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ABSTRACT

In this work, we rethink a fundamental question: “Is attention really all you
need?”. Although attention have achieved promising results on a variety of nat-
ural language processing tasks, we find that attention is still weak in long sen-
tence modeling. The global attention map is too dispersed to capture valuable
information. In such case, the local/token features that are also significant to se-
quence modeling are omitted to some extent. To address this problem, we pro-
pose a MUlti-Scale attEntion model (MUSE) by concatenating attention networks
with convolutional networks and position-wise feed-forward networks to explic-
itly capture local and token features. Experimental results show that the proposed
model achieves substantial performance improvements over Transformer, espe-
cially on long sentences, and pushes the state-of-the-art from 35.6 to 36.3 on
IWSLT 2014 German to English translation task, from 30.6 to 31.3 on IWSLT
2015 English to Vietnamese translation task. We also reach the state-of-art perfor-
mance on WMT 2014 English to French translation dataset, with a BLEU score
of 43.2.

1 INTRODUCTION

In recent years, Transformer has been widely used due to its promising performance on a variety of
natural language processing tasks, like machine translation (Vaswani et al., 2017; Dehghani et al.,
2018), text classification (Devlin et al., 2018; Yang et al., 2019), language modeling (Sukhbaatar
et al., 2019; Dai et al., 2019; Child et al., 2019), etc. It is solely based on an attention mechanism that
captures global dependencies between input tokens, dispensing with recurrence and convolutions
entirely. The key idea of the attention mechanism is updating token representations based on a
weighted sum of all input representations.

Despite significant results, the ability of attention to model long sentence has come into ques-
tion (Tang et al., 2018). As shown in Figure 1 (a), the performance of Transformer drops largely
with the increase of the source sentence length. Based on the empirical analysis, we find that the
performance drop is mainly due to the dispersed attention map where local/token features, also sig-
nificant to sequence modeling, are omitted to some extent, as shown in Figure 1 (b). Although the
original Transformer encodes position information into token embeddings to address this problem, it
is still unknown how much distance information is kept in the token representation with the increase
of layer depth.

To address this problem, we introduce a multi-scale attention model called MUSE, which concate-
nates an attention network with a convolutional network and a position-wise feed-forward network
at each layer to explicitly encode local and token features. A position-wise feed-forward network
allows a token-level transformation, which keeps token-specific features well. A convolutional net-
work is responsible for capturing local features. The dynamic convolution network (Wu et al., 2019)
is adopted as an implementation for fast computation speed. A convolutional neural network consists
of multiple convolution cells with different kernel sizes. As shown in Figure 2, the left figure shows
the structure of the original Transformer. The middle shows MUSE (MUSE FF) concatenating at-
tention networks and feed-forward networks and the right shows the standard MUSE concatenating
attention networks, feed-forward networks, and dynamic convolution networks.
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Figure 1: The left figure shows that the performance drops largely with the increase of sentence
length on the De-En dataset. The right figure shows an attention map from the 3-th encoder layer.
As we can see, the attention map is too dispersed to capture sufficient information. For example,
“[EOS]”, contributing little to word alignment, is surprisingly over attended.

We test these three models on various natural language processing tasks, including machine transla-
tion and language modeling. In particular, MUSE FF yields large improvements over Transformer
with 0.5 BLEU on IWSLT 2014 German to English translation dataset. The only difference between
MUSE FF and the original Transformer is the position of the feed-forward network. In the original
Transformer, the feed-forward network is put after attention operations. Since global features have
been encoded into token representation in the attention mechanism, it is hard for the feed-forward
network to keep sufficient token features. In MUSE FF, the feed-forward network is directly linked
with the input representation and the token-features are kept well. The standard MUSE, fusing at-
tention, feed-forward networks, and convolutional networks, achieves the best results and pushes the
state-of-the-art to 36.3 on IWSLT 2014 German to English translation dataset, 31.3 on IWSLT 2015
English to Vietnamese translation dataset. We also reach the state-of-the-art performance on WMT
English to French translation dataset, with a bleu score of 43.2. These results show that attention is
not all you need and local/token features also matter.

The main contributions are summarized as follows:

• We find that attention suffers from dispersed weights. To address this problem, we propose
a multi-scale attention model MUSE for sequence to sequence learning.

• It is interesting to see that the simple version of MUSE, fusing attention and a feed-forward
network in a parallel way, achieves better results than the serial way in the original Trans-
former. It shows the importance of token features.

