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ABSTRACT

To collect large scale annotated data, it is inevitable to introduce label noise, i.e.,
incorrect class labels. A major challenge is to develop robust deep learning models
that achieve high test performance despite training set label noise. We introduce
a novel approach that directly cleans labels in order to train a high quality model.
Our method leverages statistical principles to correct data labels and has a theo-
retical guarantee of the correctness. In particular, we use a likelihood ratio test
(LRT) to flip the labels of training data. We prove that our LRT label correction
algorithm is guaranteed to flip the label so it is consistent with the true Bayesian
optimal classifier with high probability. We incorporate our label correction al-
gorithm into the training of deep neural networks and train models that achieve
superior testing performance on multiple public datasets.

1 INTRODUCTION

Label noise is ubiquitous in real world data. It may be caused by unintentional mistakes of manual
or automatic annotators (Yan et al., 2014; Veit et al., 2017). It may also be introduced by malicious
attackers (Steinhardt et al., 2017). Noisy labels impair the performance of a model (Smyth et al.,
1994; Brodley & Friedl, 1999), especially a deep neural network, which tends to have strong memo-
rization power (Frnay & Verleysen, 2014; Zhang et al., 2017). Improving the robustness of a model
to label noise is a crucial yet challenging task in many applications (Mnih & Hinton, 2012; Wu et al.,
2018). Existing methods mainly follow two directions, probabilistic reasoning and data selecting.

Probabilistic methods explicitly model a noise transition matrix, namely, the probability of one label
being corrupted into another (Goldberger & Ben-Reuven, 2017; Patrini et al., 2017). The transition
matrix is often estimated from the data, and is used to re-calibrate the training loss or to correct the
prediction. Explicit estimation of the transition matrix can be problematic due to the large variation
of noise patterns, e.g., uniform noise, asymmetric noise, or mixtures. Furthermore, the transition
matrix size is quadratic to the number of classes, making the estimation task prohibitive when the
data has hundreds or even thousands of classes.

Data-selecting methods are agnostic of the underlying noise pattern. These methods gradually col-
lect clean data whose labels are trustworthy (Malach & Shalev-Shwartz, 2017; Jiang et al., 2018;
Han et al., 2018). As more clean data are collected, the quality of the trained models improves. The
major issue of these methods is the lack of a quantitative control of the quality of the collected clean
data. Without a principled guideline, it is hard to find the correct data collection pace. An aggressive
selection can unknowingly accumulate irreversible errors. On the other hand, an overly-conservative
strategy can be very slow in training, or stops with insufficient clean data and mediocre models.

We propose a novel method with the benefit from both the probabilistic and the data-selecting ap-
proaches. Similar to data-selecting methods, our method continuously improves the purity of the
data labels by correcting the noise-corrupted ones. Meanwhile, we improve the classifier using the
updated labels. Our label correction algorithm is based on statistical principles and is theoretically
guaranteed to deliver a high quality label set. Instead of explicitly estimating the transition matrix,
the correction algorithm only depends on the prediction of the current model, denoted as f . Using
an f -based likelihood ratio test, we determine whether the current label of each data should be cor-
rected. Our main theorem proves that the label correction algorithm will clean a majority of noisy
labels with high probability.

In practice, we incorporate the label correction algorithm into the training of deep neural networks.
Our method iteratively updates the labels of the data while continuously training a deep neural
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network. To ensure the deep neural network does not overfit with noise labels that are yet to be cor-
rected, we introduce a new retroactive loss term that regulates the model by enforcing its consistency
with models in previous epochs. The rationale is that the model in an earlier training stage tends
to fit the true signal rather than noise, although its overall performance is sub-optimal. Through
experiments on various datasets with various noise patterns and levels, we show that our method
produces robust neural network models with superior performance.

To the best of our knowledge, our method is the first to correct labels with theoretical guarantees.
It is has advantages over both probabilistic methods and data-selecting methods. Compared with
other data-selecting methods, it has a better quantitative control of the label quality and thus is less
brittle when generalizing to different datasets and different noise patterns. Also note that we are
not selecting clean data. Instead, we correct labels and always use the whole training set to train.
This brings an additional advantage of fully leveraging the data. Compared with other probabilistic
methods, our correction algorithm assumes a rather general family of underlying noise patterns and
avoids an explicit estimation of the transition matrix.

