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ABSTRACT

Recent research has intensively revealed the vulnerability of deep neural networks,
especially for convolutional neural networks (CNNs) on the task of image recogni-
tion, through creating adversarial samples which “slightly” differ from legitimate
samples. This vulnerability indicates that these powerful models are sensitive to
specific perturbations and cannot filter out these adversarial perturbations. In this
work, we propose a quantization-based method which enables a CNN to filter out
adversarial perturbations effectively. Notably, different from prior work on in-
put quantization, we apply the quantization in the intermediate layers of a CNN.
Our approach is naturally aligned with the clustering of the coarse-grained se-
mantic information learned by a CNN. Furthermore, to compensate for the loss of
information which is inevitably caused by the quantization, we propose the multi-
head quantization, where we project data points to different sub-spaces and per-
form quantization within each sub-space. We enclose our design in a quantization
layer named as the Q-Layer. The results obtained on MNIST and Fashion-MNSIT
datasets demonstrate that only adding one Q-Layer into a CNN could significantly
improve its robustness against both white-box and black-box attacks.

1 INTRODUCTION

In recent years, along with the massive success of deep neural networks (DNNs) witnessed in many
research fields, we have also observed their impressive failures when confronted with adversarial
examples, especially for image recognition tasks. Prior work (Szegedy et al. (2014); Goodfellow
et al. (2015)) has demonstrated that an adversarial image can be easily synthesized by adding to a le-
gitimate image a specifically crafted perturbation, which is typically imperceptible for human visual
inspection. The generated adversarial image, however, is strikingly effective for causing convolu-
tional neural network (CNN) classifiers to make extreme confident misclassification results. This
vulnerability of DNNs has stimulated the unceasing arms race between research on both attack-
ing (Goodfellow et al. (2015); Kurakin et al. (2017); Carlini & Wagner (2017); Moosavi-Dezfooli
et al. (2016); Chen et al. (2017); Brendel et al. (2018)) and defending (Madry et al. (2018); Saman-
gouei et al. (2018b); Buckman et al. (2018); Zhang & Liang (2019)) these powerful models.

Among much existing work and a large variety of defense methods, several prior studies (Xu et al.
(2018); Buckman et al. (2018); Zhang & Liang (2019)) have spent concerted efforts on defending
adversarial attacks through input quantization. The principle idea of these methods is to use quanti-
zation to filter out small-scale adversarial perturbations. Recall that in prior work (Bau et al. (2017);
Zeiler & Fergus (2014); Zhou et al. (2015)), it has been shown that the shallow layers of a CNN
mostly capture fine-grained features including lines and curves. In the meantime, deeper layers
learn coarse-grained yet semantically more critical features, which essentially discriminate different
samples. Especially for classification tasks, it is natural to expect samples with the same classifica-
tion label to share similar semantic information. As such, the semantic similarity between samples
may be better revealed if we attend to their latent features learned by the intermediate layers of a
CNN. Here we hypothesize that data points with similar semantic information should be distributed
densely in the latent feature space. Thus, in order to more effectively filter out adversarial pertur-
bations, we propose an alternative approach which quantizes the data representations embedded in
the feature space produced by the intermediate layers of CNN classifiers. Interestingly, there have
been other studies that develop similar approaches but for different purposes. For example, Wang
et al. (2017; 2015) have applied k-means clustering on the intermediate feature maps of CNN models
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to discover explainable visual concepts. Recent methods, including VQ-VAE (van den Oord et al.
(2017)) and SOM-VAE (Fortuin et al. (2019)), were proposed to construct generative models for
images and time-series data with discrete latent representations, which offer better explainability.
However, to the best of our knowledge, the approach of applying intermediate layer quantization for
CNN models has not been explored in the context of defending adversarial examples.

In this work, we propose a quantization method that is realized by an extra intermediate layer, i.e.,
the quantization layer (Q-Layer). Our Q-Layer can be easily integrated into any existing architecture
of CNN models. Specifically, the Q-Layer splits the mainstream of information that flows forward
in a regular CNN model into two separate flows. Both flows share the same information passed
by layers before the Q-Layer, but differ in the subsequent networks after the Q-Layer. These two
flows produce two outputs, one is the quantized output, and the other is the Non-quantized output.
Specifically, the non-quantized path is introduced to facilitate the gradient-based training, and to
regularize the quantization operation. In the quantized path, we introduce non-differentiability to
defend gradient-based attacks. It is important to note that, while gradient-based attacks cannot
be directly applied to the quantized network, they can still be conducted by following the non-
quantized path. Also, similar to most input transformation methods (Xu et al. (2018); Buckman
et al. (2018)) proposed for defending adversarial examples, our quantization will inevitably lose
some feature information, which might be useful for classification. In order to compensate for this
loss of information, we further propose multi-head quantization, where we project data points to
different sub-spaces and perform quantization within each sub-space. In particular, we perform the
projection by re-weighting the input-channels of CNN with trainable parameters. This projection
process can be interpreted as performing feature extraction from different points of view, hence help
retain the overall effectiveness of our method without causing much performance degradation for
the model to be protected. Last but not least, our proposed method can be readily combined with
other existing defenses, e.g., adversarial training (Goodfellow et al. (2015)), to jointly improve the
adversarial robustness of a protected CNN classifier.

In summary, we make the following contribution:

• We propose a quantization-based defense method for the adversarial example problem by
designing a quantization Layer (Q-Layer) which can be integrated into existing architec-
tures of CNN models. Our implementation is online available 1.

• We propose multi-head quantization to compensate for the possible information loss caused
by the quantization process, and bring significant improvement to the adversarial robustness
of an armed model under large perturbation.

