.1 to get the N, L, and the analytical
regret upper bound. Then we demonstrate that RCB simultaneously satisfies the CBIC constraints
in the whole decision process in §5.2 when sample size N and probability L are well designed. In

§5.3, we show RCB achieves a O(vV K dT') regret.

5.1 REGULARITY CONDITIONS
In order to satisfy the CBIC constraint, we list two assumptions over the prior distribution.

Assumption 1  (Prior-Posterior ~ Distribution ~ Assumption). Denote  Gy(4) =
minje g, ie(x)/B, Blu(xe, i) — p(xe,§)|Sp,] as the minimum prior-posterior gap when we
have N samples of arm j € By and zero sample of arm i in the cold start stage. There ex-
ists time-independent prior constants np,Tp,pp > 0 such that ¥Yn > np,,i € [K]|, then
Pr(Gt(i> > T'Po) > PPy

Any given arm i can be a posteriori best arm by margin Tp, with probability at least pp, after
seeing sufficiently many samples from B;. The platform provides a fighting chance for those arms
from [K]/B; with a low prioriori mean, which means after seeing sufficiently many samples of arm
j € By there is a positive probability that arm ¢ € [K|/B; (zero sample collected) is better. What’s
more, we assume the gap between arms are at least greater than 7p, with at least probability pp,
after we have np, data.

Assumption 2 (Posterior Distribution Assumption). Denote Gy(b;) = minjxp, E[u(ze, by) —
w(xt, §)|S] as the minimum posterior gap when we have N samples of each arms in the exploita-
tion stage. There exist a uniform time-independent posterior constants np_, Tp,, pp, > 0 such that
VYn > np,,i € [K|, then Pr(G(by) > mp,) > pp,.

The we provide the regularity conditions over covariates Px as follows to avoid the singularity.

Assumption 3 (Minimum Eigenvalue of X). Define the minimum eigenvalue of the covariance
matrix of X as Amin(X) = Amin(Eznpy [127]). There exists such a ¢ > 0 satisfying that
)\min(z) Z ¢0'

Assumption 4 (Prior Covariance Matrix Minimum Eigenvalue Assumption). For each arm i, the
minimum eigenvalue of prior covariance matrix X; o satisfying: (1) X;0 > Xiola. (2) {Nit}e>0 is
increasing with order O(t).

This assumption assumes that with more interaction and feedback occurred in the platform, users
have a context-aware prior belief and this prior becomes weaker and weaker since users tend to trust
the platform’s recommendation rather than have strong belief for specific arms. And these minimum
eigenvalues of the covariance matrix become larger which means that users are more open to those
products rather than with strong opinion towards specific products. We also explore when this
assumption is violated in Appendix §E.

5.2 CONTEXT-AWARE BAYESIAN INCENTIVE COMPATIBLE CONSTRAINT

Next we provide the requirements for the minimum sample size N(¢) and the exploration probability
L to efficiently allocate the budget € and effectively recommend the optimal arms to users.

Theorem 1. With Assumptions I - 3, and the prior follows the normal distribution, if the parameters
N, L are larger than some prior-dependent constant and the platform follows the RCB algorithm,
then it preservers the e-CBIC property with probability at least pp,pp,. More precisely, it suffices

to take
(c?d+1)K? 1—e¢

N(e) > andL>1+ ————. (6)
© 2 TP, PP, + €

= do(rp, +¢€)
And the exploitation stage starts at mo(e) > [2 + logy N(e€)].

This theorem demonstrates that RCB maintains e-CBIC throughout the entire recommendation pro-
cess given the lower bound of N and L. We provide that the minimum sample size N(¢) is cubic with
respect to the number of arms K, linear in relation to the covariate dimension d, inversely quadratic
to the sum of budget e and the minimal optimal posterior gap 7p, , and inversely linear to the mini-
mum eigenvalue of the covariance matrix of our features ¢g. This critically shows the tradeoff that
a relatively larger budget € significantly reduces the minimal sample size needed. Additionally, the
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Figure 1: Incentive gain (left) and cumulative regret (right) of Setting 1 (upper) and Setting 2 (lower).

determination of the spread parameter +,, is based on the pivot of the functionality of € in N(e).
In RCB, given N(e) in the cold start stage, -, for each epoch is entirely determined by the offline
learning method and is independent of € due to the increasing length of the epochs.

5.3 REGRET UPPER BOUND

In the following theorem, we show the regret upper bound of RCB.

Theorem 2. Given N(¢) and L from Theorem 1, and Assumption 4, for any T > Tp,,_1 + 1, with
probability at least 1 — &, the regret upper bound of RCB is Ty, —1(€) + O(\/Kd(T — Time—1(€))).

The total regret is partitioned into two components: the cold start stage’s regret 7,,,—1 and the
exploitation stage O(v/ KdT'), where the latter depends only on the square root of the number of
arms K, the covariate dimension d, and the decision horizon T'. This square root dependency on 7',
d, and K underscores the efficiency of the approach, as detailed in (Lattimore & Szepesvari, 2020).
Moreover, the effect of the ¢ budget is predominantly observed in the regret of the cold start stage,
especially when 7' is small.

6 EXPERIMENTS

In this section, we apply RCB to synthetic data (§6.1) and real data (§6.2) to demonstrate its effec-
tiveness by illustrating how RCB ensures sublinear regret, maintains CBIC, and exhibits robustness
across various hyperparameters. Our code is available to ensure reproducibility of the results.

6.1 SIMULATION STUDIES

The goal of this section is to demonstrate that RCB algorithm can satisfy the e-CBIC constraint
and simutaneously secure the sublinear regret. For all settings, the following parameters need to be
specified (a) environment parameters: time horizon 7', number of arms K, feature dimension d, and
noise level o; (b) e-CBIC parameters: budget €, prior-posterior minimum gap constants 7p, and pp,;
(c) prior belief parameters: prior Py, where we assume the prior follows the normal distribution.

Setting 1 (Environment Effects): We consider RCB’s robustness in terms of different K =
[2,5,10], d = [3, 5, 10]. For rest parameters, we set 7' = 10°, 0 = 0.05, ¢ = 0.05, 7p, = 0.01, and
pp, = 0.95. The prior are set to be 3; 0 = 0qg and X; o = 1/51,.

Setting 2 (Ad-hoc Design): This scenario demonstrates the results when the platform adopts
an ad-hoc approach to N(e) without following the guidelines of Theorem 1. Here, N is set to
{10, 100,1000}. All other parameters remain consistent with those specified in Setting 1.

Analysis of Setting 1 (Upper part of Figure 1): Different columns in the figure represent various
dimensions d, with the first three columns illustrating the e-CBIC gain and the last three columns
detailing the regrets observed. Our findings indicate that RCB satisfies the e-CBIC property, as evi-
denced by the gain consistently exceeding -0.05 (dashed line), or budget not been used up. During
the exploitation stage, there is an observable upward trend in the instantaneous e-CBIC gain, sug-
gesting that the recommendation system increasingly gains trust from customers (larger € gain). The



right segment of the figure explores the relationship between regret, d, and K. It was observed that
the regret for K = 10 significantly exceeds that for K = 3 and K = 5. This discrepancy arises
because, to maintain the e-CBIC property, the duration of the cold start stage increases cubically
with K, representing a substantial cost during this initial phase. In contrast, the impact of d on cost
is relatively minimal, as articulated in Theorem 1.