1.1 RELATED WORK

Recent works could be classified into three categories. One is to model and employ noise transition
matrix to correct the loss. For example, Patrini et al. (2017) proposes to correct the loss function
with estimated noise pattern. The resulting loss is an unbiased estimator of the ground truth loss,
and enables the trained model to achieve better performance. However, such an estimator relies
on strong assumptions and could be inaccurate in certain scenarios. Reed et al. (2014) considers
modeling the noise pattern with a hidden layer. The learning of this hidden layer is regularized with a
feature reconstruction loss, yet without a guarantee that the true label distribution is learned. Another
method mentioned in their work is to minimize the entropy of neural network output; however, this
method tends to predict a single class. To address this weakness, Hendrycks et al. (2019) proposes to
utilize a small number of kosher data to pre-train a network and estimate the noise pattern. However,
such clean data may not always be available in practice.

Another strategy to handle noisy label problem is to design models that are intrinsically robust to
noisy data. Crammer et al. (2009) introduces a regularized confidence weighting learning algorithm
(AROW), where parameters of classifiers are assumed normally distributed and the mean and co-
variance of this distribution is updated during training. The idea here is to preserve the weight distri-
bution as much as possible while requiring the model to maintain predictive ability. In the follow-up
work (Crammer & Lee 2010) proposes to improve this algorithm by herding the updating direction
via specific velocity field (NHERD), achieving better performance. Both of these works impose
parametric constraint on parameters, which could prevent classifiers from adapting to complex data
set. Arpit et al. (2017a) shows that deep neural networks tend to learn meaningful patterns before
they over-fit to noisy ones. Based on this observation, they propose to add Gaussian or adversarial
noise to input when training with noisy labels, and empirically show that such data perturbation is
able to make the resulting model more robust. Other commonly adopted techniques, such as weight
decay and dropout, are also shown to be effective in increasing the robustness of trained classifier
(Arpit et al. 2017a; Zhang et al. 2017). However, the intrinsic reasons for this phenomenon still
remains unclear and overfitting to noisy label is still inevitable.

Apart from the above mentioned strategies, one recent work proposes to correct the corrupted labels
during training. In particular, Tanaka et al. (2018) propose to jointly train the deep network and
estimate the underlying true labels. While achieving improved performance, their method largely
relies on the prior distribution and is difficult to deploy under cases where there is a large number of
classes.

Finally, beyond deep learning framework, there are several theoretic works that demonstrate the ro-
bustness of a variety of losses to label noise (Long & Servedio 2010; Natarajan et al. 2013; Ghosh
et al. 2015; van Rooyen et al. 2015). Following the work of (Wang & Chaudhuri 2018), Gao et al.
(2016) proposes an algorithm that can converge to the Bayesian optimal classifier under different
noisy settings. Moreover, they discuss the performance of k-nearest neighbor (KNN) classifiers
however, the problem with KNN is that it is computationally intensive and thus difficult to be incor-
porated into a learning context. Within the framework of deep learning, there are more efforts that
need to be made to bridge theory and practice.
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2 METHOD

Our method has two synchronized modules, the training module and the label correction module.
The training module continues to learn a classifier based on the current labels. Meanwhile, the label
correction module uses the prediction of the classifier to correct labels.

Neural	
Network	
Training

Label	
Correction

Updated	labels	𝑦"

Updated	model	𝑓

Figure 1: The overview of our method.

We start with some preliminaries necessary for the expo-
sition (Section 2.1). In Section 2.2, we explain our cor-
rection algorithm. It uses the prediction of the classifier
(trained on noisy labels) for a likelihood ratio test. Based
on the test result, it decides whether to correct the label
of a data. Theoretically, we prove that under certain as-
sumptions of the prediction, f , the algorithm will change
the labels to the correct ones, i.e., the ones consistent with
the Bayes optimal classifier (Theorem 1).

In Section 2.3, we present the overall training method. We
incrementally train a deep neural network based on the
corrected labels, ỹ. Meanwhile, the network’s prediction
is used for label correction. To improve the quality of
the prediction, we introduce a new loss term, called the
retroactive loss. The goal is to regulate the model using models trained in earlier epoches, as they
may be less overfitting with corrupted labels.

For the label correction module, we focus on a binary classifier. But the algorithm and the theoretical
results can easily be generalized to the multiclass setting (Corollary 1).

