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ABSTRACT

Bayesian optimisation (BO) using a Gaussian process (GP)-based surrogate model
is a powerful tool for solving black-box optimisation problems but does not scale
well to high-dimensional data. Previous works have proposed to use variational
autoencoders (VAEs) to project high-dimensional data onto a low-dimensional
latent space and to implement BO in the inferred latent space. In this work, we
propose a conditional generative model for efficient high-dimensional BO that uses
a GP surrogate model together with GP prior VAEs. A GP prior VAE extends the
standard VAE by conditioning the generative and inference model on auxiliary
covariates, capturing complex correlations across samples with a GP. Our model
incorporates the observed target quantity values as auxiliary covariates learning a
structured latent space that is better suited for the GP-based BO surrogate model. It
handles partially observed auxiliary covariates using a unifying probabilistic frame-
work and can also incorporate additional auxiliary covariates that may be available
in real-world applications. We demonstrate that our method improves upon exist-
ing latent space BO methods on simulated datasets as well as on commonly used
benchmarks.

1 INTRODUCTION

Bayesian optimisation (BO) (Mockus, 1989; Shahriari et al., 2015; Frazier, 2018) is a technique
for complex optimisation problems, where the true functional form of a target quantity of interest
is unknown. This target quantity may be expensive to compute or may require time consuming
experiments to obtain its value. Hence, one would like to minimise the number of evaluations that are
required to optimise it. Although BO offers an approach for black-box optimisation problems, it does
not efficiently scale to high-dimensional data settings (Shahriari et al., 2015).

Variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) are a popular
family of latent-variable models that are often used to learn low-dimensional representations of
high-dimensional data. The low-dimensional latent space afforded by VAEs, that is representative of
the high-dimensional, potentially discrete-valued data on which it is trained, offers a powerful scaling
strategy for BO. BO is performed on the inferred low-dimensional continuous-valued manifold
instead of the high-dimensional data space (Gómez-Bombarelli et al., 2018). This method of
combining the benefits of VAEs with BO, known as VAE BO, is a general-purpose high-dimensional
black-box optimisation method with many practical applications, such as molecule discovery (Gómez-
Bombarelli et al., 2018; Griffiths & Hernández-Lobato, 2020; Jin et al., 2018), neural architecture
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Figure 1: An overview of our model. Consider the example application of discovering novel drug-like
molecules. Our method uses a GP prior VAE with an additive kernel over various partially observed
auxiliary covariates such as molecular weight, number of hydrogen bonds, total polar surface area, etc.
and the partially observed quantity of interest (represented by x(r) in this image for the rth additive
kernel) to learn a structured latent space. The black-box function evaluates the quantity of interest for
the chosen molecule.

search (Kandasamy et al., 2018; Ru et al., 2021) and chemical synthesis (Felton et al., 2020; Shields
et al., 2021; Korovina et al., 2020).

Sohn et al. (2015) proposed conditional VAEs (cVAEs) as an extension that conditions a generative
model on auxiliary covariates. However, similar to standard VAEs, this family of models ignores
possible correlations between data samples. The Gaussian process (GP) prior VAE (Casale et al.,
2018) extends the conditional VAE framework by replacing the i.i.d. standard Gaussian prior on
the latent variables with a GP prior in order to capture arbitrary, but preferably smooth, correlations
between data samples. These models have been shown to compare favourably to VAEs and cVAEs as
well as effectively handle missing data in the observations. Ramchandran et al. (2024) introduced a
method to impute the missing auxiliary covariates in cVAEs and thereby enhance their applicability
to real-world datasets.

Our Contribution We propose a novel conditional deep generative model for high-dimensional
BO that improves upon the existing VAE BO methods. Our proposed model uses a GP prior VAE
to learn a low-dimensional, structured latent representation of the data samples, and implements
the GP surrogate model to optimise the target quantity (or quantities) of interest in the repeatedly
re-trained latent space. We use these partially observed target quantity values directly as auxiliary
covariates to condition the GP prior VAE model. The model also incorporates additional (partially or
fully) observed auxiliary covariates that may be available for a given application. Furthermore, it can
effectively handle missing values in both the high-dimensional observations as well as the auxiliary
covariates using a principled technique that is particularly developed for learning conditional VAEs.
Fig. 1 summarises our model.

Our contributions can be summarised as follows:

• We introduce a conditional VAE-based method for efficiently performing Bayesian optim-
isation on high-dimensional datasets.

• We learn structured latent representations of high-dimensional data points using a GP prior
VAE that handle missing values in the observations, target quantity values, and in other
possible auxiliary covariates.

• We demonstrate the efficacy of our method on a synthetic dataset and on common bench-
marks.

The source code is available at https://github.com/SidRama/GP-prior-VAE-BO.

2

https://github.com/SidRama/GP-prior-VAE-BO


Published as a conference paper at ICLR 2025

2 RELATED WORKS

Bayesian optimisation is a popular black-box optimisation technique that is challenging to scale to
high-dimensional data (Mockus, 1989; Shahriari et al., 2015; Frazier, 2018). Binois & Wycoff (2022)
reviews the recent advancements in improving the efficiency of Bayesian Optimisation (BO) for
high-dimensional problems, particularly through various structural model assumptions. To address
the curse of dimensionality, Griffiths & Hernández-Lobato (2020) uses an autoencoder to learn a
low-dimensional, non-linear manifold to scale BO to high-dimensional datasets. They perform a
constrained BO over the latent space in order to incorporate the application-specific idiosyncrasies
and thereby generate a high proportion of valid reconstructions. Stanton et al. (2022) integrate
Denoising Autoencoders with a discriminative multi-task Gaussian process head into BO to learn a
latent space that captures meaningful features of biological sequences. As autoencoders cannot be
used to sample novel observations from their representation space, VAEs are an approach to make
it possible to leverage the low-dimensional latent representation for generative purposes (Kusner
et al., 2017; Gómez-Bombarelli et al., 2018). However, a vanilla VAE BO is sub-optimal as the
learnt latent space is not constructed by leveraging the black-box function labels (Urtasun & Darrell,
2007; Siivola et al., 2021; Grosnit et al., 2021). Building upon this, some methods: use an automatic
statistician perspective by learning the kernel combination of the surrogate GP (Lu et al., 2018), use
manifold GPs in the encoder and manifold multi-output GPs in the decoder (Moriconi et al., 2020),
reformulate the encoder to effectively act both as the encoder for the VAE as well as a deep kernel for
the surrogate model within a local Bayesian optimisation framework using trust region method (Maus
et al., 2022), and use label guidance in the latent space (Eissman et al., 2018; Tripp et al., 2020; Maus
et al., 2022). Furthermore, Grosnit et al. (2021) proposed a method that combines VAEs with deep
metric learning. They make use of label guidance from the labelled data points by incorporating
various metric losses (e.g., triplet loss, contrasting loss, log ratio loss, etc.). However, this method
does not incorporate additional information in the form of auxiliary covariates and the triplet loss
requires an additional matching procedure as a pre-processing step, which can be time consuming.
Other relevant works include (Notin et al., 2021; Maus et al., 2023; Lee et al., 2024)

Variational autoencoders (Kingma & Welling, 2014; Rezende et al., 2014) are popular deep learning
methods that map high-dimensional, complex data to a low-dimensional space and vice-versa. Most
VAE-based models assume the data to be fully observed or choose to substitute unobserved values of
the encoder input with zeros (Nazabal et al., 2020; Mattei & Frellsen, 2019). Conditional variational
autoencoders (Sohn et al., 2015) include information about the auxiliary covariates into both the
inference and generative networks. Building upon this idea, Gaussian process prior VAEs have been
proposed as an extension to incorporate arbitrary correlations as well as auxiliary covariates via
Gaussian process priors (Casale et al., 2018; Fortuin et al., 2020; Ramchandran et al., 2021). These
methods have shown competitive performance as well as handle missing values in the observed data.
Ramchandran et al. (2024) proposed a conditional VAE-based learning approach that can robustly
handle missing values in the auxiliary covariates.