• We evaluate our method under several representative attacks on MNIST and Fashion-
MNIST datasets. Our experiment results demonstrate that the adoption of the Q-Layer
can significantly enhance the robustness of a CNN against both black-box and white-box
attack, and the robustness can be further improved by combining our method with adver-
sarial training.

2 RELATED WORK

2.1 ADVERSARIAL ATTACK

Given a neural network classifier N with parameters denoted by w, N can be regarded as a function
that takes an input x ∈ Rdx and produces an classification label y, i.e., N(x;w) = y or N(x) = y
for notation simplicity. In principle, the goal of the adversarial attack is to create a perturbation
δ ∈ Rdx to be added to a legitimate sample x for creating an adversarial example, i.e., x+ δ, which
causes the target model N to produce a wrong classification result.

Depending on different threat models, adversarial attacks are categorized as black-box attacks or
white-box attacks (Papernot et al. (2018)). Specifically, it is commonly assumed in the white-box
attack scenario, that an attacker knows every detail of the target model. This dramatically eases
the generation of impactful adversarial examples, and has stimulated researchers to propose vari-
ous white-box attack methods, including the fast gradient sign method (FGSM) (Goodfellow et al.
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(2015)), the basic iterative method (BIM) (Kurakin et al. (2017)), the Carlini-Wagner (CW) at-
tack (Carlini & Wagner (2017)), and DeepFool (Moosavi-Dezfooli et al. (2016)). On the contrary,
in the black-box attack scenario, an attacker is typically assumed to be restricted for accessing de-
tailed information, e.g., the architecture, values of parameters, training datasets, of the target model.
There have been many black-box attack methods proposed in prior work (Chen et al. (2017); Bren-
del et al. (2018); Papernot et al. (2016)). Representative black-box attacks typically exploit the
transferability (Papernot et al. (2016)) of the adversarial examples, hence is also referred to as trans-
fer black-box attacks. Explicitly, in transfer black-box attacks, an attacker can train and maintain
a substitute model, then conduct white-box attacks on the substitute model to generate adversarial
samples which retain a certain level of attack power to the target model. Since both black-box and
white-box attacks rely on the white-box assumption, in the following, we mainly introduce several
representative white-box attacks, namely the FGSM, BIM and CW attacks, which are also employed
in our experiments due to their wide adoption as the benchmark attack methods (Samangouei et al.
(2018a;b)).

Fast gradient sign method (FGSM) Goodfellow et al. (2015) proposed FGSM, in which δ is cal-
culated by scaling the l∞ norm of the gradient of the loss function L with respect to a legitimate
input x as follows:

δ = ε · sign(∇x(L(N(x), y)))

where ε represents the maximally allowed scale of perturbation. This method represents a one-step
approximation for the direction in the input space that affects the loss function most significantly.

Basic iterative method (BIM) Kurakin et al. (2017) proposed the BIM attack, which iteratively
performs the FGSM hence generates more impactful adversarial examples at the expense of compu-
tational efficiency.

Carlini-Wagner (CW) attack Carlini & Wagner (2017) aimed to find the smallest perturbation to
fool the target model, by solving the following optimization problem:

min
δ

‖δ‖p + c · L(x, δ)

s.t. x+ δ ∈ [0, 1]n

where c > 0 is a tunable positive constant and ‖‖p represents different norms. In our experiment,
we consider l∞ norm. L is designed to satisfy that L(x, δ) < 0 if and only if N(x+ δ) 6= N(x).

2.2 DEFENSE METHODS

There have been many different defense methods (Xu et al. (2018); Goodfellow et al. (2015); Madry
et al. (2018); Samangouei et al. (2018a;b); Buckman et al. (2018); Zhang & Liang (2019)) developed
to battle with a large body of attacking methods. Here we briefly introduce three representative ones.

Adversarial training In the same work that introduced FGSM, Goodfellow et al. (2015) also pro-
posed to train a target model with an augmented training set, which contains both original samples
and adversarial samples generated by the target model itself. Considering the low computational cost
needed by FGSM, it is usually used for generating target-specific adversarial examples in adversar-
ial training. Madry et al. (2018) introduced a more general framework for generating adversarial
examples and proposed to use iterative attacks, such as BIM, to produce adversarial samples for
augmenting the training set. The resulting defense is regarded as among the most effective defense
methods ().

Input quantization Xu et al. (2018) proposed feature squeezing, which transforms the input by
reducing the range of pixel values then employs a filter to smooth the input image. Buckman et al.
(2018) propose to encode the input with one-hot encoding or thermometer coding. Zhang & Liang
(2019) add Gaussian noise to the input and cluster input pixels to perform quantization.

Input purification Samangouei et al. (2018b) propose PixelDefend, where they used a PixelCNN
(van den Oord et al. (2016)) to model the distribution of input pixels, and differentiate adversarial
samples from legitimate samples. Their results show that the pixel distribution of adversarial sam-
ples is indeed “unnatural” in comparison with legitimate samples. Then they proposed to purify
input pixels to obtain a natural distribution and pass the purified input to the target model for further
processing.
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Figure 1: The overview of Q-Layer. The forward paths for the quantized output and the non-
quantized output are drawn with solid black arrows and the four backward paths are drawn with
red, blue, green and yellow arrows.