• On the simple version basis, we further introduce convolution networks into MUSE to cap-
ture local features at different granularity, which brings larger improvements over Trans-
former.

• MUSE achieves state-of-the-art BLEU scores on three machine translation tasks, IWSLT
2014 German to English translation, IWSLT 2015 English to Vietnamese translation, and
WMT 2014 English to French translation.

2 MUSE: MULTI-SCALE ATTENTION MODEL

Like other sequence-to-sequence models, MUSE also adopts an encoder-decoder framework. The
encoder takes a sequence of word embeddings (x1, · · · , xn) as input where n is the length of input.
It transfers word embeddings to a sequence of hidden representation z = (z1, · · · , zn). Given z,
the decoder is responsible for generating a sequence of text (y1, · · · , ym) token by token.
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Figure 2: The left figure shows the original Transformer model. The middle is the simple version
MUSE (MUSE FF) only concatenating an attention network and a position-wise feed-forward net-
work. The right is the standard MUSE concatenating an attention network, a feed-forward network
and a dynamic convolution network together.

The encoder is a stack of N layers. Each layer consists of a MUSE module. Residual mechanism
and layer normalization are used to connect two adjacent layers.

The decoder is also a stack of N layers. Each layer contains two sub-layers: a MUSE module and
a context attention module. The MUSE module is responsible for capturing features from the gen-
erated text representations. The context-attention performs attention over the output of the encoder
stack. Residual mechanism and layer normalization are also used to connect two modules and two
adjacent layers.

The key part in the proposed model is the MUSE module, which contains three main parts: self-
attention for capturing global features, dynamic convolution for capturing local features, and a
position-wise feed-forward network for capturing token features. The module takes the output of
(i− 1) layer as input and generates the output representation in a fusion way:

Xi =MultiHead(Xi−1) + Conv(Xi−1) + FFN(Xi−1) (1)

where “MultiHead” refers to self-attention, “Conv” refers to dynamic convolution, “FFN” refers to
a position-wise feed-forward network. The followings list the details of each part.

2.1 SELF-ATTENTION FOR GLOBAL CONTEXT REPRESENTATION

Self-attention is responsible for capturing global attention. For a given input sequence X , it first
projects X into three representations, key K, query Q, and value V . Then, it uses a multi-head
attention mechanism to get the output representation:

MultiHead(X) = Concat(head1, · · · , headm)WO

where headi = Attention(QWQ
i ,KW

K
i , V WV

i )

Q,K, V = Linear1(X), Linear2(X), Linear3(X)

(2)

Where WO, WQ
i , WK

i , and WV
i are projection parameters. m is the number of head. The attention

operation is the dot-production between key, query, and value pairs:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3)

2.2 DYNAMIC CONVOLUTION FOR LOCAL CONTEXT MODELING

We introduce convolution operations into MUSE to capture local context. In order to save parameter
size, we use dynamic convolution networks as implementation. Each convolution sub-module con-
tains multiple cells with different kernel sizes . They are used for capturing different-range features.
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The output of the convolution cell with kernel size k is:

Convk(X) = dynmaic convk(XW
in)W out (4)

whereW in andW out are projection parameters. The dynamic conv refers to dynamic convolution
in the work of Wu et al. (2019). For an input sequence X , the output O is computed as:

Oi,c = dynamic convk(X) =

k∑
j=1

(
softmax(

d∑
c=1

WQ
j,cXi,c) ·Xi+j−d k+1

2 e,c
)

(5)

where d is the hidden size.

Weight Tying To decrease the model memory usage, we share the weight metrics ofW in in dynamic
convolution (Eq. 3) and the concatenation of WV

i in self-attention (Eq. 1).

Convk(X) = dynmaic convk(XW
V )W out (6)

where WV is the concatenation of WV
i in self attention.

Dynamically Selected Convolution Kernels We introduce a gating mechanism to automatically
select the weight of different convolution cells.

Conv(X) =

n∑
i=1

exp (αi)
n∑

j=1

exp (αj)
Convki

(X) (7)

where αi is a scalar initialized with 1/n. n is the number of cells.

2.3 FEED-FORWARD NETWORK FOR CAPTURING TOKEN REPRESENTATIONS

To capture token features, MUSE concatenates an attention network with a position-wise feed-
forward network at each layer. Since the linear transformations are the same across different po-
sitions, the position-wise feed-forward network can be seen as a token feature extractor.