3 BACKGROUND

Throughout the paper, we use the following notation: y ∈ Y is a high-dimensional observation, c ∈ R
is the target quantity that we want to optimise, x = [x1, . . . , xQ] ∈ X denotes additional auxiliary
covariates, and z ∈ Z = RL is a L-dimensional latent variable. We define x̃ = [c,x] ∈ R×X . A
set of N observations is denoted as Y = [y1, . . . ,yN ], with X , X̃ , and Z defined analogously. The
target quantity c = [c1, . . . , cN ]T is typically partially observed.

3.1 BAYESIAN OPTIMISATION

Bayesian optimisation is a technique for performing efficient global optimisation of black-box
functions (or unknown scoring functions) that are difficult to compute and whose functional form may
not be known (Kushner, 1962; 1964; Mockus, 1989; Frazier, 2018). Given a function f : Y 7→ R we
aim to find a point y ∈ Y that corresponds to the global optimum of f . The black-box function f is
also referred to as a utility function as it is a measure of the target quantity, c = f(y), that we are
trying to optimise and informs us on the quality of the chosen sample. The problem can be written as
(assuming maximisation), y∗ = argmaxy∈Y f(y). Since, the unknown function f is assumed to
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be difficult or expensive to evaluate, Bayesian optimisation requires a surrogate model to model the
true function f as well as an acquisition function which is a function of the posterior and guides the
process of choosing the next sample point until a stopping criteria is met or the evaluation budget B
is exhausted.

Gaussian Processes and the Surrogate Model We use a non-parametric Gaussian process as
the surrogate model of f as GPs define a probability distribution over functions and for Gaussian
likelihood models the posterior distribution is analytically tractable. Moreover, they maintain
smoothness and uncertainty estimates to guide the exploration of new points as well as represent
prior beliefs (Schulz et al., 2018). Following Williams & Rasmussen (2006), for inputs y,y′ ∈
Y , a GP is defined as g(y) ∼ GP (µ(y), k(y,y′)) where µ(y) is the mean and k(y,y′) is a
kernel function given by k(y,y′) = cov(g(y), g(y′)). For N data points Y = [y1, . . . ,yN ], the
induced prior probability density g(Y ) = [g(y1), . . . , g(yN )]T is a multivariate Gaussian distribution:
g(Y ) ∼ N (0,KY,Y ). We assume µ(y) ≡ 0 throughout this work. The elements of the covariance
matrix are defined by the kernel function [KY,Y ]i,j = k(yi,yj). GPs are intractable for large
datasets as the time complexity scales by O(N3). Several approximate methods have been proposed
to address this through sparse Gaussian processes (Smola & Bartlett, 2000; Lawrence et al., 2002;
Quinonero-Candela & Rasmussen, 2005) or via (stochastic) variational formulations (Titsias, 2009;
Hensman et al., 2013) for sparse approximations.

Acquisition Functions An acquisition function is a function of the posterior that captures the
trade-off between exploration and exploitation of our surrogate of the function f given the known
evaluations. It is responsible for selecting the next candidate point in Y that should be evaluated
or measured. We use an acquisition function α(y) to choose the next sample point yN+1 =
argmaxy α(y). A good acquisition function exploits regions around the current maximum by
selecting points to query from that region while also suggesting points from unexplored regions in
order to escape a local maxima. There are several candidate functions such as upper confidence
bound, expected improvement, probability of improvement, and Thompson sampling (Shahriari et al.,
2015). Our proposed method is agnostic to the choice of acquisition function.

3.2 VARIATIONAL AUTOENCODERS

We define a latent variable generative model as pω(y, z) = pψ(y | z)pθ(z) which is parameterised by
ω = {ψ, θ}, and where z is unobserved. We are generally interested in inferring this latent variable z
given y. The posterior distribution, pω(z | y) = pψ(y | z)pθ(z)/pω(y), is usually intractable due
to the lack of a closed-form marginalisation over the latent space (Murphy, 2023). The standard
VAE model comprises the generative model (the probabilistic decoder) pψ(y | z) and an inference
model (the probabilistic encoder) qϕ(z | y) that approximates the true posterior. VAEs use amortised
variational inference that exploits the inference model qϕ(z | y) to obtain approximate distributions
for each zn. The encoder and decoder are typically parameterised by deep neural networks. In
variational inference we minimise the Kullback-Leibler (KL) divergence from qϕ(z | y) to pω(z | y),
or equivalently maximise the ELBO of the marginal log-likelihood w.r.t. ϕ. For VAEs, approximate
inference is typically conducted alongside learning the generative model’s parameters, that is, w.r.t.
ϕ, ψ, θ:

log pω(Y ) ≥ L(ϕ, ψ, θ;Y ) ≜
N∑
n=1

Eqϕ [log pψ(yn | zn)]−KL[qϕ(zn | yn)||pθ(zn)]→ max
ϕ,ψ,θ

.

It is straightforward to apply computationally efficient mini-batch based stochastic gradient descent
to the above equation.

4 OUR METHOD

4.1 BAYESIAN OPTIMISATION WITH VAES

The low-dimensional nonlinear latent manifold learnt by a VAE can be used to perform BO (Kusner
et al., 2017; Gómez-Bombarelli et al., 2018; Tripp et al., 2020). The VAE is first pre-trained on
the high-dimensional observations without access to the utility function values. As described in
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Sec. 3.2, the encoder qϕ(z | y) of the learnt VAE is used to map the observations y ∈ Y onto a
low-dimensional latent representation z ∈ Z . The VAE-based methods then perform latent space
optimisation (LSO) (Tripp et al., 2020) by fitting a surrogate model over the latent space to model
the utility function of interest. The VAE BO aims to identify a z∗ such that the corresponding y∗,
that is obtained from the pre-trained decoder, minimises a utility function of interest, f(y∗). In other
words, we would like to obtain a z∗ such that we maximise the expectation over the utility function
evaluated on y∗ ∼ pψ(y∗ | z∗), i.e., argmaxz∈Z Ey∼pψ(·|z)[f(y)]. Once we have a new y∗ and its
associated utility function value c, we append them to the training dataset and update the parameters
ϕ and ψ either after each BO step or at a chosen frequency. Tripp et al. (2020) use this approach with
the help of a weighted retraining scheme according to their utility function values.

4.2 GAUSSIAN PROCESS PRIOR VAES FOR BO

zy

xc c′ x′

N

covariates

GP

N + 1

BO

Figure 2: Our proposed model. Solid lines refer
to the generative model and dashed lines to the
inference model. Empty circles are unobserved,
shaded circles are observed, and partially shaded
circles are partially observed. Target quantity c′
and possible additional covariates x′ refer to the
new candidate observation that will be added to
the training set.