3 METHOD

3.1 OVERVIEW

Given a CNN which has the Q-Layer injected into the intermediate part (e.g., after the convolutional
block and before the fully connected block or between two convolutional blocks) of the network,
its input goes through the quantization path (Q-path), which consists of several steps of processing,
including projection, quantization, and concatenation, then produce the quantized output for the
subsequent network, as depicted in Figure 1. Note, that the quantization step forces pre-quantization
data representation (outputs of the projection step), i.e., ze,j (j = 1, 2, 3), to be replaced by the
post-quantization representation, i.e., zq,i, (i = 1, 2, 3). Since the quantization step introduces non-
differentiability in the Q-path, the backpropagation operation cannot be directly applied for this
path. In order to make the enhanced model still trainable, we propose to concatenate the multi-
head projection results and pass the concatenation to a separate subsequent network along the non-
quantization path (E-path). It is natural to consider about having both paths connected to subsequent
networks that are identical by sharing their weights, whereas, in our experiments, we observed
inferior performance in comparison with having both paths connected to networks with different
weights. Interested readers could refer to Appendix G for an ablation study which demonstrates
this effect. Correspondingly, in Figure 1, we illustrate four backward paths that jointly contribute to
updating the model. In particular, path 1, 3, and 4 constitute the backward path for the quantization
operation, and path 2 represents the backward path for the non-quantization step.

3.2 SINGLE-HEAD QUANTIZATION

Given a neural networkN , we can split it into two sub-network, denoted byNF andNB respectively,
from somewhere in the middle of the network. Specifically, in this work, we split a regular CNN
into an image encoder network which contains convolutional blocks and a fully-connected classifier
network. Then given an input x, the output y of such a neural network is calculated by:

y = N(x) = NB(NF (x)). (1)

We further assume the size of the intermediate output, i.e., ze = NF (x), as n×w×h×d, where n is
the batch size, w, h are the width and height of the intermediate output, d is the number of channels.
We consider ze to be composed by n∗w ∗h panels, where an arbitrary panel j, i.e., zje , is a vector of
length d. As shown in Figure 1, the Q-Layer takes ze as input panels, and outputs quantized panels
zq . Each panel of zq represents a concept vector of dimension d. By setting the number of concepts
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as some constant nc a priori, we then have Q represented by a concept matrix of size nc × d. Let
Qi denote the i-th row of Q. Then the calculation in the Q-Layer is done by identifying the closest
concept Qi

∗
for each input panel zje as shown in the following:

zjq = Qi
∗
, where i∗ = argmin

i

∥∥zje −Qi∥∥ (2)

After identifying the closest concept Qi
∗

for zje , we model the quantization operation as multiplying
the entire concept matrix Q by an nc-dimensional one-hot encoded identification vector Ii∗ . As
previously mentioned, we pass zq and ze to two different subsequent networks, denoted by NQ and
NE respectively. Accordingly, we refer yq and ye as the outputs produced by the Q-path and the
E-path, respectively. Then given an input x, the final output is as follows:

yq = NQ(I(NF (x))Q), where I(zje) = Ii∗ =

{
1, if i∗ = argmin

i

∥∥zje −Qi∥∥
0, otherwise

,

ye = NE(NF (x)).

(3)

3.3 MULTI-HEAD QUANTIZATION

Our quantization step introduced above essentially describes a built-in online clustering process.
However, clustering in high dimensional space is challenging, mainly due to the existence of many
irrelevant dimensions (Parsons et al. (2004)). Furthermore, in order to find rich concepts that reflect
the similarity and difference between samples, our quantization step needs to locate clusters that
may be embedded in different sub-spaces. As such, we introduce sub-space clustering (Parsons
et al. (2004)) into our design and propose multi-head quantization to address these challenges as
well as alleviate the possible information loss caused by the single-head quantization step.

More specifically, we first project an input representation toK sub-spaces, whereK is a pre-defined
hyper-parameter. Then we perform single-head quantization within each sub-space. At last, we
concatenate the quantization results produced in all sub-spaces to obtain the final output. In the
projection step, we apply a re-weight mechanism to d channels of an input representation. As men-
tioned before, we can consider a input batch as a (n×w×h) panels, where a panel is represented as a
d-dimensional vector containing features generated by d channels. Given the j-th panel zje ∈ R1×d,
let zje,i be the i-th sub-space projection and Wi ∈ Rd×d, bi ∈ R1×d be the projection parameters of
the i-th sub-space, then we have:

zje,i = zje � Softmax(zjeWi + bi), (4)

where � denotes the Hadamard product. Denote the projection operation conducted in the i-th sub-
space by Pi and the corresponding concept matrix in this sub-space by Qi. Then the operation of
concatenating the outputs from all sub-spaces is represented as follows:

C
(
I
(
Pi(ze)

)
Qi,∀i ∈ [1,K]

)
= [I

(
P1(ze)

)
Q1, . . . , I

(
PK(ze)

)
QK ]. (5)

Given an input x, the formulations for yq, ye in the case of the multi-head quantization is as follows:

yq = NQ

(
C
(
I
(
Pi(ze)

)
Qi,∀i ∈ [1,K]

))
, ye = NE

(
C
(
Pi(ze),∀i ∈ [1,K]

))
(6)

3.4 OPTIMIZATION LOSS

By following the design of VQ-VAE (van den Oord et al. (2017)) and SOM-VAE (Fortuin et al.
(2019)), we decompose the quantization loss into two separate loss terms and finally specify the
following four terms (as shown in Figure 1) in the final training loss, i.e.,

L = c1 · LQ + c2 · LE + α · LQ→E + β · LE→Q, (7)
where c1, c2, α, β are tunable hyper-parameters. Specifically, the first loss LQ represents the stan-
dard cross-entropy loss caused by the quantized output. This loss is specified to optimize the weight
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parameters of NQ and the Q-Layer to fit the classification task. As previously mentioned, the Q-
path does not allow direct backpropagation, as such, in order to optimize NF , we set the second
cross-entropy loss, i.e., LE , to train NF and NE by following the E-path.