2.1 PRELIMINARIES

Let X be the feature space, Y = {0, 1} be the label space, and D be an unknown distribution
on X × Y . The joint probability can be factored as D(x, y) = Pr(y|x)Pr(x). We denote by
η(x) = Pr(y = 1|x) the true conditional probability. The Bayes risk of a classifier h : X → Y is
R(D,h) = Pr(x,y)∼D(h(x) 6= y). A Bayes optimal classifier is the minimizer of the Bayes risk,
i.e., h∗ = arg minhR(D,h). It can be calculated using the true conditional probability, η,

h∗(x) = 1{η(x)≥ 1
2}(x) =

{
1 if η(x) >= 1

2
0 otherwise (1)

We assume the true conditional probability, η, satisfies the Tsybakov condition (also called the TNC
condition) (Tsybakov et al., 2004). This condition stipulates that the uncertainty of η and thus
the Bayes optimal classifier is bounded. This assumption in general helps to bound the margin of
Bayesian decision rule such that the proposed classifier’s risk can be bounded accordingly.
Definition 1 (Tsybakov Condition). There exist C > 0, λ > 0, and t0 ∈ (0, 12 ], such that for all
t ≤ t0,

Pr

[∣∣∣∣η(x)− 1

2

∣∣∣∣ < t

]
≤ Ctλ.

The noisy label setting. Instead of samples from D, we are given a sample set with noisy labels
S = {(x, ỹ)} where ỹ is the possibly corrupted label based on the true label y. We assume a
transition probability τi→j = Pr(ỹ = j|y = i), i.e., the chance a ground truth label y is flipped from
class i to class j. For simplicity, we denote τij = τi→j . The transition probabilities τ01 and τ10 are
independent of the true joint distribution D and the feature x. We denote the conditional probability
of the noisy labels as η̃(x) = Pr(ỹ = 1|x). In short, we call η̃ the noisy conditional probability. It
is linearly to the true conditional probability, η:

η̃(x) = (1− τ10)η(x) + τ01[1− η(x)] = (1− τ01 − τ10)η(x) + τ01. (2)

2.2 THE LABEL CORRECTION ALGORITHM AND ITS THEORETICAL GUARANTEES

Our label correction algorithm takes in a current neural network prediction f : X → [0, 1] (i.e., an
estimation of η based on the noisy labels). For all training data and their current noisy label (x, ỹ),
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(a) Noisy labels and f . (b) Corrected labels and η.

(c) LR for ỹ = 1. (d) LR for ỹ = 0.

Figure 2: An illustration of the label correction algorithm. ∆ is set to 1. (a): a corrupted sample
and its corresponding classifier prediction f . (b): after correction, the labels are consistent with the
true conditional probability, η. (c): likelihood ratio for ỹ = 1. Data with x < 0 are corrected to
η̃new = 0 as LR(x) are below ∆ = 1. (d): likelihood ratio for ỹ = 0. Data with x > 0 are corrected
to η̃new = 1 as LR(x) are below ∆ = 1.

the correction algorithm uses f to run a likelihood ratio test and to decide whether to flip the label
according to the result. The goal of the likelihood test is to decide whether the null hypothesis,
H0 : ỹ = y, is true. If yes, ỹ is accepted as it is. Otherwise, we flip ỹ, so that hopefully it becomes
y. Formally, the likelihood ratio is defined as

LR(f,x, ỹ) =
f(x)ỹ [1− f(x)]

1−ỹ

f(x)1−ỹ [1− f(x)]
ỹ

(3)

We compare this likelihood ratio with a predetermined value ∆. If LR(f,x, y) ≤ ∆, we reject the
null hypothesis and flip the label ỹnew = 1− ỹ. Otherwise, the label remains unchanged, ỹnew = ỹ.
See Figure 2 for an illustration of the algorithm.

Note that the constant ∆ depends on the underlying noise pattern, f and ỹ. Below we show that if
we choose ∆ carefully, the label correction algorithm is guaranteed to make proper correction and
clean most of the corrupted labels. However, in practice, ∆ is unknown and needs to be tuned.