A limitation of standard VAE BO is that it infers
an unconditional latent-variable model without
any guidance from the observed target quantit-
ies. Departures from this limitation have been
proposed, e.g., in (Eissman et al., 2018; Tripp
et al., 2020; Maus et al., 2022). Recently, Gros-
nit et al. (2021) built upon VAE BOs by using
deep metric learning to actively steer the gener-
ative model to maintain a latent manifold that is
useful for the BO task. We propose to use GP
prior VAEs that guide the generative model by
conditioning the GP prior with auxiliary covari-
ates.

The key distinction of GP prior VAEs is that
the factorisable conditional prior defined over
the latent space pθ(Z|X) =

∏N
i=1 pθ(zi | xi)

is replaced by a GP prior. Assuming a func-
tion τ : X → Z , which maps auxiliary cov-
ariates to the L-dimensional latent space, we
denote z = τ (x) = (τ1(x), . . . , τL(x))

T . GP
prior VAEs model each latent dimension with an independent GP τl(x) ∼ GP(µl(x), kl(x,x′ | θl)),
where µl(x) is the mean, kl(x,x′ | θl) is the covariance function, and θl denotes the parameters
of the covariance function. The GP prior for the lth latent dimension can be written as a joint mul-
tivariate Gaussian distribution for the function values z̄l = τl(X) = (τl(x1), . . . , τl(xN ))T , such
that pθ(z̄l | X) = pθ(τl(X)) = N

(
z̄l | 0,K(l)

XX

)
, where {K(l)

XX}i,j = kl(xi,xj | θl). Our joint
conditional prior is pθ(Z | X) =

∏L
l=1 pθ(z̄l | X) =

∏L
l=1N (z̄l | 0,K(l)

XX).

We propose to learn a low-dimensional latent embedding for BO using a GP prior VAE that is
conditioned on the target quantity of interest, i.e., pθ(Z | c). We hypothesise that using the target
quantity as the conditioning variable will automatically guide the latent embeddings to a smooth
manifold that is beneficial for the BO task. Since the target quantity c ∈ R, the GP prior VAE can be
defined using any of the commonly used smooth kernel functions, such as the squared exponential
kernel. Following the same reasoning, if data points y have any additional known properties x, we can
incorporate those in the GP prior VAE framework as well by conditioning the latent variable generation
with both c and x (we denote x̃ = [c,x]), i.e., pθ(Z | X̃). If all auxiliary covariates in x̃ are
continuous, we could incorporate x̃, e.g., via a single squared exponential kernel with a shared length-
scale parameter or use an automatic relevance determination (ARD) kernel to define covariate-specific
length-scales. In practice, however, some of the auxiliary covariates may be, e.g., binary or categorical.
Ramchandran et al. (2021) have shown that it is possible to have flexible and expressive covariance
functions depending on the nature of the auxiliary covariates. In this work, we similarly assume
Q+ 1 additive covariance functions, kl(x̃, x̃′ | θl) = kl(c, c

′ | θl) +
∑Q
r=1 kl,r(xr, x

′
r | θl,r) + σ2

zl,
implying that K(l)

X̃X̃
= K

(l)
cc +

∑Q
r=1K

(l,r)
XrXr

+ σ2
zlIN , where the choice of the kernels depends on

the application and Xr denotes the rth auxiliary variable.
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Algorithm 1: An overview of our proposed algorithm
Input: Budget B, frequency ν, initial dataset D, pre-trained VAE
for j = 1 to J ≡ ⌈B/ν⌉ do

// Train the GP prior VAE on D = DO ∪ DU
Solve ϕ∗j , ψ

∗
j , θ

∗
j ← argmaxϕ,ψ,θ ELBOGP-VAE-miss(ϕ,ψ,θ)[D];

Compute DZ ← ⟨zi, f(yi)⟩i∈IO by using the encoder ϕ∗j to obtain zi ;
for k = 0 to ν − 1 and EI(ẑj,k+1) ≥ η do // Perform Bayesian optimisation

Fit surrogate GP on ⟨zi, f(yi)⟩i∈IO ;
Optimise EI for ẑj,k+1;
Use decoder ψ∗

j to map ẑj,k+1 to ŷ; // Decode point chosen by B.O.

Evaluate c = f(ŷ), augment data DO, DZ; // Evaluate black-box function
Increment No;

end
end
Output: y∗ = argmaxy∈DO

f(y)

4.3 PARTIALLY OBSERVED TARGET QUANTITY AND ADDITIONAL COVARIATES

In the BO setting, the target quantity of interest that we are optimising is typically available only for
a (very) small number of data points. This is problematic for conditional generative models, such as
GP prior VAEs, as they assume that covariates that are used to condition the generation are always
known and observed. Moreover, in our problem setting, the additional auxiliary covariates that may
be available in a specific application may also have missing values. We follow a formulation similar
to that of Ramchandran et al. (2024) to handle the missing values in the covariates.

We augment our generative model with a prior distribution, pλ(x̃), factorising over x̃, parameterised
by λ. Representing the observed and unobserved parts as Y = (Y o, Y u) and X̃ = (X̃o, X̃u),
we approximate the true posterior distribution of the unobserved variables Z and X̃u, represen-
ted as pγ(Z, X̃u | Y o, X̃o) and parameterised by γ = {ψ, θ, λ}, using amortised variational
inference. We make use of a conditionally independent, factorisable variational approximation:
qϕ(Z, X̃

u | Y o, X̃o) = qϕ(Z | Y o, X̃o)qϕ(X̃
u | X̃o) =

∏N
i=1 qϕ(zi | yo

i , x̃
o
i )qϕ(x̃

u
i | x̃o

i ). The
latent variables zi are assumed to have a Gaussian variational distribution and, for the discrete and
continuous-valued covariates x̃u

i , categorical and Gaussian distributions respectively. Following
Ramchandran et al. (2024), we write the ELBO objective with missing covariates (ELBOGP-VAE-miss)
as

log pγ(Y
o | X̃o) ≥ Eqϕ [log pψ(Y o | Z)]− Eqϕ

[
KL[qϕ(Z | Y o, X̃o)||pθ(Z | X̃u, X̃o)]

]
(1)

−KL[qϕ(X̃
u | X̃o)||pλ(X̃u | X̃o)],

where the first and the second expectations are with respect to the latent variables Z and missing
covariates X̃u, respectively, and can be approximated using Monte Carlo (see the Sec. A of the
Appendices for details of deriving the ELBO). For each specific value of the missing covariates, the
KL divergence in Eq. 1 has a computation complexity of O(N3). Earlier work by Ramchandran et al.
(2021; 2024) has shown that using the low-rank inducing point approximation for the multi-output
GP pθ(Z | X̃u, X̃o) = pθ(Z | X), one can derive a scalable ELBO that provides an unbiased,
mini-batch compatible lower bound for efficient learning. See the Sec. A.1 of the Appendices for the
specific expression of the scalable lower bound that we use.

4.4 HIGH-DIMENSIONAL BO WITH GAUSSIAN PROCESS PRIOR VAES

We use the latent space learnt by the GP prior VAE to perform efficient BO. In particular, our method
can handle missing values in both the observations y and covariates x (partially observed features
denoted as yo and xo), as well as large datasets through the scalable ELBO described in Sec. 4.3.
Consider a dataset D = DO ∪ DU where DO represents the data points whose target quantity c is
observed (indexed by IO) and DU represents the data points whose c is unobserved (indexed by
IU). Therefore, DO = {yo

i ,x
o
i , ci}i∈IO , with ci = f(yi) and DU = {yo

i ,x
o
i}i∈IU , where, as before,
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xi ∈ X refers to the additional auxiliary covariates (that may or may not be available, depending on
the application), and f(·) refers to an expensive black-box function. N refers to the total number of
observations, comprising the number of observations with observed quantity of interest No = |IO|
and number of observations with unobserved quantity of interest Nu = |IU|.