FFN(x) = (0, HlW1 + b1)W2 + b2 (8)

where W1, b1, W2, and b2 are projection parameters.

3 EXPERIMENT

We evaluate MUSE on three machine translation tasks. This section describes the used datasets,
experimental settings, detailed results, and analysis.

3.1 EVALUATION DATASETS

WMT14 EN-FR datasets. The WMT 2014 English-French translation dataset, consisting of 36M
sentence pairs, is adopted as a benchmark dataset. We use the standard split of development set and
test set. We use newstest2014 as the test set and use newstest2012 +newstest2013 as the development
set. We also adopt a joint source and target BPE factorization with the vocabulary size of 40K.

IWSLT DE-EN and EN-VI datasets. Besides, two small IWSLT datasets are also adopted. The
IWSLT 2014 German-English translation dataset consists of 160k sentence pairs. We also adopt
a joint source and target BPE factorization with the vocabulary size of 32K. The IWSLT 2015
English-Vietnamese translation dataset consists of 133K training sentence pairs.

For all three datasets, We adopt the default split of development set and test set respectively. Fol-
lowing the fairseq reposity (Ott et al., 2019), we use the BPE technique to preprocess the DE-EN
and EN-FR datasets and remove BPE before the evaluation. For the EN-VI task, the vocabulary size
for English is 17.2K, and the vocabulary size for the Vietnamese is 6.8K.
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Model Parameter Size EN-VI DE-EN

NBMT (Huang et al., 2017) - 28.1 30.1
SACT (Lin et al., 2018) - 29.1 -
NP2MT (Feng et al., 2018) - 30.6 31.7
Fixup (Zhang et al., 2019b) 44M - 34.5
DynamicConv (Wu et al., 2019) 39M - 35.2
Macaron (Lu et al., 2019) 43M - 35.4
MAtt (Zhang et al., 2019a) 92M - 35.6

MUSE 49M 31.3 36.3

Table 1: BLEU scores of MUSE and state-of-the-art approaches on IWSLT DE-EN, IWSLT EN-VI
translation datasets.

Model Parameter Size EN-FR

CNNSeq2seq (Gehring et al., 2017) 216M 40.5
Transformer (Vaswani et al., 2017) 213M 41.0
RNMT+ (Chen et al., 2018) 379M 41.0
Weighted Transformer (Ahmed et al., 2017) 213M 41.4
Relative Transformer (Shaw et al., 2018) - 41.5
ScalingNMT (Ott et al., 2018) 210M 43.2
DynamicConv (Wu et al., 2019) 213M 43.2
MUSE 233M 43.2

Table 2: BLEU scores of models on WMT EN-FR translation dataset.

3.2 EXPERIMENTAL SETTINGS

We build a model consisting of 12 encoder layers and 12 decoder layers. The hidden dimension is
set to 384 on DE-EN and EN-VI translation, and 768 on EN-FR translation. The embedding layer is
initialized by a normal distribution. For the rest parameters, we use the default initialization method
by pytorch. Suppose din is the input dimension, the parameters of the fully connected layer are
initialized by an uniform distribution (−1/

√
din, 1/

√
din).

We calculate the batch size at a token level, which is so-called dynamic batching (Vaswani et al.,
2017). For the DE-EN dataset, we train the model for 20K steps with a batch size of 4K. The
parameters are updated every 4 steps. The dropout rate is set to 0.4. For the EN-VI dataset, We train
the model for 10K steps with a batch size of 4K. The parameters are updated every 4 steps. The
dropout rate is set to 0.3. For EN-FR translation, we train the model for 25K updates with a batch
size of 3, 584, following Ott et al. (2018). The parameters are updated every 32 steps. The dropout
rate is set to 0.3. The models for EN-FR are trained on 4 Titan RTX GPUs while the models for
EN-VI and DE-EN are trained on a single NVIDIA RTX 2080Ti GPU.

We tune the hyper-parameter on the valid set. We use Adam optimizer with a learning rate of 0.001.
Following Vaswani et al. (2017), we use a learning rate warmup mechanism and invert the learning
rate decay with warmup updates of 4K. We adopt an early stopping mechanism in the training. To
be specific, we stop training 10 epochs after the epoch with the lowest valid loss and then average
the last 10 checkpoints for inference. During inference, we adopt beam search with a beam size of 5
for DE-EN and EN-VI translation, and a beam size of 4 for EN-FR translation. The length penalty is
set to 0.8 for all EN-FR and it is set to 1 for other datasets. The BLEU1 metric is adopted to evaluate
the model performance on the machine translation datasets during evaluation.