Analysis of Setting 2 (Lower part of Figure 1): This setting mirrors Setting 1 in terms of overall
configuration. However, in this scenario, the platform does not adhere to the sample size require-
ments needed to satisfy the e-CBIC property, opting instead for an arbitrary fixed cold start length of
N(e) = {10,100,1000}. The simulation results for N(¢) = {100, 1000} are detailed in Appendix
§E. When compared with the regret observed in Setting 1, which is at the level of 10°, the regret in
Setting 2 is considerably lower, at approximately 103. However, in terms of e-CBIC gain, Setting
1 consistently shows positive gains, fully complying with the e-CBIC property, whereas Setting 2
experiences periods of negative gains, particularly when the number of arms is high (X = 10). This
negative trend is more pronounced as d increases, making it increasingly challenging to estimate an
appropriate cold start length, as further discussed in Appendix §E. Notably, even with N(¢) = 1000,
the e-CBIC gain remains negative for most instances when d = 5 or 10.

6.2 REAL DATA

We utilize a publicly available dataset from the Pharmacogenomics Knowledge Base (PharmGKB)
that includes medical records of 5,700 patients treated with warfarin across various global research
groups (Consortium, 2009). In the U.S., inappropriate warfarin dosing leads to about 43,000 emer-
gency department visits annually. Traditional fixed-dose strategies can result in severe adverse ef-
fects due to initial dosing inaccuracies. Our study aims to optimize initial dosages by leveraging
patient-specific factors from the cleaned data of 5,528 patients. Detailed data information and pre-
proc are provided in Appendix E.2.

Arms Construction: We follow the arm construction as it in (Bastani & Bayati, 2020) and formulate
the problem as a K-armed bandit with covariates (/' = 3). We bucket the optimal dosages using
the “clinically relevant” dosage differences: (1) Low: under 3mg/day (33% of cases), (2) Medium:
3-Tmg/day (54% of cases), and (3) High: over 7mg/day (13% of cases). In particular, patients who
require a low (high) dose would be at risk for excessive (inadequate) anti-coagulation under the
physicians medium starting dose.

Reward Construction: For each patient, the reward is set to 1 if the dosing algorithm selects the arm
corresponding to the patient’s true optimal dose; otherwise, the reward is 0. This straightforward
reward function allows the regret to directly quantify the number of incorrect dosing decisions.
Additionally, it is important to note that while we employ a binary reward for simplicity, we model
the reward as a linear function. Despite this, RCB demonstrates robust performance in this setting,
indicating its applicability for scenarios involving discrete outcomes.

Ground Truth: We estimate the true arm parameters 3; using the linear regression with the entire
dataset for specific group. Besides, we scale the optimal warfarin dosing into [0, 1] with minimum
dosing as 0, and maximum dosing as 1. The true mean warfarin dosage is obtained from the inner
production of 3; (based on the optimal arm) multiples the covariate of this patient. Besides, for the
counterfactual arm, the true mean dosage are set to be 0.

RCB Setup: The total number of trials is set at 7" = 5528, with reward noise & = 0.054 estimated
from the true optimal dosing of warfarin after scaling. To create an online decision-making scenario,
we simulate the process across 10 random permutations of patient arrivals, averaging the results over
these permutations. The exploration budget ¢ is varied among [0.025, 0.035, 0.045]. The minimum
gap Tp, is set at 0.005. The prior variance is defined as ¥ = [0.4,0.6, 0.8]I,, and the prior means
are 82,0 = 0.05 x Iy, B1,0 = B3,0 = 0q4. Further details on hyperparameters are available in §E.2.

Evaluation Criteria: We apply four criteria to evaluate the warfarin dose decision. (1) Regret:
The regret is optimal mean dose minus 0. (2) e-CBIC Gain. (3) Fraction of Incorrect Decision:
the fraction of incorrect decision. (4) Weighted Risk Score: the correct decision deserves 1 point
and incorrect decision loss 1 point and multiple the true dosage sample proportion, which is newly
proposed by us.

Result Analysis: In Table 1, we exhibits the RCB’s true dosage correction ratio and physician
assigned dosage correction ratio (always choose medium) and the weighted risk score.



Table 1: Comparison RCB and physician algorithm and distribution of patients

RCB Algo
Assigned Dosage
Low Medium High

% of
Patients

Physician Algo
Assigned Dosage
Low Medium High

o o Low 50% 48% 2% 0% 100% 0% 27 %
E g Medium 14% 84 % 2% 0% 100% 0% 60%
a High 2% 93% 5% 0% 100% 0% 13%
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Figure 2: Left to right: fraction of incorrect decision under different setup of budgets (e)
[2.5,3.5,4.5] x 10~2. Dotted line represents the lasso bandit’s error rate (Bastani & Bayati, 2020).

Fraction of Incorrect Decision: In Figure 2, we present the fraction of incorrect decisions, a newly
metric, which is particularly relevant in the field that the non-optimal arm has high cost and the
optimal arm often remains unknown and difficult to ascertain. Our findings indicate varying levels
of incorrect decisions based on the size of € and different prior variances. At e = 0.025, three
prior variances show a similar fraction of incorrect decisions, with all variations approximately at
a 0.35 decision error rate, which is considered state of the art when compared to the lasso bandit
described in (Bastani & Bayati, 2020), which utilizes prior knowledge of non-zero feature counts.
At e = 0.035, only ¥ = 0.4I achieves the lowest fraction of incorrect decisions, approximately
0.37. When ¢ is increased to 0.045, the fraction of incorrect decisions for all three beliefs exceeds
0.4. These observations suggest that with strong prior knowledge of the optimal dosage, a smaller
€ improves correction rates. This highlights that RCB may require an extended cold start phase to
reach optimal performance and build sufficient confidence in its recommendations.

Weighted Risk Score: In Table 1, we present the dosages assigned by RCB, the true dosages, the
dosages assigned by a typical physician, and the true percentage of patients for each dosage. Notably,
60% of patients require a medium dosage, while 27% should receive a low dosage, and 13% a high
dosage. We use blue percentages to indicate the correction rate of dosages assigned by RCB within
each true dosage, and red percentages to denote extremely incorrect decisions across these levels.
The physician algorithm, which consistently prescribes a medium level dosage, achieves a 100%
correctness rate at the low dosage level. Conversely, RCB attains correction rates of 50%, 84%, and
5% for the low, medium, and high dosage levels, respectively, with an extremely incorrect rate of 2%
for the low and high levels. With respect to the weighted risk score, we find that at ¢ = 0.025, the
three prior beliefs achieve scores of 0.291, 0.289, and 0.274, respectively, indicating higher scores
are better. When ¢ = 0.035 and X = 0.41, the score is 0.265. The physician policy, evaluated
under the metric of the weighted risk score, calculates as —1 x 0.27 + 1 x 0.60 — 1 x 0.13 = 0.20,
significantly lower than the scores provided by RCB (0.291).