Algorithm See Algorithm 1 for a pseudo-code summary of our method. Budget B refers to the
maximum number of evaluations of the black-box function that can be performed, ν refers to the
number of BO steps performed before re-optimising our GP prior VAE model with the augmented
dataset D, and EI pertains to the expected improvement acquisition function (the algorithm is
agnostic to this choice).

We obtain the optimal encoder and decoder parameters (ϕ∗l and ψ∗
l respectively) by optimising

the ELBO (in Sec. 4.3). The method computes the fully-observed, low-dimensional latent space
representation zi of the observations yo

i using the optimal encoder at the current iteration, and
implements a BO step. The new chosen observation ŷ, its covariates (if known), and the obtained
target quantity of interest c = f(ŷ) are appended to DO. After budget has been exhausted, our
algorithm returns the best candidate acquired so far.

We periodically re-train and fit a conditional generative model using the entire dataset — comprising
both the initial data and samples collected during the BO steps, where covariates may be partially
observed. Unlike Tripp et al. (2020), our model fitting remains unbiased toward high objective
values. Instead, periodic training guides the embeddings of high-dimensional samples toward a
smooth manifold, as specified by the GP prior, which conditions on both the objective values and
any available auxiliary covariates. The BO algorithm operates in this learned latent space, inherently
structured for the BO surrogate model. Ultimately, it is the BO and its acquisition function that drives
the preference for higher objective values, as in classical BO.

5 EXPERIMENTS

We demonstrate the efficacy of our method described in Algorithm 1 on simulated datasets as well as
on a molecular discovery benchmark dataset. In all our experiments, 10% of the training data is used
as a held-out validation set for early-stopping to ensure that the generative model does not overfit.
We describe the neural network architectures in the Sec. F of the Appendices. We use the same BO
options and underlying VAE architectures for all methods in a particular experiment. We benchmark
against the following methods:

LSO This latent space optimisation method uses a VAE to learn a low-dimensional representation of
the high-dimensional dataset. BO is performed over the low-dimensional latent space. LSO does not
take into account any auxiliary covariate information and makes use of a standard Gaussian prior
over the latent space.

Grosnit et al. (2021) proposed a VAE-based method that tries to construct discriminative latent spaces
for VAE-based BO methods by incorporating a metric loss term in the ELBO. We compare our model
against the triplet loss, log-ratio loss, and contrastive loss.

Triplet Loss (T-LBO) As described in Grosnit et al. (2021), the triplet loss measures distances
between input triplets. In other words, this loss tries to introduce a structured space where positive
and negative pairs cluster together subject to separation by a margin. The triplet pairs are assigned as
a pre-processing step.

Log-Ratio Loss (LR-LBO) This metric loss is described in Kim et al. (2019) and is a continuous
metric loss that is applied to triplets of inputs. This loss is used with the model described in Grosnit
et al. (2021).

Contrastive Loss (C-LBO) This deep metric loss is described in Hadsell et al. (2006). The contrastive
loss operates on input pairs by separating the latent encodings based on class label information. This
is used with the model described in Grosnit et al. (2021).

Local Latent Bayesian Optimisation (LOL-BO) As proposed in Maus et al. (2022), this method is
a latent space BO approach that addresses the mismatch between the notion of a trust region in the
latent space and a trust region in the structured input space.
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Figure 3: Results from our experiments with a synthetic dataset. Lower values are better. (a)
Comparing the performance of our model with the LSO benchmark. The dataset comprises 500
instances out of which the target quantity is observed only for 100 instances. Θ1 pertains to an
additive GP prior VAE over all three covariates x and the partially observed quantity of interest c,
Θ2 to a GP prior VAE over only the partially observed target c, and Θ3 to an additive GP prior
VAE over the partially observed quantity of interest c and shiftx. (b) Similarly, we also demonstrate
our model’s performance on a dataset which comprises 5000 instances out of which the quantity
of interest is observed only for 500 instances. (c) Effect of the choice of latent dimension with the
dataset comprising 500 instances. |Z| pertains to the dimensionality of the latent space. All plots
depict the mean quantity of interest value with the 95% confidence interval (shaded region) obtained
over 100 repetitions with regenerated training data and target images. The grey line pertains to the
lowest RMSE in the training set.

5.1 DEMONSTRATION ON SYNTHETIC DATA

We demonstrate our model’s ability to perform effective high-dimensional BO by modifying digits
from the MNIST dataset. In particular, we randomly select an instance of a digit and resize this digit
to a dimension of 52× 52 pixels for a larger image space. We perform three different manipulations
(which would form our additional auxiliary covariates x) to this digit: rotation about the centre, shift
along the x-axis, and shift along the y-axis, by stochastically choosing these values 500 or 5000
times. Our final training set comprises either 500 or 5000 samples. Furthermore, we define a ‘target
image’, ytarget, with a particular rotation and shift values. This target image is not included in the
training set and we ensure that the manipulations are sufficiently different from the target values. See
Suppl. Fig. 7 for a random sample of the training data.

In this experiment, the black-box function is the root mean squared error (RMSE) between the
unseen target digit and a chosen digit (either a digit from the training set or a new candidate), i.e.,
f(y) = RMSE(ytarget − y). Our objective is to find a new digit that minimises the value returned
by the black-box function. In other words, we want the quantity of interest to be as close to zero as
possible. Furthermore, in our training set, we assume that the quantity of interest c = f(y) (i.e. the
RMSE between the unseen target and the digit) is known for only a few digits (i.e., |IO| equals 100
or 500) and unobserved for the rest.

To ensure that there is sufficient stochasticity in the choice of targets, we repeat our experiments as
well as the generation of data 100 times. We fit our GP prior VAE-based method by making use of
the partially observed target quantity of interest c as well as (a subset of) the auxiliary covariates x.
We make use of Algorithm 1 with ν = 10 as well as B = 200. We experiment with different choices
of kernels to empirically obtain the optimal model.

Fig. 3 demonstrates our experiments on the synthetic dataset and we can see that our method finds
candidate points with a quantity of interest (or RMSE) that are significantly lower than those in
the training set. In Fig. 3(a) we demonstrate the performance of our model on 500 instances out of
which the quantity of interest is observed for 100 instances. The LSO method is trained with all 500
instances and the BO computation is performed using the 100 instances for which the quantity of
interest is observed. Our method outperforms the LSO model already when the GP prior VAE is fitted
with the partially observed target quantity (Θ2), and results improves further if additional auxiliary
covariates are available (Θ1 and Θ3).

Similarly, Fig. 3(b) demonstrates that our method outperforms the baseline LSO with 5000 instances
out of which the quantity of interest is observed for 500 instances and Fig. 3(c) demonstrates the
effect of the choice of latent dimension.
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We visualise the learnt latent space and the BO steps taken in Suppl. Fig. 10. Our method learns
latent representations where the target quantity increases smoothly from the lower left corner to
the upper right corner (though we again emphasise that this is a 2-D UMAP (McInnes et al., 2018)
visualisation). The BO steps explore the region of the latent space where the target quantity has high
values. In Suppl. Fig. 6, we perform ablations with different subsets of additional auxiliary covariates.
Furthermore, we demonstrate the performance of Vanilla VAE BO in Suppl. Fig. 5.