3.3 RESULTS

As shown in Table 1, MUSE outperforms the previously reported models and establishes new state-
of-the-art results on the IWSLT DE-EN and EN-VI machine translation tasks. To be specific, MUSE

1https://github.com/moses-smt/mosesdecoder/blob/master/ scripts/generic/multi-bleu.perl
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Model Parameter Size BLEU

Transformer (6L, dim = 512) 43M 35.3
Transformer (12L, dim = 512) 74M diverge
Transformer (12L, dim = 384) 44M diverge
DynamicConv (6L, dim = 512) 39M 35.7
DynamicConv (12L, dim = 512) 63M 35.6
DynamicConv (12L, dim = 384) 38M 35.6
MUSE (6L, dim = 512) 47M 35.3
MUSE (12L, dim = 512) 82M 36.0
MUSE (12L, dim = 384) 49M 36.3

Table 3: Comparisons between baselines and MUSE on the IWSLT 2015 DE-EN translation task.
The gradients of Transformer and DynamicConv diverge under deep structures while MUSE yet
gets better results with the increase of layer depth. To avoid the effect of parameter size on model
performance, we also evaluate MUSE with the similar model size as Transformer (6L, dim = 512).
The small version of MUSE still beats Transformer by a large margin.

achieves a 36.3 BLEU score on DE-EN translation and a 31.3 BLEU score on EN-VI translation.
Furthermore, compared with the approaches with the similar model size, Fixup and Macaron, MUSE
achieves almost 1.0 BLEU score improvement on DE-EN datast. On the WMT EN-FR machine
translation dataset, MUSE also achieves state-of-the-art results, with a BLEU score of 43.2, as
shown in Table 2.

Table 3 shows the performance of MUSE and baselines under different layers and dimensions. With
the increase of layer depth, the gradient of Transformer and DynamicConv diverges. By contrast,
the performance of MUSE even gets slightly improvement under deeper structures. These results
prove the stability of MUSE which can be applied on more complex tasks in the future.

Furthermore, it is interesting to see that DynamicConv achieves better results than Transformer (
Table 3). DynamicConv mainly focuses on capturing local features while Transformer is responsible
for capturing global features via attention. These results indicate that local features may be more
important than global features in sequence to sequence learning because of their higher flexibility.
Second, the proposed model, MUSE (12 layers), augmenting self-attention with local and token
features, beats Transformer and DynamicConv by a large margin, with a 0.5 BLEU improvement on
DE-EN translation. To avoid the effect of parameter size on model performance, we also evaluate
MUSE with the similar model size as Transformer (6L, dim = 512). The small version of MUSE
still beats Transformer by a large margin.

3.4 ABLATION ANALYSIS

To explore and understand the idea of combining multi-scale information, we also conduct a series
of ablation studies by taking results on IWSLT 2015 DE-EN translation as an example.

Model Parameter Size BLEU

Transformer 43M 35.3
MUSE FF 44M 35.8
MUSE 49M 36.3

Table 4: Comparisons between the standard MUSE and baselines. The better performance of
MUSE FF over Transformer shows the effectiveness of token features. With dynamic convolutions,
the standard MUSE brings larger improvements, showing the effectiveness of local features.

First, as we can see, the performance of MUSE FF beats the original Transformer with a 0.5 BLEU
improvement. MUSE FF concatenates attention networks and feed-forward networks in a parallel
way while the original Transformer serially combines them. Since the attention already fuses global
features into token features, it is hard for the feed-forward to keep sufficient features. In MUSE, the
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feed-forward networks are directly linked with the input, thus it keeps token-level features well. The
better performance of MUSE FF shows the effectiveness of local features.

To capture more complex local features, we also introduce dynamic convolutions into MUSE. As
shown in Table 4, without dynamic convolutions, the performance of MUSE FF drops from 36.3 to
35.8. It indicates the importance of local features.