The last two loss terms are specified for optimizing the quantization performance by directly eval-
uating the distance between concept vectors, which can be regarded as clustering centroids, and
learned data projections. In particular, the third loss LQ→E measures the l2 distance between zq and
a fixed ze. In other words, we apply the “stop-gradient” operation (denoted as sg) to ze to ensure
that this loss only moves zq to ze instead of the opposite.

LQ→E = ||zq − sg(ze)||22, LE→Q = ||sg(zq)− ze||22 (8)

This is a direct analogy to clustering as by minimizing LQ→E , all row vectors of the parameter
matrix Q keep moving towards different clustering centers. Similarly, the fourth loss, i.e., LE→Q,
measures the “commitment” of data projections to their corresponding clustering centroids. Here we
apply the stop-gradient operation to zq while minimizing this loss. By optimizing LE→Q, we try to
shape the learned projections of samples to be more similar to their corresponding concepts, hence
eventually forming densely distributed clusters. Although we have followed prior work (van den
Oord et al. (2017)) to decompose the quantization loss as described above and allowed more flexible
control over LQ→E and LE→Q by tuning α and β, however, in our experiments, after tuning α and
β with cross-validation, we observed the ratio of these two hyper-parameters, if within certain range
(for example, 0.1 to 10), had insignificant influence on the final performance. A similar effect has
also been reported by van den Oord et al. (2017). As such, in Section 4, we mainly present the
results obtained by setting α = β.

3.5 UPDATE FOR INACTIVE CONCEPTS

If the concept matrix is not properly initialized or optimized, a concept which is far away from all
data projections may remain constant during training. We refer to concepts that behave as described
above as “inactive” concepts and refer to other concepts that can be effectively updated as “active”
concepts. This issue may severely impact the final performance when there are relatively many
inactive concepts.

To update inactive concepts, we design two updating strategies. One is to force an inactive concept
to move its closest panel directly. The other is to re-initialize an inactive concept as its closest panel.
In our experiments, we mainly use the first strategy due to its better effectiveness. Specifically, the
first strategy is implemented by adding a special loss term, which calculates the distance between
each inactive concept to its closest panel. We then optimize this loss after each training epoch.

4 EVALUATION

4.1 EXPERIMENT SETUP

In our experiments, we considered two types of attacks, namely the black-box and the white-box
attacks. Under each type of attacks, we evaluated the effectiveness of our proposed Q-Layer by com-
paring both the accuracy and robustness of two standard CNNs built with and without the Q-Layer
obtained on a clean testing set and an adversarial testing set constructed from this clean testing set.
The accuracy achieved by a CNN on the clean testing set reflects its standard generalization perfor-
mance, while its robustness is represented by the accuracy obtained by this CNN on the adversarial
testing set. In particular, under white-box attacks, for a CNN equipped with the Q-layer, the direct
gradient-based attack can only be applied to the E-path, as mentioned previously. We refer to this
type of attack as the E-path white-box attack. Furthermore, we assumed that an attacker might attack
the non-differentiable Q-path by ignoring the quantization operation and directly concatenate ze to
NQ to build a substitute attack path following equation 9, which we refer as the Q-path white-box
attack.

∇xyq = ∇zqNQ(zq)∇xzq ≈ ∇zeNQ(ze)∇xze (9)

Moreover, under both types of attacks, we also evaluated CNNs built with and without the Q-Layer
by considering the case where both models were enhanced by adversarial training Goodfellow et al.
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(2015). The models considered in this case are referred to as adversarial-trained models. Corre-
spondingly, the models trained without adversarial training are referred to as raw-trained models.
Note, in the following experiments, we only focus on the classification accuracy obtained by the
Q-path by CNNs armed by the Q-Layer. We report the accuracy obtained by the E-path in Appendix
D.

4.1.1 DATASET

The datasets adopted in our experiments include the MNIST (LeCun & Cortes (2010)) and the
Fashion-MNIST (Xiao et al. (2017)) datasets 2. For each dataset, we had five subsets of samples,
including a training set, an adversarial training set, a validation set, a clean testing set, and an
adversarial testing set. A clean validation set was first constructed by randomly selecting 10,000
samples from the original training set, hence leaving the final training set contained the rest 50,000
training samples. Then we created adversarial examples from this clean validation set by using a
pre-trained CNNA3 and the FGSM method. This pre-trained CNNA only acted as a source model
for creating adversarial validation samples and was not involved in either the training or testing
process. The clean validation set was then mixed with its adversarial counterpart to build the final
validation set. This mixed validation set was used for selecting models that achieved the best per-
formance. Through this, we attempted to avoid the case of selecting models that can only perform
well with clean samples. Instead, we tried to evaluate the performance of models that are naturally
robust against adversarial examples. A comparison between the results obtained following the above
scheme and the results obtained by models selected by using the clean validation set is provided in
Appendix C.

During the testing phase, depending on different attack scenarios, we constructed different adversar-
ial testing sets. Specifically, under black-box attacks, we independently trained two source models
for generating two sets of adversarial testing samples. One of the source models had the same struc-
ture as the CNNA but was trained with a different random initialization. The other source model,
denoted by CNNB , had a structure that was different from that of CNNA. Both source models were
used to simulate the scenario where an attacker generated adversarial examples from some unknown
models. Under the white-box attacks, for each target model, its associated adversarial testing set
was generated by directly attacking this model.

Recall that we can apply our method in tandem with adversarial training. Therefore, on the MNIST,
we created adversarial examples for adversarial training by setting ε = 0.2. For the mixed validation
and adversarial testing set, we created adversarial examples by setting ε = 0.2/0.3. This setup is due
to the observation that FGSM-based adversarial training is less effective against adversarial samples
created with a larger scale of perturbation. As a result, we attempted to simulate a more critical
scenario in this setup. On the Fashion-MNIST, we noticed that by setting ε = 0.2/0.3, the resulting
adversarial images were severely distorted. As such, we created adversarial examples by setting
ε = 0.1/0.2.