7 CONCLUSION

We propose a new RCB framework to address the context-aware BIC problem, where the informa-
tion about the arms needs to be learned. This approach can leverage any sample-efficient machine
learning method. We theoretically prove that RCB is regret-optimal in terms of the number of arms
K, dimension d, and horizon length 7', all in square root order, and satisfies the e-BIC constraints.
Furthermore, we experimentally demonstrate that our algorithm achieves sublinear regret, is robust
to different priors, dimensions, and budgets, and outperforms the state-of-the-art bandit algorithms.
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Appendix

A ADDITIONAL RELATED WORKS

A.1 INFORMATION DESIGN

Another related work is Bayesian persuasion as introduced by Kamenica & Gentzkow (2011), focus-
ing on a single round where the planner’s signal is informed by the "history" of previous interactions.
In exploring strategic information disclosure, Rayo & Segal (2010) investigate how planners can en-
courage better decision-making among agents by controlling information flows. The temporal aspect
of information release is addressed by (Ely et al., 2015; Horner & Skrzypacz, 2016), who study the
optimization of suspense and the commercial strategy of selling information over time, respectively.
These contributions highlight different facets of information design.

A.2 APPLICATIONS IN MEDICAL FIELDS

Patients’ incentives are a significant barrier to conducting medical trials, especially large-scale ones
for affordable treatments. BIC exploration represents a theoretical effort to overcome this chal-
lenge. Medical trials initially motivated the study of multi-arm bandits (MABs) and exploration-
exploitation tradeoffs (Villar et al., 2015). However, disclosing information about the medical trial
is necessary to meet the “informed consent” standards set by various regulations (Arango et al.,
2016). In addition, medical trials, particularly those involving multiple treatments, underscore the
relevance of BIC bandit exploration with multiple actions where traditional trials typically compare a
new treatment against a placebo, but the designs incorporating multiple treatments are gaining prac-
tical importance and have been explored in biostatistics literature (Freidlin et al., 2008). BIC bandit
exploration with contexts consideration is increasingly applied in adaptive trial designs, leveraging
patients’ "background information" to tailor treatments.

B CBIC PROPERTY
B.1 PROOF OF THEOREM 1 - COLD START STAGE

Proof. To guarantee the CBIC property for the cold start of RCB, it suffices to have a lower bound
on parameter L to avoid too many samples wasted in the cold start stage.

The cold start stage can be split into K phases and each phase last LN round in expectation based
on the algorithm design except the most popular arm. Although the first phase (most popular arm)
last unknown rounds, it usually lasts a pretty short period. So in the following analysis, we ignore
the CBIC property in the initial sample collection stage (MPASC stage).

Due to the design of cold start stage, agents are unaware which phase they belong to, they are only
aware they have 1/ L probability to be chosen in the cold start stage. We first argue that for each agent
p; in phase [ € [2, K] (except the MPASC), she has no incentive not to follow the recommended
arm.

(1). If agent p, is recommended with the arm j # a;, then she knows since this arm j is the organic
arm a; and is not the promoted arm; so by the definition of the organic arm, it is CBIC for the agent
to follow it.

(2). If agent p,; is recommended with the arm a; and does not want to deviate to some other arms
j # ay. That is to say, we need to prove that when the platform recommend arm i, the agent p; has
no incentive to deviate the current recommendation arm ¢ to other arm j in expected reward. From
the user’s perspective, the platform needs to demonstrate this,

Denote the time dependent posterior gap Gy;; = E[u(zy,7) — p(xe, j)|SB,] where arm i is the
recommended arm by RCB and j # ¢, and the corresponding minimal posterior gap G¢(i) =
min;z; Gy;;. The Gy;; represents the posterior gap between arm ¢ and arm j at time ¢. The G¢(7)
represents the minimal gap given the current accumulative samples which is composed of two cases:
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(1) G¢(7) > 0, that means arm ¢ is the posterior best arm. (2) G¢(4) < 0, that means arm 7 is not the
posterior best arm.

To satisfy the ¢ — CBIC property, we need the Eq.B.1 satisfied. By the law of iterated expectations
E[X] = E[E[X|Y]], we have

Elu(zs, 1) — plxe, )L = iPr(1y = i)

— E[Elu(z1,1) — (w1, )|Sz )1 = iPr(T; = i) (B2)

= ]E[Gtij|It = Z]PI'(It = Z) > —e€.
Define two events Q; 1 = {¢;: = 1} and Q0 = {q: = 0}, representing agent p, is recommended
with the promoted arm or organic arm respectively. Thus, there are two disjoint events under which
agent p; is recommended arm 14, either Fy; = {G¢(i) > 0} or Eyp = {G:(i) < 0} = {G(i) <
Oandp, € Q.1}. For notation simplicity, we denote Ey = Ej; and E; = Ejs. The reason
{G:(i) <0} = {Gt( ) <0andp, € Q,1} is because G,(i) < 0 happens only when p, € Q1. So
the above equation is equivalent to prove

E[th]‘fpf = l]PI'(It = Z) = E[Gt”|E1]PI'(E1) + ]E[Gt”|E2]PI'(E2) > 0. (B 3)

We observe that Pr(E2) = Pr(p; € Qu1|Gi(7) < 0)Pr(G(i) < 0) = Pr(G.(i) < 0)/Ly, where
q¢ ~ Ber(1/L;) and is time dependent and independent of other random variables. Since the event
pr € @ is independent of G4;; and agent p, in )¢ 1 is randomly selected according to the Bernoulli
distribution with expectation 1/L;. Therefore, we get:

Elp(ze, i) — plxe, §)| I = i Pr(l = 4)
= E[Gy;| Er1|Pr(Ey) + E[Guij| E2]Pr(E2)

1
= E[Gm”Gt( ) > 0]PI'<Gt( ) > O) + E[Gt2]|Gt( ) <0 andpt € Qt 1} PI'(Gt( ) ) (B4)
1 . .
E[G1ij|Ge(i) > O[Pr(Ge(i) > 0) + —E[Gri5|Ge (i) < 0]Pr(Ge (i) < 0),
t
where the second equation holds by the independent property. By the fact that E[Gy;;] =

E[Gui;|Gi(i) < 0|Pr(Gi(i) < 0) + E[Gy;|1G(i) > 0]Pr(Gy(i) > 0), so the above equation
becomes

= E[G1i;|Ge (i) > 0]Pr(Gy (i) > )+th(E[Gtij] E[G1ij|G1 (i) > O]Pr(Gy (i) > ))

. (B.5)
(1 - f) [th]‘Gt( ) > O]Pr(Gt( ) > O) + L E[Gtz]]
We know E[Gy;] = E[E[p(x, 1) — (e, 5)|SB,]] = Elp(ze, i) — plag, j)] = xtTﬁi,O - l'tTBjﬂ =
wo(t, i) — po(t, ). Thus, the above equation will be
= (1 = OEIGIG() > OPHCL) > 0) + = (uolti) — po(t,3). (BE)
¢ ¢