5.2 EXPRESSION RECONSTRUCTION

We consider the common task of generating single-variable mathematical expressions from a formal
grammar (Kusner et al., 2017; Tripp et al., 2020; Grosnit et al., 2021; Maus et al., 2022). The objective
is to minimise a distance/regret based on mean squared error (MSE) (defined as log(1 + MSE))
between a generated expression and the target expression, x ∗ sin(x ∗ x). We followed the data
preparation proposed by Grosnit et al. (2021) to obtain 40000 data points and augmented the data
with 8 additional covariates (count of the elements ‘/’, ‘*’, ‘+’, ‘exp’, ‘sine’, ‘1’, ‘2’, and ‘3’ in the
expressions) which can be easily gleaned from the expressions. In order to appropriately handle
the mathematical expressions, we use the Grammar VAE (Kusner et al., 2017). To demonstrate the
efficacy of our method, we make use of Algorithm 1 with ν = 10 and B = 500 as well as an additive
kernel over the 8 additional covariates and regret. Fig. 4(a) demonstrates that our method achieves
competitive performance against the benchmark methods. In Suppl. Fig. 11, we visualise the mean
regret achieved by our method together with the 95% confidence interval.

5.3 MOLECULE OPTIMISATION

We use the ZINC-250K molecular dataset used in Gómez-Bombarelli et al. (2018), which consists of
250000 drug-like commercially available molecules extracted from the ZINC database (Irwin et al.,
2012) - a public dataset for ligand discovery. The dataset includes the molecular structures in the
SMILES string representation (Weininger, 1988) and three molecular properties: the water-octanol
partition coefficient (logP), the Synthetic Accessibility Score (SAS), and the Quantitative Estimation
of Drug-likeness (QED) (Bickerton et al., 2012). The objective of the task is to maximise the
penalised logP which is defined as the logP penalised by the SAS and the number of long cycles:
penalised logP(m) = logP(m) − SAS(m) − cycle(m) where m is the molecular instance and
cycle(·) is the number of long cycles.

We augmented the ZINC-250K with five additional covariates: molecular weight, number of hydrogen
donors, number of hydrogen acceptors, number of rotatable bonds, and total polar surface area. These
values were computed using a popular open-source chem-informatics tool, RDKit (Landrum et al.,
2013) (see Suppl. Fig. 12 for a visualisation of the distribution of these properties in the form
of histograms). Including QED and SAS, there are seven additional auxiliary covariates and the
penalised logP is the quantity of interest which we are trying to maximise. For a new molecule, it is
possible to compute the penalised logP using RDKit (acting as our black-box function). Furthermore,
we assume that the penalised logP is partially observed (observed for only 1% of the data).

We demonstrate the ability of our model to optimise the structure of the molecule in order to maximise
a property of interest (the penalised logP). To handle the SMILES representation of the molecules,
we use the Junction Tree VAE (JT-VAE) (Jin et al., 2018), which introduced an encoder and decoder
suitable to molecular graphs. In our experiments, we extend the implementation by Grosnit et al.
(2021). We note that our method is not limited to JT-VAE but can be applied with any latent-variable
model. Furthermore, we use JT-VAE with all the baseline methods for a fair comparison.

We use Algorithm 1 with ν = 10 and B = 450. In Fig. 4(b) we demonstrate that our method is able
to identify candidate molecules that have a higher penalised logP value than competing methods.
Furthermore, in Fig. 4(c), we demonstrate the performance of our method with different choices
of auxiliary covariates for the additive kernel of the GP prior. The results show that it is indeed
beneficial to include the additional auxiliary covariate information, whenever they are available in an
application, along with the partially observed quantity of interest (penalised logP). See Suppl. Fig. 13
for a visualisation of the marginal variance of the additive components. We visualise the mean and
standard deviation of the marginal variance for each of the kernel components across the 56 latent
dimensions. In Suppl. Fig. 14, we demonstrate the performance of our method with fewer instances
for which the penalised logP is observed. For this experiment, we assumed that the penalised logP is
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LSO [Tripp et al., 2020] 
Our method (with Θ1)
Our method (with Θ2)
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T-LBO [Grosnit et al., 2021]

C-LBO
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Our method (with Θ1)

LSO [Tripp et al., 2020] 
T-LBO [Grosnit et al., 2021]
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LOL-BO [Maus et al., 2022] O [Maus et al., 2022]LOL-B

Our method (with Θ2)Our method (with Θ2)

Figure 4: Results from the expression reconstruction and molecule optimisation experiments. (a) The
mean regret achieved over 5 repetitions. Θ2 pertains to a kernel over only the target quantity. Lower
values are better. (b) The penalised logP score achieved by our method compared to competing
methods. (c) Comparison of the penalised logP score achieved by our method using different choices
of additional covariates in the additive kernel of the GP prior VAE. Θ1 pertains to an additive kernel
over all 7 covariates and the partially observed target quantity, Θ2 to a kernel over only the partially
observed target quantity, and Θ3 to an additive kernel over only the 5 additional properties that were
calculated with RDKit (and does not include the partially observed target quantity). In figures (b) and
(c), the mean penalised logP score over 10 repetitions is visualised together with the 95% confidence
interval (shaded region). The grey line pertains to the highest penalised logP score in the training set.
Higher values are better

observed for only 0.1% of the data. The overall performance of all the methods decreases because the
BO has fewer points to fit the surrogate model with. However, it is interesting that our method with an
additive kernel that does not include the quantity of interest performs the best. We postulate that this
is because only a few instances of the quantity of interest are observed and hence the estimated values
for the unobserved quantities of interest have low quality. We believe that this demonstrates that
our model can learn meaningful latent representations without making use of the partially observed
quantity of interest and can be applied to datasets with only a few labelled instances.

In Suppl. Fig 15, we visualise the latent space using t-SNE (Van der Maaten & Hinton, 2008) and
colour the latent embedding by the respective molecular properties. We note that the model learns a
latent embedding that changes smoothly with respect to the target quantity as well as with the respect
to the additional covariates.

5.4 EVALUATING LATENT SPACE STRUCTURE FOR GAUSSIAN PROCESSES

We evaluate our model’s ability to construct meaningful discriminative latent spaces for Gaussian
processes (GPs). Following an approach similar to Grosnit et al. (2021), we leverage the trained
encoder to map data points from the original space, y ∈ Y , onto a low-dimensional latent space,
z ∈ Z = RL, where we fit a GP using the original labels. To assess whether structured latent
representations enhance GP generalisation, we ensure a unified experimental setup across all tasks.
Specifically, we use 80% of the encoded latent points (from the respective training splits) to train a
sparse GP with 500 inducing points and compute the predictive log-likelihood on the remaining 20%
of held-out data. This experiment provides insights into the impact of clustered latent inputs on GP
regression—an essential factor in the Bayesian Optimisation (BO) process. In Suppl. Table 2, we show
that our method achieves the highest predictive log-likelihood, highlighting how the discriminative
latent space enhances GP generalisation.