4.1.2 MODEL SETUP

In our experiments, we compared the robustness of three target models: CNNA, CNN with a basic
Q-Layer (K = 1, nc = 64, denoted as Q-base), and CNN with a large Q-Layer (K = 4, nc = 64,
denoted as Q-large). Q-base and Q-large share the same architecture with CNNA, but with an
additional Q-Layer after the convolution blocks and before the fully-connect layer. We have also
evaluated the case where the Q-Layer was inserted between two convolution blocks of CNNA. The
results are showed in Section 4.4.

Besides, we provided the architectures of the target and substitute models, the hyper-parameters,
and other implementation details in Appendix A/B.

2Both MNIST and Fashion-MNIST contain 60,000 training samples and 10,000 testing samples. All sam-
ples are in grey-scale with the size of 28 × 28.

3CNNA denotes a CNN with the type-A architecture, which is same as the architecture adopted by Saman-
gouei et al. (2018a), as shown in the Appendix A
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Clean FGSM BIM
None 0.2 0.3 0.2 0.3

CNN 98.73 75.77 40.03 62.52 16.02
Q-base 96.57 84.86 52.69 84.08 38.22
Q-large 97.38 85.87 65.19 86.48 67.01

CNN + adv 98.73 96.78 80.57 96.18 64.60
Q-base + adv 98.58 96.36 91.7 96.72 92.46
Q-large + adv 98.33 95.83 84.58 96.11 86.4

(a) Results for black-box attacks on MNIST

Clean FGSM BIM
None 0.1 0.2 0.1 0.2

CNN 86.65 66.15 43.07 63.94 38.7
Q-base 84.76 72.24 47.77 72.67 52.41
Q-large 82.3 69.35 51.92 70.24 52.32

CNN + adv 88.25 83.56 57.81 83.68 51.76
Q-base + adv 83.21 79.09 71.07 79.53 73.12
Q-large + adv 82.32 78.78 70.31 78.89 70.84

(b) Results for black-box attacks on Fashion-MNIST

Table 1: Comparison of classification accuracy for different target models on the MNIST under
black-box attack with source model CNNA. We use “N+adv” to refer adversarial-trained models.

4.2 RESULTS FOR BLACK-BOX ATTACKS

As previously mentioned in Section 4.1.1, we use two substitute models, i.e., CNNA and CNNB ,
to implement black-box attacks for a target model. Notably, in our experiments, we observed that
the attacks conducted by using CNNA were generally more impactful than the attacks conducted
by using CNNB . As such, due to space limitations, here we only demonstrate the results obtained
under attacks performed by CNNA and provide the results obtained for CNNB in Appendix E. Also,
we have adopted three representative attacks, namely the FGSM attack, the BIM attack, and the
CW attack (introduced in Section 2). In Table 1a and Table 1b, we only present the results obtained
under the FGSM and BIM attacks, as we have observed that, despite being a powerful attack under
the white-box scenario, the CW attack produced less effective black-box attacks.

MNIST From Table 1a, we can observe that, by inserting the Q-Layer into the CNN, its robustness
is improved significantly. Take the results for raw-trained Q-large as an example, in comparison with
the unarmed CNN, the accuracy under the FGSM attack of ε = 0.3 rises from 40.03 to 65.19, and
the accuracy under BIM attack of ε = 0.3 rises from 16.02 to 67.01, which is even higher than the
accuracy obtained by the adversarial-trained CNN.

With adversarial training, the robustness of all models increases. In particular, while these models
have similar robustness under small-scale perturbations, as the scale of perturbation increases, the
robustness of the target CNN decreases more significantly than Q-large and Q-base, especially for
the BIM attack.

Fashion-MNIST In Table 1b4, we show the results obtained under black-box attacks for Fashion-
MNIST. Similar to MNIST, we can observe improved robustness for raw-trained Q-base and Q-
large, in comparison with CNN. Also, after adversarial training, the robustness of the three models
are close under small perturbation attack, while Q-base and Q-large outperform CNN under large
perturbation.

In addition to the results shown above, we have also performed several sets of ablation study for
exploring the influence of the number of sub-spaces and the number of concepts on black-box ro-
bustness and presented the results in Appendix F.

Visualizing the distributions of pixels and concepts Inspired by PixelDefend (Samangouei et al.
(2018b)), which proposed to use a PixelCNN van den Oord et al. (2016) to model and compare
the distribution of pixels in clean and adversarial samples, here we use a PixelCNN to model and
compare the distribution of concepts learned from clean and adversarial samples. As shown in Figure
2a/2b, for the MNIST dataset and under the FGSM attack, the distribution of pixels exhibits much
more significant distortion than the distribution of learned concepts. This result clearly indicates
that the quantization effectively blocks the adversarial perturbations, hence resulting in improved
robustness.

4We’ve noted that the adversarial-trained CNN reaches a higher classification accuracy on clean samples,
which is due to our model selection strategy. When selected on the clean validation set, the classification
accuracy of the adversarial-trained CNN would lower than that of the raw-trained CNN in most cases.
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(a) The pixel distribution on MNIST (b) The concept distribution on MNIST

Figure 2: Visualization of the pixel and concept distributions for MNIST. We use FGSM attack with
ε = 0.4 to generate adversarial samples for better visualization. For this case, the KL divergence is
5.39 for the pixel distribution and 4.33 for the concept distribution.