To make the process be € — CBIC, we need E[u(z:,i) — p(ae, j)|Iy = i|Pr(l; = i) > —e. Since
we know Gy;; > Gy(i) by definition, so we have E[Gy;;|G¢(i) > 0] > E[G¢(4)|G:(i) > 0]. To

combine them all, we get
> (1= L EIGIGH(0) > OPr(Geli) > 0) + - (o(t.1) — po(t:) =~ (B)

Thus, Vi, j € [K], it suffices to pick L, at time ¢ such that:
po(t, i) — po(t, j) + €

b2 1 BG@1G(0) > 0Pr(Ga(i) > 0) + ¢ -
14 po(t, ) — po(t, i) — € .
E[G,(1)|G1(i) > O]Pr(G(i) > 0) + €
Thus we need,
A} e
Le>1+ (B.9)

)
TPo,+ PPo,+ +e
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—0 . . .
where A, = max;2;[po(t, j) — po(t,7)], and E[G(7)|G¢(2) > O]Pr(G¢(i) > 0) > Tp, , ppy., -

By the design of the cold start stage, we know that arm ¢ is the platform recommended arm and
arm j is the arm agent p; potentially wants to deviate to. Therefore, based on the prior knwoledge,
wo(t,j) > po(t,i). Since this L; is time dependent, to get a time uniform L to let all agents have

the e-CBIC property, we need
—0
A —
maxL; =1+ — (B.10)
t TPyPPy T €

0 -0 -0 . .
where A = max; A; and we know A~ < 1, and 7p, = min; 7p, ,, pp, = min; pp, ,. So we have

L needs to be at least
1—c¢
L>1+——. (B.11)
TPy PPy + €

By selecting the time uniform L, we have the e-CBIC property.

B.2 PROOF OF THEOREM 1 - EXPLOITATION STAGE

Proof. To satisfy the CBIC property, which is any agent p; who is recommended arm 7 (I; = 7) does
not to want to switch to some other arm j in expectation. Besides, we assert that when the platform
satisfies the CBIC property at the cold start stage and the CBIC property also holds when we have
a minimum requirement of N, then in the following epochs, the RCB algorithm will automatically
satisfy the CBIC in the exploitation stage. More formally, we need that

Elu(xe, i) — p(xe, §)| Ly = i]Pr(ly = i) > —e/ K,V € exploitation stage. (B.12)

Similarly to the construction of L in the previous analysis, we denote the time dependent posterior
gap Gy = Elp(z, i) — p(zy, g )|S*] where arm i is the recommended arm by RCB and j # ¢,
where S, is the dataset collected in the the cold start stage. The corresponding minimal posterior
gap G4(i) = min;x; Gy;;. The Gy;; represents the posterior gap between arm ¢ and arm j at time
t. The G () represents the minimal gap given the current accumulative samples which is composed
of two cases: (1) If G¢(i) > 0, that means arm i is the best arm in terms of the posterior. (2) If
G¢(i) < 0, that means arm 1 is not the posterior best arm. Recall the definition of G (%), it suffices
to show that

BIG(0)l1: = i = E[Elutee.) — max (o, )15 )1 =]
el (B.13)

— B[ Eluten.)1S.] ~ max Blu(en, IS =

Let S, be the data set collected by the algorithm by the beginning of exploitation stage. The reward
gap can be decomposed as

BBl 1151~ max (o 01811 = | e =)

= Pr(i = b B [Eluer, D11 i Elu(on, 151 = b

(B.14)

Part I Reward Gap

T Pr(i £ b)E [ (e, i)1S.] — max Efu (xt,j>|s*]i¢bt],

Jje[K]/i

Part II Reward Gap
where b; is the highest posterior mean arm b; = argmax ¢ g E[u(w¢, 7)[S4].

Part I Reward Gap: The platform selects the highest posterior mean reward arm b, =
argmax;c ) E[pu(xe, 7)Si] = argmax;cx) fim (2, j) according to the Algorithm 2’s design with

probability Pr(ly = b)) =13, ﬁ where w; = [, (24, bt) — [ (24, 7). Denote G (by)
as the minimal optimal posterior gap E[u (¢, b:)]Ss] — max;e(x)/b, E[u(xt,)|S«], which is the
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gap between the highest posterior mean utility and second highest posterior mean utility. By the
sampling design of RCB and ~,, > 0,Ym > mg, we get that p(b;) > 1/K, where p(b;) is the
probability of selecting the highest posterior mean arm.

1
Part I Reward Gap > ?Gt(bt). (B.15)

Part Il Reward Gap: According to the sampling structure, it has the probability that the platform
recommended arm is not b;, we have

Part IT Reward Gap =Pr(i # bt)IE{ [w(ze,1)]S4] — max Elu(x, )|S4]|i # bt}
Y

= 3 i) |Eluton, 1S - Blulan bS]

i#by (B.16)
=~ X 1) Bl b)15.] ~ Elutae. 1.
i#£by
= — Tt
where 1y = 7, pe(i)(E[p(2e, b¢)[Si] — E[p(ze, )] Ss]). Therefore, to achieve CBIC property,
we can lower bound the following term,
b b K
Elp(ze, i) — plze, )| e = i|Pr(ly = 4) > Gilb) _ Ty > Gilbr) K (B.17)

K K Tm

The G(b;)/ K is each step’s expected gain and  is each step’s expected loss, and by Lemma 7, we
have r; < K/~,, used in the last inequality. In order to satisfy the e-CBIC property, we need

Gt(bt) K €

- s = B.18
K vm> K ®.15)

which is equivalent to need
K2
Gt (bt) +e€ '

That is, in order to satisfy the e-CBIC property, we need the spread parameter at each epoch m(>
my) is at least greater than ~y,, (¢). Here 7,,, = 2™ is the time step where epoch m stops. Ex s(m —
1) represents the prediction error in the functional class F when using training data collected in
epoch m — 1 that is in the time interval (7,,,—2, 7,,—1]. Based on the offline learning’s result from
Definition 2 given the epoch m, we have v, = ¢\/K/EF 5(Tmo—1 — Tmo—2). S0 we can derive
the requirement of the minimum prediction error at epoch my. We need

Ym(€) > (B.19)

Ymo = Ym(€)

c K > LS
5}&(77%—1 — Tmo—2)  Gi(b) + €
A(Gulbr) +€)?

5;,#(%071 — Tmg—2) < e (B.20)
c3o?d < (Gy(by) + €)?
QZSO’IL - K3
(c?d+1)K3

"= 50(Ga(by) + €)2

where £ Fisiy s (Tmg—1 — Tmg—2) is the prediction error with training sample size with n = 7,1 —

Tm—2, Which bounds the squared Lo distance between ji and p on the test data sampled following

the same data generation process as the training data. For the forth inequality, based on Corollary 1,

(o2d+1)K3

we need the minimum sample size as N(e) = EN(ER(AETER We have 7,,, = 2™, Typ—1 — Tin—2 =

18



2m=1_9m=2 — 9m=2 By the minimum sample size requirement for the cold start stage’s N(¢) for
each arm, we know in exploitation stage, the starting epoch m should be

N S Tm—1 — Tm—-2,

logo N <m — 2,
(B.21)
> 12+ log (02d+1)K3]
m > my = 0gy ————=|.
? go(rp. +€)?
where 7p, is the minimum posterior mean gap based on Assumption 1. [

C PREDICTION ERROR OF RIDGE REGRESSION WITH RANDOM DESIGN

From Mourtada & Rosasco (2022), we have the following lemmas of the prediction error of ridge
regression with random design.