6 CONCLUSION

In this paper, we proposed a novel GP prior VAE-based method to perform high-dimensional BO. We
demonstrated the efficacy of our method on simulated datasets as well as in the discovery of novel
molecules that optimise a quantity of interest. Our method shows that it can be beneficial to include
auxiliary covariates (even partially observed) for performing BO in the latent space. Furthermore,
our approach can efficiently handle partially observed target quantities. Given the flexibility and
performance of our model, we expect our approach to be beneficial to scalable BO.
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Appendices

A DERIVATION OF THE ELBO

Following (Kingma & Welling, 2014), the ELBO of the marginal log-likelihood for the standard VAE
model can be written as:

log pω(Y ) ≥ L(ϕ, ψ, θ;Y ) ≜
N∑
n=1

Eqϕ [log pψ(yn|zn)]−KL[qϕ(zn|yn)||pθ(zn)]→ max
ϕ,ψ,θ

, (2)

where ϕ and ψ are the encoder and decoder weights respectively, z refers to the low-dimensional
latent representation, y refers to the observations, and KL refers to the Kullback-Leibler divergence.

Since we use GP prior VAEs that assume independent priors for each of the latent dimensions, we
write the joint conditional prior as:

pθ(Z | X) =

L∏
l=1

pθ(z̄l | X) =

L∏
l=1

N
(
z̄l | 0,K(l)

XX

)
,

where z̄l = τl(X) = (τl(x1), . . . , τl(xN ))T , τl(x) ∼ GP(µl(x), kl(x,x′ | θl)) such that µl(x) is
the mean, kl(x,x′ | θl) is the covariance function and θl denotes the parameters of the covariance
function, and K(l)

XX is a N ×N covariance matrix for the lth latent dimension.

We summarise the observed and unobserved parts as Y = (Y o, Y u) and X̃ = (X̃o, X̃u) and write
the ELBO as:

log pγ(Y
o|X̃o) ≥ Eq[log pψ(Y o|Z)]−KL[qϕ(Z, X̃

u|Y o, X̃o)||pθ,λ(Z, X̃u|X̃o)]︸ ︷︷ ︸
≜L(ϕ,ψ,θ,λ;Y o,X̃o)

. (3)

We use a conditionally independent factorisable variational approximation:

qϕ(Z, X̃
u|Y o, X̃o) = qϕ(Z|Y o, X̃o)qϕ(X̃

u|X̃o) =

N∏
i=1

qϕ(zi|yo
i , x̃

o
i )qϕ(x̃

u
i |x̃o

i ). (4)

We assume that qϕ(zi|yo
i , x̃

o
i ) factorises also across the latent dimensions, which allows us to write

the variational approximation alternatively as

qϕ(Z, X̃
u|Y o, X̃o) = qϕ(Z|Y o, X̃o)qϕ(X̃

u|X̃o) =

L∏
l=1

qϕ(z̄l|Y o, X̃o)

N∏
i=1

qϕ(x̃
u
i |x̃o

i ). (5)

Following Ramchandran et al. (2024), we simplify the KL term in Eq. 3 as:

KL[qϕ(Z, X̃
u|Y o, X̃o)||pθ,λ(Z, X̃u|X̃o)]

= Eqϕ
[
KL[qϕ(Z|Y o, X̃o)||pθ(Z|X̃u, X̃o)]

]
+KL[qϕ(X̃

u|X̃o)||pλ(X̃u|X̃o)]

=

L∑
l=1

Eqϕ
[
KL[qϕ(z̄l|Y o, X̃o)||pθ(z̄l|X̃u, X̃o)]

]
︸ ︷︷ ︸

≤D1
KL

+

N∑
i=1

KL[qϕ(x̃
u
i |x̃o

i )||pλ(x̃u
i |x̃o

i )]︸ ︷︷ ︸
D2

KL

(6)

by using the assumption of a factorising latent space, pθ(Z|X̃u, X̃o) =
∏L
l=1 pθ(z̄l|X̃u, X̃o)

and a mean-field normal posterior for qϕ(z̄l|Y o, X̃o), with a variational
mean µ̄l = (µϕ,l(x̃

o
1,y

o
1), . . . , µϕ,l(x̃

o
N ,y

o
N ))T and a covariance matrix

Wl = diag(σ2
ϕ,l(x̃

o
1,y

o
1), . . . , σ

2
ϕ,l(x̃

o
N ,y

o
N )) for the lth latent dimension. The expectation in

Eq. 6 is w.r.t. the unobserved auxiliary covariates X̃u that are the inputs to the GP kernel and,
therefore, the expectation does not have a closed form but can be approximated by Monte Carlo
sampling.

There are several different approaches to approximate the GP prior in order for the ELBO in Eq. 6 to
scale to large datasets. We make use of a mini-batch compatible approach proposed by Ramchandran
et al. (2021) that uses the inducing point method (Titsias, 2009; Hensman et al., 2013) and exploits
the structure of the GP prior, as described in the next section.
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A.1 SCALABLE COMPUTATION AND MINIBATCHING

Each of the KL divergences KL[qϕ(z̄l|Y o, X̃o)||pθ(z̄l|X̃u, X̃o)] in Eq. 6 has a computation com-
plexity of O(N3). Below we drop the index of the latent dimension, l, for simplicity. Relying on the
derivation proposed by Ramchandran et al. (2021) to obtain a scalable ELBO, we use the low-rank
inducing point approximation for GPs and use M inducing locations S = (s1, . . . , sM ) in X and the
corresponding inducing function values ul = (τl(s1), . . . , τl(sM ))T = (ul1, . . . , ulM )T for each
latent dimension (Hensman et al., 2013). We explicitly keep track of the distribution of the Gaussian
inducing values ul ∼ N (ml, Hl), where ml and Hl are global variational parameters. We can then
derive an upper-bound for the KL divergence KL[N (µ̄,W )||N (0,KX̃X̃)] ≤ D1

KL as well as an
unbiased, batch-normalised partial sum over a subset of indices, I ⊂ {1, . . . , N} of size |I| = N̂

such that D̂1
KL ≈ D1

KL, where

D̂1
KL =

1

2

N

N̂

∑
i∈I

(
σ−2
z (Kx̃iSK

−1
SSm− µ̄i)

2 + σ−2
z σ2

i + σ−2
z K̃ii

+ σ−2
z tr

(
(K−1

SSHK
−1
SS ) (KSx̃iKx̃iS)

)
− log σ2

i

)
+
N

2
log σ2

z −
N

2
+ KL[N (m, H)||N (0,KSS)], (7)

where µ̄i = µ̄ϕ(x̃i,y
o
i ) and σ2

i = σ2
ϕ(x̃i,y

o
i ) are the encoder means and variances, K̃ii denotes

the ith diagonal element of K̃ = KX̃X̃ − KX̃SK
−1
SSKSX̃ , and KSS as well as Kx̃iS = KT

Sx̃i

are defined similarly as KX̃X̃ . The conditional probability pλ(X̃
u|X̃o) in Eq. 6 simplifies to

pλ(X̃
u|X̃o) = pλ(X̃

u). As described in (Ramchandran et al., 2024), pλ(X̃u) can be an informative
prior and D2

KL is amenable to mini-batching.

Therefore, the ELBO for GP prior VAE models that marginalises missing covariates and affords
efficient optimisation with stochastic gradient descent is obtained from the Eqs. 3, 6, 7. For a more
detailed derivation, please refer to Ramchandran et al. (2021; 2024).