Clean FGSM BIM CW
None 0.2 0.3 0.2 0.3 0.2 0.3

CNN 98.73 43.18 7.84 6.69 0.82 58.00 39.95
Q-base 96.57 77.23 58.47 59.05 55.33 90.46 85.77
Q-large 97.38 65.99 30.68 60.24 16.95 87.64 80.03

CNN + adv 98.73 95.63 90.23 88.03 7.77 95.65 90.08
Q-base + adv 98.58 95.21 91.28 94.64 83.07 97.37 94.85
Q-large + adv 98.33 95.34 90.83 94.11 79.94 97.34 95.3

(a) Results for white-box attacks on MNIST

Clean FGSM BIM CW
None 0.1 0.2 0.1 0.2 0.1 0.2

CNN 86.65 32.16 11.28 20.29 8.06 44.01 20.95
Q-base 84.76 53.30 24.17 50.77 14.36 74.87 67.82
Q-large 82.30 44.01 17.33 42.97 14.99 66.48 56.92

CNN + adv 88.25 81.39 62.84 65.41 8.53 78.62 57.60
Q-base + adv 83.21 76.57 59.27 75.13 41.85 80.77 73.4
Q-large + adv 80.04 75.36 58.79 74.04 53.71 78.82 69.43

(b) Results for white-box attacks on Fashion-MNIST

Table 2: Comparison of classification accuracy for different target models on the MNIST under
white-box attack.

4.3 RESULTS FOR WHITE-BOX ATTACK

As mentioned in Section 4.1, in order to conduct attacks even when the Q-path does not suffer from
gradient-based attacks, we assume that an attacker might use a shortcut from ze to NQ to perform
attacks. However, we observed in our experiments (shown in Appendix H) that this type of attack
was generally weaker than the E-path attack. Therefore, here we only present results obtained by
the E-path attack in Table 2a and Table 2b.

As shown in Table 2a, raw-trained Q-large and Q-base significantly outperform CNN. For attacks
with small perturbations, adversarial trained CNN performs slightly better than Q-large and Q-base.
However, as the scale of perturbation increases, Q-large and Q-base restore their superior robust-
ness. Similar results can also be observed for Fashion-MNIST, as shown in Table 2b. In Section
4.4, we also show that inserting the Q-Layer between two convolution blocks brings even stronger
robustness against white-box attack.

4.4 INSERTING Q-LAYER BETWEEN TWO CONVOLUTION BLOCKS

In the following experiments, we show the flexibility of varying the position where the Q-Layer is
inserted. In particular, we refer to a CNN which has a Q-Layer inserted between its two convolution
blocks as Q-inner. The Q-inner model has the same parameter setting as the Q-large (K = 4, nc =
64) model used in the previous experiments.
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Clean FGSM BIM
None 0.2 0.3 0.2 0.3

CNN 98.73 75.77 40.03 62.52 16.02
Q-large 97.38 85.87 65.19 86.48 67.01
Q-inner 98.09 86.51 61.60 87.62 63.49

(a) Results for black-box attacks with source
model CNNA

Clean FGSM BIM CW
None 0.2 0.3 0.2 0.3 0.2 0.3

CNN 98.73 43.18 7.84 6.69 0.82 58.00 39.95
Q-large 97.38 65.99 30.68 60.24 16.95 87.64 80.03
Q-inner 98.09 82.41 67.15 83.08 81.96 90.36 79.46

(b) Results for white-box attacks

Table 3: Comparison of classification accuracy for Q-large and Q-inner on the MNIST, under black-
box attack and white-box attacks.

In Table 3a and Table 3b, we demonstrate the comparison results under both black-box and white-
box attacks on the MNIST dataset. Under black-box attacks, we observe that Q-inner and Q-large
achieve comparable robustness. However, under the white-box attacks, it can be seen that Q-inner
performs much better than Q-large. These results not only demonstrate the flexibility of the Q-Layer,
but also indicate that applying the quantization at an early stage of the information propagation
can be more effective for filtering out an adversarial perturbation, of which the scale has not been
sufficiently amplified as the perturbation propagates to the deeper parts of the network.

5 CONCLUSION

In this paper, we have designed and implemented a quantization layer (Q-Layer) to protection CNN
classifiers from the adversarial attacks, and presented the experiment results which show that, by
simply inserting one Q-Layer into a regular CNN, its adversarial robustness under both white-box
and black-box attacks obtains significant improvement. Moreover, we have combined our method
in tandem with adversarial training. The empirical results show that the Q-layer can make a CNN
benefit more from adversarial training and even perform well under attacks with larger perturba-
tions. One limitation of this work is due to the uncertainty introduced by the random initialization
of concept matrix. This issue also exists in many other clustering algorithms. In this work, we al-
leviate the impact of this issue by reactivating inactivate concepts. Future work would pursue other
approaches on constructing the concept matrix, e.g., regularizing the concept matrix with specific
semantic constrains, and using the E-path as a learned index to retrieve information stored in the
concept matrix, which acts as an external memory.

REFERENCES

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In CVPR, pp. 3319–3327. IEEE Com-
puter Society, 2017.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. In ICLR (Poster). OpenReview.net, 2018.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian J. Goodfellow. Thermometer encoding: One hot
way to resist adversarial examples. In ICLR (Poster). OpenReview.net, 2018.

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. In
IEEE Symposium on Security and Privacy, pp. 39–57. IEEE Computer Society, 2017.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. ZOO: zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
AISec@CCS, pp. 15–26. ACM, 2017.

10



Under review as a conference paper at ICLR 2020
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A NEURAL NETWORK ARCHITECTURES

Model A,B are two neural network architectures used in Samangouei et al. (2018a) for the MNIST
and Fashion-MNIST datasets. In this paper, A is used for both target CNN and substitute model. B
is only used for substitute model.