3.5 VISUALIZATION ANALYSIS

MUSE contains multiple dynamic convolution cells, whose streams are fused by a gated mechanism.
The weight for each dynamic cell is a scalar. Here we analyze the weight of different dynamic
convolution cells in different layers. Figure 4 shows that as the layer depth increases, the weight of
dynamic convolution cells with small kernel sizes gradually decreases. It demonstrates that lower
layers prefer local features while higher layers prefer global features. It is corresponding to the
finding in Ramachandran et al. (2019).
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3.6 CASE STUDY

We conduct the case study on the De-En dataset and the cases are shown in Table 5. In case 1,
alghough the baseline transformer translates many correct words according to the source sentence,
the translated sentence is not fluent at all. It indicates that Transformer does not capture the rela-
tionship between some words and their neighbors, such as “right” and “clap”. By contrast, MUSE
captures them well by combining local attention with global self-attention. In case 2, the cause ad-
verbial clause is correctly translated by MUSE while transformer misses the word “why” and fails
to translate it.

4 RELATED WORK

Text understanding and representation is an essential step in natural language processing. Traditional
approaches usually adopt long-short term memory networks (Hochreiter & Schmidhuber, 1997) or
convolutional neural networks (CNN) (Krizhevsky et al., 2012) to get the representation of a text
sequence. However, these models either are built upon auto-regressive structures requiring longer
encoding time or perform worse on real-world natural language processing tasks.

Unlike these approaches, Transformer (Vaswani et al., 2017) drops CNN or LSTM structures and
only keeps an attention mechanism. It supports high-parallel sequence modeling and does not re-
quire auto-regressive structure during encoding, thus bringing large efficiency improvements. Due
to its strong ability in capturing global dependencies, some researchers also apply attention to com-
puter vision tasks (Wang et al., 2018; Bello et al., 2019). Further, Ramachandran et al. (2019) claim
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Case 1
Source wenn sie denken, dass die auf der linken seite jazz ist und die, auf der

rechten seite swing ist, dann klatschen sie bitte.

Target if you think the one on the left is jazz and the one on the right is swing,
clap your hands.

Transformer if you think it’s jazz on the left, and those on the right side of the
swing are clapping, please.

MUSE if you think the one on the left is jazz, and the one on the right is
swing, please clap.

Case 2
Source und deswegen haben wir uns entschlossen in berlin eine halle zu bauen,

in der wir sozusagen die elektrischen verhltnisse der insel im mastab
eins zu drei ganz genau abbilden knnen.

Target and that’s why we decided to build a hall in berlin, where we could
precisely reconstruct, so to speak, the electrical ratio of the island on a
one to three scale.

Transformer and so in berlin, we decided to build a hall where we could sort of
map the electrical proportions of the island at scale one to three very
precisely.

MUSE and that’s why we decided to build a hall in berlin, where we can sort
of map the electric relationship of the island at the scale one to three
very precisely.

Table 5: Case study on the De-En dataset. The blue bolded words denote the wrong translation
and red bolded words denote the correct translation. In case 1, transformer fails to capture the
relationship between some words and their neighbors, such as “right” and “clap”. In case 2, the
cause adverbial clause is correctly translated by MUSE while transformer misses the word “why”
and fails to translate it.

that all convolutional nets can be replaced by self-attention in computer vision tasks to improve
performance. Furthermore, layer normalization and residual structure make it possible to build a
very deep model, enabling the model with a powerful learning ability (Wang et al., 2019). Be-
sides, Zhang et al. (2019a) proposes to build a deep transformer of 12 layers with a large number of
parameters.

In recent years, some researches are focusing on exploring simpler or stronger networks than Trans-
former. Wu et al. (2019) propose a very lightweight convolution network, which is simpler and
more efficient than Transformer. So et al. (2019) adopt NAS, a neural architecture search method,
to search for a better alternative to Transformer by fusing attention and convolutions together. In
this work, we propose a multi-scale attention model by combing global features, local features, and
token features together to improve the generalization ability.

5 CONCLUSION AND FUTURE WORK

In this work, we rethink a fundamental question: “Is attention really all you need?”. We find that
attention suffers from dispersed weights especially for long text modeling. To address this prob-
lem, we present MUSE, a model that fuses self-attention, convolution, and fully connected layers
together to explicitly capture global features, local features, and token features respectively. Beyond
the inspiring results on large datasets, exploratory analysis and model ablation also verify the ef-
fectiveness of MUSE. Although our empirical results prove the effectiveness of local features and
global features, it is still unknown how this information affects model learning. In future work, we
would like to explore the detailed effects of global/local features on model learning.
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