B THE EXPECTED IMPROVEMENT ACQUISITION FUNCTION

The expected improvement acquisition function estimates improvement that would be achieved when
choosing a specific point z as the next point to query. It balances between exploration and exploitation
of the black-box function f . The expected improvement (EI) is defined as

α(z) = EI(z) =
∫ ∞

−∞
max(f(z)− f∗), 0)︸ ︷︷ ︸

Improvement

φ

(
f(z)− µ(z)

σ(z)

)
df(z),

where f∗ is our current optimum, y is an instance in the data space, ŷ ← gψ∗(·|ẑ) where ψ∗ pertains
to the trained decoder weights and ẑ is the chosen latent space location, and φ(t) is the probability
density function of the standard normal distribution, N (0, 1). The expected improvement can be
analytically evaluated under the GP surrogate model:

EI(z) =


(µ(z)− f(ŷ)− ξ)Φ(T )︸ ︷︷ ︸

(i)

+σ(z)φ(T )︸ ︷︷ ︸
(ii)

if σ(z) > 0

0 if σ(z) = 0

(8)

where,

T =

{
µ(z)−f(ŷ)−ξ

σ(z) if σ(z) > 0

0 if σ(z) = 0.

In the above equation, µ(z) and σ(z) are the mean and standard deviation of the surrogate GP
posterior predictive at z. Φ and φ are the cumulative distributive function and probability density
function of the standard normal distribution, respectively.
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In Eq. 8, part (i) corresponds to the exploitation term and part (ii) corresponds to the exploration
term. The parameter ξ controls the amount of trade-off between exploration and exploitation (higher
values ξ leads to more exploration). We set ξ to be 0.01 in all our experiments (a recommended
default value). For a detailed review of the expected improvement and other popular acquisition
functions we refer the reader to (Frazier, 2018; Garnett, 2023).

C OPTIMISATION AND PRACTICAL CONSIDERATIONS

To maximise the evidence lower bound, we use the Adam optimiser (Kingma & Ba, 2015), which is
an adaptive learning rate method that maintains an exponentially decaying average of past gradients
as well as squared gradients. The parameters that need to be optimised include the neural network
weights for the encoder (ϕ) as well as decoder (ψ) and the GP kernel parameters (θ). Moreover,
we separately fit the GP surrogate model for the Bayesian optimisation. In the case of mini-batch
training, the optimisation steps are conducted interchangeably with natural gradient-based updates of
the variational parameters.

We use PyTorch (Paszke et al., 2019) for the inference implementation which allows the computation
of derivatives using automatic differentiation and we use BoTorch (Balandat et al., 2020) for Bayesian
optimisation. For all experiments we set the frequency of retraining ν = 10 and the stopping criterion
η = 0.1. We set the number of latent dimensions to 8 for the synthetic dataset experiment, 25 for the
expression reconstruction experiment, and 56 for the molecular discovery experiment.

D EXPERIMENT WITH VANILLA VAE BO

We demonstrate the performance of Vanilla VAE BO (i.e. no weighted retraining) using synthetic data.
From Suppl. Fig. 5, we can clearly see that our method as well as the other baselines demonstrate
better performance.

LSO [Tripp et al., 2020] 
Our method (with Θ
Our method (with Θ
Our method (with Θ

LSO [Tripp et al., 2020] 
Our method (with Θ1)
Our method (with Θ2)
Our method (with Θ3)

LSO [Tripp et al., 2020] 
Our method (with Θ1)
Our method (with Θ2)
Our method (with Θ3)

LSO [Tripp et al., 2020] 
Our method (with Θ1)
Our method (with Θ2)
Our method (with Θ3)

Vanilla VAE BO Vanilla VAE BO

Figure 5: Results from our experiments with a synthetic dataset. Lower values are better. (a)
Comparing the performance of our model with the LSO benchmark. The dataset comprises 500
instances out of which the target quantity is observed only for 100 instances. Θ1 pertains to an
additive GP prior VAE over all three covariates x and the partially observed quantity of interest c, Θ2

to a GP prior VAE over only the partially observed target c, and Θ3 to an additive GP prior VAE over
the partially observed quantity of interest c and shiftx. (b) Similarly, we also demonstrate our model’s
performance on a dataset which comprises 5000 instances out of which the quantity of interest is
observed only for 500 instances. All plots depict the mean quantity of interest value with the 95%
confidence interval (shaded region) obtained over 100 repetitions with regenerated training data and
target images. The grey line pertains to the lowest RMSE in the training set.

E ABLATION STUDY

We demonstrate how our method performs with different subsets of additional auxiliary covariates.
The ablations were run on the simulated data with 5000 samples and the target quantity of interest
was observed for 500 samples. Fig. 6 depicts the mean target quantity of interest obtained over 100
repetitions with regenerated training data and target images.
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Figure 6: Results from experimenting with the choice of kernel for the synthetic dataset.

F NEURAL NETWORK ARCHITECTURES

F.1 SYNTHETIC DATASET

Table 1: Neural network architectures used in the simulated dataset.

Hyperparameter Value

Inference
network

Dimensionality of input 52× 52
Number of convolution layers 3
Number of filters per convolution layer 144
Kernel size 3× 3
Stride 2
Pooling Max pooling
Pooling kernel size 2× 2
Pooling stride 2
Number of feedforward layers 2
Width of feedforward layers 500, 50
Dimensionality of latent space 8
Activation function of layers RELU

Generative
network

Dimensionality of input 8
Number of transposed convolution layers 3
Number of filters per transposed convolution layer 256
Kernel size 4× 4
Stride 2
Padding 2
Number of feedforward layers 2
Width of feedforward layers 50, 500
Activation function of layers RELU

In the synthetic data experiment, we use the neural network architecture described in Table 1.

F.2 EXPRESSION RECONSTRUCTION

In the expression reconstruction experiment we use the Grammar VAE (Kusner et al., 2017) which is
a computational model used in natural language processing and generative modelling. It combines
principles from VAEs and context-free grammars to learn and generate structured sequences of
symbols, such as sentences, mathematical expressions, or code.

In other words, the Grammar VAE extends the VAE framework to handle structured data where
the order and relationships between elements matter. Furthermore, Grammar VAE incorporates
context-free grammars which define the syntax and structure of sequences. This allows the model to
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capture the hierarchical and compositional nature of sequences, making it well-suited for generating
structured outputs. In addition to this, Kusner et al. (2017) proposed to represent the discrete data
using a parse tree from the context-free grammar. Therefore, the model is a variational autoencoder
which encodes and decodes directly to and from the generated parse trees while ensuring that the
generated outputs are always valid.

In our experiments, we use a latent space dimension of 25 and make use of the neural network
architecture specified in (Kusner et al., 2017).

F.3 MOLECULE OPTIMISATION

In the molecule generation experiment we use the Junction Tree VAE (JT-VAE) (Jin et al., 2018) which
extends VAEs to molecular graphs by introducing a suitable encoder and decoder. The encoder learns
two latent representations: one that encodes the tree structure and high-level cluster information while
the other encodes fine-grained connectivity details. In particular, the model generates a molecular
graph in two phases: first it generates a tree-structured scaffold over chemical sub-structures and then
combines them into molecules with a graph message passing network. The molecule is encoded into
two latent representations: z = [zT , zG] where zT encodes the tree structure and the information of
the clusters that are in the tree without fully capturing how exactly the clusters are mutually connected.
The graph to capture the fine-grained connectivity is encoded by zG.

The latent representation is then decoded back into a molecular graph in two stages. First, reproduce
the junction tree using a tree decoder. Then, predict the fine-grained connectivity between the clusters
in the junction tree using a graph decoder to obtain the full molecular graph. The decoder generates
the molecule piece-by-piece utilising the components and how they interact instead of assembling the
molecule atom-by-atom and/or through chemically invalid intermediaries.