A B
Conv(64, 5 × 5, 1) + ReLU Conv(128, 3 × 3, 1) + ReLU
Conv(64, 5 × 5, 2) + ReLU Conv(64, 3 × 3, 2) + ReLU

Dropout(0.25) Dropout(0.25)
FC(128) + ReLU FC(128) + ReLU

Dropout(0.5) Dropout(0.5)
FC(10) + Softmax FC(10) + Softmax

Table 4: Neural network architectures used for target models and substitute models.

B IMPLEMENTATION DETAILS

When train CNN with a Q-Layer, we use RAdamOptimizer (Liu et al. (2019)) and set learning rate
as 0.001. As for losses, we set c1 = 1, c2 = 1, α = 0.001, β = 0.001. The scale of α and β are
chosen to make α · LQ→E and β · LE→Q have smaller but close magnitude of LQ and LE . The
ratio of c1 and c2 do not have significant influence on the results, for they are optimizing different
part of the network. In our experiments, We didn’t find significant change of results when we tuned
the ratio of α and β. As for inactive concepts updating strategy one, i.e., optimizing the distance
between inactive concepts to its closest data point, we use AdamOptimizer and set learning rate as
0.001. Specifically, when training Q-inner on MNIST, we set α = 0.0001, β = 0.0001 and use the
second inactive concept updating strategy (otherwise it could not converge), keeping other hyper-
parameters unchanged. All the hyper-parameter tuning are based on train set and validation set. We
train each model three times with different random initialization and select the model with highest
validation accuracy as the final model to test.

We use Adversarial Robustness 360 Toolbox (Nicolae et al. (2018)) to generate adversarial samples.
For each attack, we adjust ε, set batch size to be 128, leaving other hyper-paramters as default
settings in Adversarial Robustness 360 Toolbox. Additionally, when implementing BIM attack, we
set ε step to be 0.01.

C COMPARISON OF SELECTING MODEL FROM THE CLEAN VALIDATION SET
AND FROM THE MIXED VALIDATION SET

In this section, we compare two CNN models on MNIST, all share the same structure with CNNA,
independently trained, but are selected on the clean validation set and mixed validation set, respec-
tively.

Clean FGSM BIM
None 0.2 0.3 0.2 0.3

CNN, clean-selected 99.48 55.71 22.29 17.66 0.63
CNN, mixed-selected 98.73 75.77 40.03 62.52 16.02

Table 5: Comparison of classification accuracy for clean-selected CNN and mix-selected CNN on
the MNIST under black-box attack with source model CNNA.

As shown in Table 5, by selecting models on the mixed validation set, we get a much more robust
model, with slight sacrificing on clean accuracy.
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Clean FGSM BIM
None 0.2 0.3 0.2 0.3

Q-base 96.57/97.46 84.86/77.64 52.69/37.65 84.08/69.06 38.22/17.13
Q-large 97.38/98.59 85.87/70.52 65.19/34.44 86.48/72.86 67.01/29.32

Q-base + adv 98.58/98.84 96.36/96.84 91.7/86.0 96.72/96.88 92.46/81.51
Q-large + adv 98.33/99.09 95.83/97.15 84.58/64.42 96.11/97.36 86.4/60.9

(a) Results for black-box attacks on MNIST with source model CNNA

Clean FGSM BIM CW
None 0.2 0.3 0.2 0.3 0.2 0.3

Q-base 96.57/97.46 77.23/46.91 58.47/44.09 59.05/43.69 55.33/43.69 90.46/55.84 85.77/32.31
Q-large 97.38/98.59 65.99/8.54 30.68/2.13 60.24/2.16 16.95/1.98 87.64/49.59 80.03/32.07

Q-base + adv 98.58/98.84 95.21/94.6 91.28/90.62 94.64/87.83 83.07/14.62 97.37/94.32 94.85/86.53
Q-large + adv 98.33/99.09 95.34/95.99 90.83/88.28 94.11/91.91 79.94/34.34 97.34/95.03 95.3/88.12

(b) Results for white-box attacks on MNIST

Table 6: Comparison of Q-path classification accuracy and E-path classification accuracy on the
MNIST under black-box attack and white-box attack. The two scores separated by “/” represent
the accuracy obtained by following the Q-path and E-path, respectively. We use “+adv” to refer
adversarial-trained models.

Clean FGSM BIM
None 0.2 0.3 0.2 0.3

CNN 98.73 82.49 51.60 73.14 28.89
Q-base 96.57 88.98 64.57 89.25 57.83
Q-large 97.38 86.73 68.48 88.51 74.05

CNN + adv 98.73 97.29 82.79 96.78 71.56
Q-base + adv 98.58 96.88 93.45 96.88 93.83
Q-large + adv 98.33 96.36 86.72 96.41 89.32

(a) Results for black-box attacks on MNIST

Clean FGSM BIM
None 0.1 0.2 0.1 0.2

CNN 86.65 72.62 52.03 70.87 49.70
Q-base 84.76 74.64 54.55 75.85 58.33
Q-large 82.3 71.95 57.33 73.16 61.28

CNN + adv 88.25 84.19 64.84 83.70 63.29
Q-base + adv 83.21 80.07 73.54 80.12 71.63
Q-large + adv 82.32 79.13 72.10 79.41 74.42

(b) Results for black-box attacks on Fashion-MNIST

Table 7: Comparison of classification accuracy for different target models on the MNIST under
black-box attack with source model CNNB . We use “+adv” to refer adversarial-trained models.

D COMPARISON OF Q-PATH CLASSIFICATION ACCURACY AND E-PATH
CLASSIFICATION ACCURACY

In this section, take MNIST as an example, we compare the Q-path classification accuracy and E-
path classification accuracy under black-box attack and while-box attack. In the following, we’ve
reported two classification accuracy scores for each of the Q-base and Q-large models. One score
represents the accuracy obtained by following the Q-path, and the other represents the accuracy
obtained by following the E-path.