Lemma 1. Assume the noise has gaussian distribution, then the excess risk bound is

| [5-5]] < (1+ ij):igﬂgd{w) FMBIE - 1)+ (14 22 ) 2T AN

n
(C.1)
where | X ||, < R and risk L(8) = E[(Y — (8, X))?].
Lemma 2. For every A > 0, we have
2
nf (L(8) + ABI° — L8} = M|+ 0728 [ <a g 2
Corollary 1. The prediction error can be upper bounded bounded by
~ 2 R? ~ 2 czo?d
EAFX—TX2<]EH—H E| X% <71[«:H—H < 874
[(5 t—f t):|_ {5 52 [ tHEl_)\min(E) B 52_%”
Proof. By Lemma | and Lemma 2, we have
—~ 2 R2\?2 R2\ o2d
B|[F-s], | < (1+5 ) Als+ (145 ) 2F
b An /) n
(C.3)

2 2
1 1
§(1+) Cl+(1+)ad
C1 n C1 n

Assume that || ][, <1, R<land A = £. Sowhenn > N = ﬁ and denote cy = (1+i1)2.
1(c2— c

(
So when n > N, we have

2
C1C2 CoO0 d
—+

|-l ) <

2
< c1ca + co0°d (C.4)

n n

n
o?d
<cg—
n
where we define c302d = cjca+ coo?d for c3 > 0. Since we know Apmin (X) > ¢o, so the prediction
error can be upper bounded by

6302d

C5
o (&)

E|(BTX, - BT X,)?| <
O
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D PROOF OF NO REGRET LEARNING

We first denote ¥ := A% as the universal policy space, which contains all possible policies. Here we
assume that |X'| < oo but allows | X'| to be arbitrarily large. Focusing on such a setting enables us to
highlight important ideas and key insights without the need to invoke measure theoretic arguments,
which are necessary for infinite/uncountable X'. At epoch m(t), m = m(t) if t is clear, and p;(-) =
Pm(+|¢). We next analyze the following virtual process at round ¢ in epoch m(t). Here we use a
novel virtual probability distribution @, (+) to analyze the p:(-)’s effect over the regret. There are
three steps:

1. Algorithm samples m; ~ Q,(-), where m, : X — A is a deterministic policy, and Q. (-) :
A — Probability Measure (a probability distribution over all policies in A%).

2. Attime ¢, z; ~ Px.
3. Algorithm selects a; = ().

Note that at round ¢, @Q,,(-) is a stationary distribution which has already been determined at the
beginning of epoch m. How to construct this @,,(-)? For any policy p,,(+|-), we can construct a
unique product probability measure Q. (-) on W such that Qy,(7) = [[,cp, Pm(7(z)|z) for all
7 € W. This product measure @, (-) ensures that for every

pmlalz) =Y Hn(x) = a}Qm(r(x)). D.1)

Tew

That is, for any arbitrary context x € X, the algorithm’s recommended action generated by p,, (+|x)
is probabilistically equivalent to the action generated by Q,,(+) through this virtual process. Since
Qm () is a dense distribution over all deterministic polices in the universal policy space, we refer
to @Qm(+) as the “equivalent randomized policy" induced by p,,(-|-). Since p,,(+|-) is completed
determined by ~,, and fi,,, we know that Q,,,(-) is also completely determined by ~,, and fi,.
We emphasize that the exploitation stage does not actually compute Q,,(+), but implicit maintains
Q. (+) through spread parameter ,, and estimated posterior mean fi,,, so called virtual process.
That is important, as even when X is known to the learner, computing the product measure Q. (")
requires (|X'|) computational cost which is intractable for large X

To get the regret upper bound, we need following notations. For any action selection kernel p and
any policy 7, let’s define the following terms:

1. Reward R;(m): defines the expected reward in the measure of y if it follows the policy 7
to select the action () with respect to distribution Px: R¢(7w) = Ey, wp. [0z, m(2¢))]

2. Reward Et: defines the expected reward in the measure of empirical fi,,«) if fol-

lows the policy 7 to select the action 7(x;) with respect to distribution Px: Ri(w) =
Erf,NDX [N’m(t) (xtv’fr(xt))}'

3. Regret \(7): defines the expected regret in the measure of y if it follows the policy 7 to
select the action 7 () with respect to distribution Px: A(7) = Ry(m,,) — Ry().

4. Regret Xt (m): defines the expected regret in the measure of empirical fi, ) if it follow the
policy 7 to select the action () with respect to distribution Px: A () = ﬁt(ﬂﬁm(t)) -
Ry(n).

where 73, , is the policy selects the action by = argmax;¢ | fm(t) (T¢, 1) according to Eq.5.

Besides, for any probability kernel p,,, and any policy 7(-), let V (py,,, 7) denote the expected inverse
probability

V(pm,7) = Egnpy {W} (D.2)

and define V; () as the maximum expected inverse probability over the exploitation stage,

Vt (’/T) = max V(pmv 7T) (D3)

mo<m<m(t)—1
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D.1 KEY LEMMAS

Lemma 3 (Azuma-Hoeffding Inequality). Let { Dy, Fi }32 | be a martingale difference sequence for
which there are constants {(axp, ) Yi_,, such that Dy, € [ay p, ] almost surely forallk = 1,2, ..., n.

Then, for all t > 0, Pr(| S23_, Dx| > 1] < 2exp— 2],

Lemma 4. Vt € [1,,_1 + 1, 7y,], with probability at least 1 — 6 /2m?, we have

—~ 2 16K
Es, a: |:(/14m(t) (xt, at) - M(xnat)) |6t1:| < 5?,6/(2m2)(7m71 - Tm72) = 2 (D.4)
where T, = 2™. Therefore, the following event Ao holds with probability at least 1 — §/2:
~ 2 16
Ay = {Vt > Timgs Bay,ar |:(,U'm(t)($taat) - M(Iuat)) |®t—1] < '72} (D.5)

Proof. Note that Algorithm 2 always collects (x4, at; y:(ar))-type data used for Of fPos algorithm
to conduct offline training, where (2¢,y;) ~ D and a; ~ pp,(+)—1(-|7¢) based on epoch m(t) — 1
collected data. Based on the prediction error of the Of fPos algorithm provided in 2, we have
Vt € [Tmfl + 1,Tm],

~ 2 ~ 2
Ext,at |:(Mm(t) (xh at) - ,U/((Ety at)) |6t1:| = EthPX,athmm,l(-mt) |:(/'Lm(t) (xt> at) - ,Lt(l’t, at)) |pm(t)71

16K

< 5}—,5/(2m2)(7-7n—1 +1—Tm—o— 1) =—
(D.6)
where last the inequality simply follows from Lemma 4.1 and Lemma 4.2 from (Agarwal et al.,
2012). -

As we mentioned in previous, a starting point of our proof of regret upper bound is to translate the
action selection kernel p,,(-|-) into an equivalent distribution over policies @, (-). The following
lemma provides a justification of such translation by showing the existence of an equivalent Q,,, ()
for every p,,, (+]-). Here we refer Lemma 3 from (Simchi-Levi & Xu, 2022) in the following Lemma.