The graph encoder is a graph message passing network (graph neural networks), the tree encoder is a
tree message passing network (related to RNNs and tree-LSTM), the junction tree is reconstructed
using a structured tree decoder, and the fine-grained cluster details are obtained using a graph decoder.
Furthermore, the latent space dimension is 56 (tree and graph representations are 28 dimensions
each).

The key benefit is the incremental expansion of the molecule while maintaining chemical validity at
every step. Furthermore, each molecule is built from sub-graphs chosen out of a vocabulary of valid
components. In this work, we use the same neural network architecture specification as in (Jin et al.,
2018). Our proposed model is agnostic to the choice of the underlying neural network architecture.

G SUPPLEMENTARY IMAGES
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Figure 7: A random sample of digits (from the the synthetic dataset) that have been rotated and
shifted along the x and y axis.

��
��

Figure 8: Violin plot visualising the distribution of the quantity of interest in an instance of the
synthetic dataset.
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Figure 9: A demonstration of the effect of β (as in β-VAE (Higgins et al., 2017)) on the model
performance in the synthetic dataset.
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Figure 10: Visualisation of the latent space in the synthetic data experiment. We performed a
projection of the latent space down to two dimensions using UMAP (McInnes et al., 2018). The
inverted triangles refer to the BO steps and the blue cross refers to the latent space representation of
the “optimal” instance which we hope our method would find (not included in the training set). The
latent embedding is coloured by the quantity of interest.
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LSO [Tripp et al., 2020] 
T-LBO [Grosnit et al., 2021]

C-LBO
LR-LBO
Our method

LOL-BO [Maus et al., 2022]

Figure 11: Results from the expression reconstruction experiment. The mean regret achieved by
our method compared to competing methods over 5 repetitions is visualised together with the 95%
confidence interval (shaded region). Lower values are better.
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Figure 12: Histograms visualising the distribution of the properties in the ZINC-250K dataset.
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Figure 13: Marginal variance of the additive components in the molecule discovery experiment. We
visualise the mean and standard deviation of the marginal variance for each of the kernel components
across the 56 latent dimensions. This pertains to an additive kernel over all the covariates.

LSO [Tripp et al., 2020] 
T-LBO [Grosnit et al., 2021]

Our method (with Θ1)
LOL-BO [Maus et al., 2022]

Our method (with Θ3)

Figure 14: Results from the molecule optimisation experiment with the penalised logP observed for
only 0.1% of the data. The mean penalised logP score over 10 repetitions is visualised together with
the 95% confidence interval (shaded region). The grey line pertains to the highest penalised logP
score in the training set. Θ1 pertains to an additive kernel over all 7 covariates and the partially
observed target quantity, and Θ3 pertains to an additive kernel over only the 5 additional properties
that were calculated with RDKit (and does not include the partially observed target quantity). The
overall performance of all the methods decrease because the Bayesian optimisation has fewer number
of points to fit the surrogate model with. However, it is interesting to note that our method with
an additive kernel that does not include the quantity of interest performs the best (by a small
margin). The other approaches make use of the quantity of interest (penalised logP) while fitting
the model. We believe that this demonstrates that our model (with Θ3) is able to learn meaningful
latent representations without making use of the partially observed target quantity of interest. Higher
values are better.
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Figure 15: Visualisation of the latent space in the molecule discovery experiment. We performed a
projection of the latent space from 56 dimensions down to two dimensions using t-SNE (Van der
Maaten & Hinton, 2008) and using the validation dataset for convenience. The latent embedding
is coloured by the respective molecular properties. The proposed model learns a latent embedding
that changes smoothly with respect to the target quantity as well as with respect to the additional
covariates (noting again that the visualisation corresponds to a 2-D t-SNE embedding).

25



Published as a conference paper at ICLR 2025

H SUPPLEMENTARY TABLES

Table 2: This table illustrates how separation in the latent space enhances GP generalisation. It reports
the GP predictive log-likelihood on the held-out validation sets, along with the standard deviation (±)
on the validation set. Higher (less negative) values are better.

Expression reconstruction Molecular discovery

LSO (Tripp et al., 2020) −3.1± 0.09 −2.01± 0.25
T-LBO (Grosnit et al., 2021) −1.85± 0.07 −1.49± 0.29
LOL-BO (Maus et al., 2022) −1.75± 0.07 −1.39± 0.25
Our method −1.72 ± 0.08 −1.37 ± 0.27

Table 3: Average run time / wall clock time. In the synthetic dataset experiment 200 BO steps are
performed and in the molecule discovery experiment 450 BO steps are performed.

Method Experiment Configuration GPU type CPU type Runtime (avg.)

Our method

Synthetic data (5000 obs.)
Kernel Θ1 AMD MI250x AMD EPYC ”Trento” 152 mins
Kernel Θ2 AMD MI250x AMD EPYC ”Trento” 140 mins
Kernel Θ3 AMD MI250x AMD EPYC ”Trento” 163 mins

Expression reconstruction - Nvidia Tesla V100 Intel Xeon Gold 6134 1064 mins

Molecular discovery
Kernel Θ1 Nvidia Tesla V100 Intel Xeon Gold 6134 1682 mins
Kernel Θ2 Nvidia Tesla V100 Intel Xeon Gold 6134 1641 mins
Kernel Θ3 Nvidia Tesla V100 Intel Xeon Gold 6134 1668 mins

LSO (Tripp et al., 2020)
Synthetic data (5000 obs.) - AMD MI250x AMD EPYC ”Trento” 102 mins
Expression reconstruction - Nvidia Tesla V100 Intel Xeon Gold 6134 723 mins
Molecular discovery - Nvidia Tesla V100 Intel Xeon Gold 6134 1038 mins

T-LBO (Grosnit et al., 2021) Expression reconstruction - Nvidia Tesla V100 Intel Xeon Gold 6134 918 mins
Molecular discovery - Nvidia Tesla V100 Intel Xeon Gold 6134 1582 mins

LOL-BO (Maus et al., 2022) Expression reconstruction - Nvidia Tesla V100 Intel Xeon Gold 6134 802 mins
Molecular discovery - Nvidia Tesla V100 Intel Xeon Gold 6134 845 mins

I LIMITATIONS

While our method proposes a novel approach to performing high-dimensional Bayesian optimisation
efficiently, it shares several of the limitations of standard VAEs. For example:

• It can be challenging to model complex (or multi-modal) data.

• The performance is dependent on the expressiveness of the chosen neural network architec-
ture for the encoder and decoder.

• The latent space is assumed to follow a Gaussian distribution which may not hold true for
all datasets.

• Sensitivity to the hyperparameter values such as dimensionality of the latent space, weight
of the KL divergence (β), minibatch size, etc.

Furthermore, in GP prior VAEs, the choice of the auxiliary covariates used for the GP prior needs to
be done empirically. Despite these limitations, GP prior VAEs have been successful in various ap-
plications and have contributed to advances in generative modelling and unsupervised representation
learning.

J BROADER IMPACTS

Generative machine learning models have gained significant attention in recent times. In this work,
we make use of the variational autoencoder which has been primarily used for representation learning,
imputation, and data generation tasks. However, VAEs (and deep generative models in general) present
several societal implications that extend beyond the scope of academia and research. Furthermore,
they present ethical considerations due to their potential malicious applications including contributing
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to misinformation and possible privacy concerns. Robust frameworks as well as guidelines need to be
established to address these concerns and to ensure the responsible deployment of generative machine
learning technologies. It is essential to navigate the ethical concerns and to ensure the responsible
use of deep generative models for the betterment of society.
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