As shown in Table 6a and Table 6b, for both raw-trained Q-base and Q-large, the accuracy obtained
by the Q-path is significantly higher than that obtained by the E-path, especially when ε is large,
which prove the efficiency of quantization. We also note that in certain cases, after adversarial train-
ing, for Q-large and Q-base under small perturbations, the accuracy obtained by the Q-path becomes
slightly lower than that obtained by the E-path. Recall that the E-path represents the passage in a
regular CNN. Therefore, this difference between the Q-path and E-path may be due to the reason
that the quantization inevitably causes loss of information, hence leading to a lower accuracy score
for the Q-path.

E BLACK-BOX ATTACK WITH SOURCE MODEL CNNB

In this appendix, we compare the classification results of different target models on MNIST and
Fashion-MNIST, under black-box attack with source model CNNB , whose architecture is different
from the target CNN. The results on MNIST is showed in Table 7a. The results on Fashion-MNIST
is showed in Table 7b. Same as the observation in Table 1a and Table 1b, inserting a Q-Layer
improves the robustness of the network.
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nc = 16 nc = 64 nc = 128
K = 1 46.69 52.69 44.64
K = 2 60.38 60.42 49.42
K = 4 65.23 65.19 60.68

(a) Results before adversarial training

nc = 16 nc = 64 nc = 128
K = 1 70.89 91.7 83.77
K = 2 80.08 85.5 85.74
K = 4 82.28 84.58 83.65

(b) Results after adversarial training

Table 8: The comparison of Q-path accuracy when inserting Q-Layer with differentK and nc, under
FGSM black-box attack with CNNA, ε = 0.3.

F ABLATION STUDY ON THE NUMBER OF SUB-SPACES AND THE NUMBER OF
CONCEPTS

To further study the effect of K (the number of sub-spaces ) and nc (the number of concepts), we
insert Q-layer withK = 1, 2, 4 and nc = 16, 64, 128 to CNN and compare its robustness on MNIST
under FGSM black-box attack with ε = 0.3.

As shown in Table 8a, before adversarial training, more sub-spaces bring stronger robustness. After
adversarial training, when nc = 16, models with larger K demonstrate higher accuracy; however,
when nc = 64/128, the relationship of K and accuracy is not clear. We speculate that when
nc = 16, quantizing features causes too much loss in information, therefore additional information
introduced by adding more sub-spaces significantly improves accuracy. However, when nc is large
enough to represent different concepts, the importance of K decreases after adversarial training.

G ABLATION STUDY FOR THE SEPARATED SUBSEQUENT NETWORKS AND
SHARED SUBSEQUENT NETWORKS

In the shared subsequent network setting, we letNQ andNE share parameters, while in the separated
subsequent network setting, NQ and NE do not. We compare the robustness of two independent Q-
large models with separated subsequent networks and with shared subsequent network. We report
the black-box attack results on MNIST in Table 9 and white-box attack results in Table 10. The
results proves that, the separated subsequent networks do help robustness under both black-box
attack and white-box attack. Nonetheless, separated subsequent networks are harder to optimize,
thus we recommend users to use separated subsequent networks if they are not very deep, and use
shared subsequent networks otherwise.

Clean FGSM BIM
None 0.2 0.3 0.2 0.3

Q-large 97.38 85.87 65.19 86.48 67.01
Q-large, share 98.44 84.43 48.64 84.52 47.19

Table 9: Classification accuracy comparison of Q-large with separated subsequent networks and
shared subsequent networks on MNIST, under black-box attack with source model CNNA.

Clean FGSM BIM CW
None 0.2 0.3 0.2 0.3 0.2 0.3

Q-large 97.38 65.99 30.68 60.24 16.95 87.64 80.03
Q-large, share 98.44 56.96 16.10 34.69 8.17 87.18 79.48

Table 10: Classification accuracy comparison of Q-large with separated subsequent networks and
shared subsequent networks on MNIST, under white-box attack.

H WHITE-BOX ATTACK ON Q-PATH

As mentioned before, the original Q-path for Q-layer could not be attacked with gradient-based
method. A clever attacker might build a shortcut path from ze to NQ to attack, which we refer
as Q-path white-box attack. However, due to the differences between NQ and NE , attack through

15



Under review as a conference paper at ICLR 2020

short-cut path is usually weak. In this section, we show the Q-path white-box attack results and
E-path white-box attack results in Table 11. We could observe that, at most of the time, attacking
Q-path reduces less accuracy than attack E-path.

Clean FGSM BIM CW
None 0.2 0.3 0.2 0.3 0.2 0.3

CNN 98.73 43.18 7.84 6.69 0.82 58.00 39.95
Q-base, E-path 96.57 77.23 58.47 59.05 55.33 90.46 85.77
Q-base, Q-path 96.57 85.93 63.12 68.9 60.78 97.29 96.58
Q-large, E-path 97.38 65.99 30.68 60.24 16.95 87.64 80.03
Q-large, Q-path 97.38 70.36 36.29 62.62 19.03 92.72 87.13

CNN + adv 98.73 95.63 90.23 88.03 7.77 95.65 90.08
Q-base + adv, E-path 98.58 95.21 91.28 94.64 83.07 97.37 94.85
Q-base + adv, Q-path 98.58 97.05 94.25 96.28 86.73 98.34 97.8
Q-large + adv, E-path 98.33 95.34 90.83 94.11 79.94 97.34 95.3
Q-large + adv, Q-path 98.33 95.74 90.31 94.11 73.77 97.8 96.47

Table 11: Classification accuracy comparison of different target models on MNIST, under Q-path
and E-path white-box attack. We underline the results when Q-path attack is stronger than E-path
attack.
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