Lemma 5. Fix any epoch m > myg. The action selection scheme p,, (+|-) is a valid probability kernel
B(A) x X — [0,1] over epoch m. There exists a probability measure Q,, on V such that

Vas € AVxy € X, pm(ae]x) = Z Kr(xt) = at}Qum () D.7)

Tew

The following Lemma demonstrates y; (m,,) =y (at) = > c¢ @m (7)A(m) is a martingale difference
sequence with respect to &;.
Lemma 6. Fix any epoch m > mg € N, for any round t in epoch m, we have:

&ww{mwn—wwma4 = 3 Q@A) DS)

TEWY

Proof. By the definition of E[y;(a;)], we have

&wwﬂmwum—%maaq

=&M{MwmAm»—Mmﬂm@1}
(D.9)
= Exthxvathm(t)('lx) [N(xtﬂ (@) — pl@e, at):|

=Esnpa | Z Pty (at]ze) (M(It, Tu(2e)) — H(fctvat))]

at€A
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By Lemma 5, we have

Ezt NDX

Z Pm(r) (@) (M(l"tﬂm(ﬂft)) — (@, at))

a;€A

B | 3 3 r(e1) = a)@u(m) utersmlan) ~ o)) |

at€EATEY

~ oo | Q) (ot mula) = @) | (D.10)

Tew

= 3 Qs o,y 0) = il ()|

where the last equality is from the definition of the expected regret in the measure p. O

Lemma 7. Fix any epoch m > mg € N and any round t in epoch m, we have:

K
> Qu(m)Reg,( ™)< (D.11)

Tew m

Proof. For any t in epoch m, based on the definition of ﬁe;gt( ) = Euinpy [ty (@6, T ) —
oty (e, w(w))] where by = 7 (21) = argmax; ¢ g fim s (Tt, 1), we have

Z Qum (7 Regt )

Tew
= Z Qm (M) Eg,~Dy [ﬁm(t) (w4, b8) = Lme) (2, W(xt)):|
TEW
= EthDX Z Qm (:U/m(t) (l’t, bt) ﬁm(t) (xt; 7T(.’L‘t))>:|
Lrew
=Eg D Z Z Qo (M){7(xy) = at}(,um(t)(a?t,bt) Fim(#) (%&,%))}
“at€EATEY
= Eoinpx Z o) (a]z:) (ﬁm(t) (4, bt) — Hm(ty (2, at))]
“a €A
[ 1
:]Eth = — Am .’E,b _Am Te,a
o 'a%K+7m(”m(t)(xtvbt) — () (21, at)) <,u (t) (Tt; b) = Him (e (¢ t)>:|
_ 1 Yooy @, be) = A (21, )
=E;,~Dar Z 7K+7( (fit)( t(xt)b)_l/i\t) t(xta))
“areA/{by ™ m\Hm(t)\Lt, V¢ m(t)\Lt, At
K-1
Tm
_ R (D.12)
where the last inequality holds by the (B (1) (0,00) — By (@e,00)) O

K+Ym (Bm () (Tt:0¢) = ¢) (T,a1))

The next lemma establishes the relationship between the predicted implicit regret and the true im-
plicit regret of any policy at round ¢. This lemma ensures that the predicted implicit regret of good
polices are becoming more and more accurate, while the predicted implicit regret of bad policies do
not need to have such property.
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Lemma 8. Suppose the event Ay in Lemma 4 holds, let Cy = 204. For all policies ™ and epoch

m > mg, we have:
CoK

A(m) < 2Reg, () +

Vim
okt (D.13)

’Y’" 3

Reg, (m) < 2A(r) +
That is, for any policy, Lemma 8 bounds the prediction error of the implicit regret estimate.

Proof. We prove it via induction on epoch m. We first consider the base case when m = 1 and
1 <t < 71. In this case, since 7, = 1, we know that V7 € U \(7) < VK < CoK /1, l@t(w) =
0 < CoK /1. Note that we use condition E,p, [sup, , e a(p(z,a) — p(z,a"))] < VK, which is
very weak - in the special case of multi-armed bandits, it means "the gap between mean rewards of
two actions is no greater than v/K. Thus the claim holds in the base case.

For the induction step, fix some epoch m > 1. We assume that for all epochs m’ < m, all rounds ¢/
inepoch m/, and all m € ¥,

— K
A(m) < 2Reg,, (m) + Co—,
" m (D.14)
Reg, (1) < 2A(w) + Co—.

m/’

Step 1. For all rounds ¢ in epoch m and all 7 € ¥, we first show that

— K
A(m) < 2Reg,(7) + Co—.

m

Based on the definition of A(7) and I@t, we have
A(m) = Regy(m) = (Ru(m) = Re(m)) = (Balmz ) = Re(m))
< (Re(mu) = Ri(m)) — (Re(m,) — Ri())
|[Re(m) = Re(m)| + | Re(m,) = Ru(m,)]

4/ Vi(m)VK N 4\ Vi(m VK
Ym Ym
< V() n Ve(my) n 40K
5%m 5Ym Ym
where the third inequality holds by Lemma 9, and the last inequality holds by the AM-GM inequal-

ity. Based on the definition of V, (), V;(m,,) and the upper bound of the expected inverse probability
from Lemma 10, there exist epochs at least one i, 5 < m and ¢ < 7, such that

IN

(D.15)

Vi) = Vi) = o | < & +Re, )

pi(m(@e)| )
1

pi(mp(xe)|ze)

Combing above two inequalities with Eq.D.15 of induction and ;,v; < ,y,, we have

Vi) = Vi(pj, ) = By { } <K+ 7]‘1?&%]- ()

K + ~;Reg K + 7 2\(7) + Co &
Vilm) _ K+ eg,, () - i(2A(7) + Co ) - (1+C")K+3A(ﬂ)
5Ym 5Ym 5Ym 5Ym 5
Vi(m,) _ K+ iReg, (ma) _ K +75(2A(m) 0% (1+CK
m 5Ym B 9m 5Ym

where the last equality by A(7,) = 0. Combining all above, we have
21+ Co)K = 40K
+
5Ym Ym

A(r) — Reg () < 2A(r) +
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which is equivalent to

5_—
Am) < SReg,(m) +

200K 68K — CoK
0= 4 < 2Reg,(m) + 0 ,
37’”’1/ ,Y’rn ’Y’rn

by Cy < 204.
Step 2. We then show for all rounds ¢ in epoch m and all 7 € ¥,

CoK
Y

Reg, () < 2X\(7) + (D.16)

Similar to step 2, we can get the similar result. Thus we complete the inductive step, and the claim
proves to be true for all m € N. O

This following lemma is a key step to provide the relationship of l@t (m) and \(7) in Lemma 8.

Lemma 9. For any round t > T,,, + 1, for any policy m € ¥, we have

|Ry(7) — Ry()| < EVANGIES (D.17)

o Ymn(t)

Proof. Fix any policy m € U, and any round ¢ > 7,,,—1. By the definition of R, (7) and Ry(7), we
have

Rym) — Ry(r) = Eaypy [ﬁmm, r(22)) — plae, w(xa)} (D.18)

Given a context xy, define Ay, = [y (24, m(2¢)) — p(xe, m(x¢)), then we have the equality
Euopy[Az] = ﬁt(ﬂ) — Ry(m). Forall s = Ty —1 + 1, ..., Typy(1)—1, We have

o~ 2
Eas|xs [(Mm(t)(x% 0’8) - u(xs,as)) |®t—1:|

2
= Z pm(s) (as|ms) |://Zm(t) (IES, as) - M(xsv as):|
a.cA (D.19)

> oty (7 2)]) [ﬁm@)(xs, r(22)) — plae, w(xs»]

= Pm(s) (’R‘((ES) |$S)Ai§

where the first inequality holds by the kernel and squared terms both positive and ignoring other
actions a5 # 7(xs). Then we can take a sum of regret difference over the epoch m and multiply it
by the maximum expected inverse probability V;(r), defined in Eq.D.3. For the start of the epoch
m(t), we define so = 7,,,(;)—1 + 1 and assume m(t) > mg, we have

Tm () 1 2
Vim) S EM[(ﬁm(t>(ms,as>—u<xs,as>) |et1]
EESE)
Tm(t) —1 2
> Z V(pm(s);W)E:vs,as[(ﬁm(t)(x57as):U'(xsaas)> |®t—1:|
S$=8p

(D.20)

T (t) —1

=Y E [ BB (B o) - a0 o]

S=8¢o

T7n(t)71 1 2
Z <Em l WE%‘% [(ﬁm(t) (s, as) — ,u(SUs,as)> |®t—1]

S§=8¢0

v

>2
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where the first inequality from the definition of V;(7) and the second follows the Cauchy-Schwarz
inequality. By the above inequality from Eq.D.19, we have the following

Tm(t) —1 . )
Er (o | (s s s A%

;) ( ) \/pm<s>(7r(xs)ws)p () (m(@s )| |>
Tm(t) —1 9

> (E.la)

e (D.21)
Tm(¢) —1 R

Y Re(m) = Re(m)[?
= (Tan(t) = 50)|Re(m) — R (m)?

and the last inequality follows from the convexity of the /; norm and last equality holds by the
definition of R;(7) and R:(7). So we have

v

A,

v

2
STo-Ig, [(ﬁm@) (20, as) — (s, as>) |et_1}

Ry(r) — Ry(m)| < V/Vilm
[Bu(m) ~ Re(m)] < VWi(m) e D2
< 4 Vt (7T) \/?
- Tm(t)
where the last inequality holds by the definition of the exploitation rate of 7y, ¢). O

The following Lemma is a key step to control the expected inverse probability V' (py, s, 7).

Lemma 10. Fix any epoch m > mg € N, we have:

V (pm(sy, ™) < K + vnReg, () (D.23)

Proof. For any policy m € U, given any context z; € X, we have

1 = K + Vm(ﬁm(t)(l’m be) — Hom(t) (4, ™ (xt)))7 if m(xy) # by
Pty (T ()| 24) < 17k = K = K + 9 (fin) (@6, 00) = fne) (w2, 7(24))), if w(2¢) = by
(D.24)
Based on the definition of the expected inverse probability in Eq.D.2, we have
1
|4 Pm),T) = Ea:tN Y Y
( ®) ) DX[prrL(t) (W(xt”xt)]
(D.25)

<K +YmEenpa [Hme) (@4, 06) — Ly (26, 7(2¢))

=K+ ’leie\gt (),
where the inequality follows by the condition if 7(z;) = b; and the last equation is followed by the
definition of the expected regret in the measure of empirical fiy, ;). O
The following lemma provides the key step to provide the regret upper bound.

Lemma 11. For any T € N, wiht probability at least 1 — § , the expected regret of RCB after T
rounds is at most Ty, —1 + 206 K Z;‘F:TMO_IH /Yty + /8(T — Ting—1) log(2/0).

Proof. Foreachround ¢t > 7,,, 1 + 1, define M; := y;(7,) —yi(ar) — > ey @m(m)A() and M;

is a martingale difference sequence since E, 4, o, [Mt\@g,l] = 0 provided by Lemma 6. So we
have

Evp a0 |Ye(m0) — ye(ar)|Si— 1] > Qm(m) (D.26)

Tew
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Since |M;| < 2 by y; € [0, 1], by the Azuma-Hoeffding’s inequality from Lemma 3,

r 2
S Mo\ g o8 (D.27)

t=Tmo-1+1

with probability at least 1 — §/2. By Lemma 4, we can upper bound the regret the with probability
atleast 1 — §/2,
T

> E[yt(ﬂu) - yt(at)|6t—1}
t:TnLofl"l‘l
T

S Y X QN 8T ) lex )

t:TmU 1+17mew

= Z > Qun(m)(2Reg, () + C$’1(>+\/fs(T—Tmo-l)lc>g(§>

t=Tmo-1+17TEY m

= Z Z 2Qm(m Regt ™) + Qm(T)

t=Tmo-1+1me¥

(D.28)

CoK

m

8T~ ) 082

T
2K CoK 2
< Y =4+ \/8(T — Tmo—1)108(%)
i b1 Ym Im 0
Tmg—1
T
K 2
<206 Y + \/S(T — Tmo—1) log(%)
=t 141 () g
o

where the second inequality holds by Lemma 8 to control the implicit expected regret in 7 and the
third inequality holds by Lemma 7 controlling the empirical regret. O

D.2 PROOF OF THEOREM 2

Proof. By Lemma 11, with probability 1 — J, we have

T
Z Eunpr (Ye(mu) — ye(ar))

t=1
T
206K 2
< Tmg—1 + — Tmo—1) log( 5) (D.29)
t= Tmg— 1+1 m
2
< Tmo—1 + 52 Z VEEF(Tm—2,Tm—1) (T — Tin—1) + \/8(T = Tmo-1) 10g(5)-
m=mg

With the assumption that the prior distribution Py is normal and the variance is increasing in order
O(t), by 7, = 2™, we have

- 1 _— 2
= Trmo—1 + 520\/Kdm§0 (’)(W)Q + \/S(T = Tmo-1) 10g(3)
ma 2
= Tmo-1 +520VKd > O(V2m) + \/8(T = Tmg-1)log(5)

Ing(T) v D) D
< Tmo—1 +520m 22dx + \/8(T_7-m0—1)10g(5) ( 30)

mo

2
< Ting—1 + —av dT—i—\/ 8(T Tm0_1)10g(5)

2
< Tmg—1 + 1510V KdT + \/S(T — Tmg—1) log(g)
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E ADDITIONAL EXPERIMENTS RESULTS

E.1
Setting 3 (¢ effects): We consider the RCB algorithm’s effect over different budget parameters with
e = [0.01,0.03,0.05] and prior variances ¥, o = 1/A\I; = [1/3,1/5,1/10]1,. For rest parameters,
T=5x%x10%, K=5,d=5,0=0.05and 3; o = 04,Vi € [K].

ADDITIONAL SIMULATION SETTINGS AND RESULTS ANALYSIS

Setting 4 (Prior Decay and Prior-Posterior Gap Assumption Mis-specification Effects): We
also test the robustness of RCB algorithm when the Assumption 4 is mis-specified. Here we assume
Y0 = [0.02,0.04, 0.1]I and the prior decay rate are linear decay, square root decay, and log decay.
We set the environment parameters to be T = 5% K = 5,d = 5. We set ¢ = 0.05 and the prior
mean 310 = [1,1,1,1,1]T and B; ¢ = [0,0,0,0,0]T.
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Figure 3: Gain (top) and Regret (bottom) of Setting 2.

Setting 3 - ¢ Effects Analysis:
e-CBIC gain and regret.

In Figure 3, three columns represent different €’s effects over the

For the top of the figure, we found that RCB can satisfy the e-CBIC property under different € and
A’s scenario. What’s more, all the instantaneous gains have the uplift trend (increasing gain), which
shows similar pattern to the setting 1.

The bottom shows the relationship between the regret, €, and the prior variance ;o = 1/AI,.
We found that the regret of ¥, o = 1/10I, is much larger than the regret of ¥, = 1/3I; and
Yi0 = 1/514. The reason is that in order to satisfy e-CBIC property, the length of the cold start
stage is linearly inverse proportion to the order of minimum eigenvalue ¢, which is demonstrated
in Theorem 1. In other words, when the prior variance is small, it means that the customers have
strong opinions over arms and the platform needs a long length of the cold start stage to make the
RCB algorithm to satisfy the e-CBIC property. In addition, the regret will decreases when ¢ increases.
That is, when the platform wants to avoid long length of the cold start stage, it can sacrifice the € to
avoid a large regret, which is a trade-off between the guarantee of e-CBIC property and the regret.
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Figure 4: Gain (top) and Regret (bottom) of Setting 2.

Setting 4 - Misspecified Effects Analysis: In Figure 4, the three columns represent different prior
margin 7p,’s effects over the regret and decay rate mis-specified over the e-CBIC gain. For top
figure, we found RCB can still protect the e-CBIC under different > scenario. Besides, we found
that all the instantaneous e-CBIC gains still have the uplift trend, which shows similar pattern to the
setting 1 and setting 2. And the linear decay rate has the largest e-CBIC gain and as ¥; ( increases,
the platform gains more.

The second row shows the relationship between the regret and margin, and the decay rate misspeci-
fied. We found that in any decay rate that the RCB algorithm employs, the regret of are really similar.
The reason is that for any element of 3; o is small within [0, 1] and the prior variance is moderate,
three decay rates has similar effect. And we found that when variance increases, regret decrease. It
indicates that when piror variance is large, the regret difference among three different decay rates
is shrinkage. In other words, when costumers do not have strong opinions over arms (variance is
large), different decay rates have similar regret effects.

E.2 ADDITIONAL REAL DATA ANALYSIS

Data Description: This data contains the true patient-specific optimal warfarin doses (which are
initially unknown but are eventually found through the physician-guided dose adjustment process
over the course of a few weeks) for 5528 patients with more than 70 features. It also includes
patient-level covariates such as clinical factors, demographic variables, and genetic information that
have been found to be predictive of the optimal warfarin dosage (Consortium, 2009). We follow the
similar data construction method in (Bastani & Bayati, 2020). These covariates include:

* Demographics: gender, race, ethnicity, age, height (cm), weight (kg).
» Diagnosis: reason for treatment (e.g. deep vein thrombosis, pulmonary embolism, etc.).

* Pre-existing diagnoses: indicators for diabetes, congestive heart failure or cardiomyopathy,
valve replacement, smoker status.

* Medications: indicators for potentially interacting drugs (aspirin, Tylenol, and Zocor).

* Genetics: presence of genotype variants of CYP2C9 and VKORCI.
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Figure 5: Gain (top) and Regret (bottom) of Setting 2 with N = 102.
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Figure 6: Gain (top) and Regret (bottom) of Setting 2 with N = 103.
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Figure 7: Regret and incentive compatibility of warfarin dosing.

The details can be found in Appendix 1 of Consortium (2009). All these covariates were hand-
selected by professionals as being relevant to the task of warfarin dosing based on medical literature;
there are no extraneously added variables. Since the detailed feature construction is not available in
(Bastani & Bayati, 2020), we construct features follow the description in (Bastani & Bayati, 2020).
For diagnosis variables, we categorize the reason for treatment with 0/1 (1 represents patients have
reason for treatment, O represents patients have no reason or unknown reason for treatment). For
medications variables, we only include three medications: aspirin, Tylenol, Zocor, and all other
medications are set to be 0. For genetics variables, we considered genotype variants of CYP2C9
and VKORCI and the rest are set to be 0. The previous feature construction aims to avoid to high
dimensional feature space. All categorical variables are transformed into dummy variables and all
missing values are set to 0. After the data construction, we have 70 features and 5528 patients. In
(Bastani & Bayati, 2020), they have 93 features, which is similar to our constructions.

Model Hyperparameter Setup: The prior mean’s setup follow the fixed-dose strategy and detailed
explanation is provided in the following. We assume the prior variance increases linearly over time
after the cold start. This allows physicians decease the confidence of their prior dose strategy and
trust the RCB algorithm over time. In addition, the length of the cold start is determined by Theorem
1.

Addition Result Analysis.

Regret: In the first row, we show the regret of RCB with different confidence strengths (prior vari-
ance). When ¥ is small that means physicians have stronger opinion over the medium dosage, and
the reverse is that the physicians have weaker opinion over the medium dosage. With different prior,
we found that when ¥ = 0.4, it has the largest regret since we need more samples in the cold
start stage to let physicians trust RCB, which means that we need a large N. Interestingly, we found
that when e increases (left to right), the regret difference between different prior variance shrinks
because when we can tolerate with a higher ratio of non-e-CBIC compatible patients, the prior’s
effect decreases and the overall regret decreases because of a shorter cold start stage.

€ — CBIC Gain: In the second row, we show ¢-CBIC gain of the RCB with different confidence
strengths. Different prior variance has similar effect on the CBIC gain and all variants’ gain are
above —e, which satisfies the property since the gain after the cold start stage is only determined by
the posterior difference within the arm RCB selected.

F NONLINEAR REWARD DISCUSSION

If the true model has a non-linear structure, we can approximate the nonlinear functions of the
covariates by using basis expansion methods in from statistical learning (Hastie et al., 2009).
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