Intuition. In the likelihood ratio (Eq. (3)), the numerator is the likelihood that the prediction f is
consistent with the noisy label ỹ. The denominator is the likelihood of the opposite case. When this
ratio is smaller than 1, we know that the prediction of f is more likely to be inconsistent with ỹ. But
whether f agrees with ỹ is not the hypothesis to test. To test the intended null hypothesis (ỹ = y),
we need to check whether ỹ is consistent with the true conditional distribution η, namely, the Bayes
optimal classifier prediction h∗(x). To this end, we assume f is a close enough approximate of η̃ as
it is trained on the noisy labels. This way, testing whether f agrees with ỹ is close to testing whether
η̃ agrees with ỹ, except that the threshold ∆ needs to be carefully chosen. Another issue we need to
consider is that the ∆ is unknown. Our main theorem will bound the chance of failed correction by
how close f approximates η̃ and how close we can set ∆ to the perfect one.

Remark 1. Our likelihood testing is the uniformly most powerful one for the intended hypothesis,
based on the Neyman-Pearson Lemma. In other words, this test has the strongest statistical power
in rejecting a false null hypothesis.

2.2.1 FORMAL STATEMENT OF THE ALGORITHM AND THE THEOREM

We start by assuming f depends linearly on η, i.e., f(x) = aη(x) + b, in which a, b > 0 are known
constants. But this constraint will be relaxed later (Remark 2). Consider three different conditions
based on the noise patterns: τ10 < τ01, τ10 = τ01, or τ10 > τ01. Let u be−1, 0 or +1 corresponding
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to which one of these three conditions holds. Based on different u, ỹ and f(x), we choose different
∆ as in Table 1. 1 The label correction algorithm is given in Procedure 1. It checks the likelihood
ratio with regard to the chosen ∆. If LR is no greater than ∆, we flip the label. Otherwise, ỹnew is
the same as ỹ. In practice, ∆ is unknown and needs to be decided empirically.

Procedure 1 LRT-Correction
Input: f, (x, ỹ), u, a, b.
Output: ỹnew

1: if LR(f,x, ỹ) ≤ ∆(f, ỹ, u, a, b),
where ∆ is as in Table 1 then

2: ỹnew = 1− ỹ
3: else
4: ỹnew = ỹ
5: end if

Table 1: Values of ∆

ỹ f < b+ a/2 f > b+ a/2
ỹ = 1 a+2b

2−a−2b 0
ỹ = 0 0 2−a−2b

a+2b

Our main theorem states that suppose the classifier prediction, f , is a close approximation of the
noisy conditional probability, η̃. And suppose we can find a good enough ∆

′
that is close enough

to the ideal ∆. Then there is a very good chance that our algorithm corrects most labels to the
correct ones, i.e., the same as the Bayes optimal classifier prediction. Please note that here “proper
correction” means that the new label, ỹnew, is the same as the Bayes optimal classifier prediction,
h∗(x), instead of y. This is well justified as it means that the correction will give us a classifier as
good as the Bayes optimal one.
Theorem 1. Assume η satisfies the Tsybakov condition with constants C > 0 and λ > 0. Recall h∗
denote the Bayes optimal classifier. The noisy conditional probability η̃(x) = (1−τ01−τ10)η(x)+
τ01. Assume f(x) = aη(x) + b with a and b unknown, such that f(x) ∈ [η̃(x) − ε, η̃(x) + ε]

for some ε > 0. Let ∆(ỹ, f(x), u, a, b) be as in Table 1. Let ∆
′
> 0 be a constant such that

∆
′ ∈ [∆ − ε,∆ + ε]. If ỹnew denotes the output of the LRT-Correctionwith ỹ, x, f , and the

give ∆
′
, then

Pr
(x,y)∼D

(ỹnew 6= h∗) ≤ 8C

(∣∣∣∣ τ10 − τ01
2(1− τ10 − τ01)

∣∣∣∣+O(ε)

)λ
.

If τ01 = τ10, then Pr(x,y)∼D(ỹnew 6= h∗) = 8C (O(ε))
λ.

Remark 2. The condition that f is linear to η is not necessary for the theorem to hold. We only
require f to be pointwise close to η̃.

Intuition of the proof. We will prove two lemmas. The first lemma shows that when strictly
assuming f is linear to η, with known coefficients a, b, and we set ∆ according to Table 1, then the
correction algorithm can be correct everywhere. The second lemma proves a more relaxed version.
If f is exactly η̃ and if we only know the difference between the transition probabilities, τ01 − τ10,
then we can bound the chance of mistakes of the correction algorithm. Finally, based on these two
lemmas, careful case analysis, and the Tsybakov condition of the true conditional probability, η, we
can prove the theorem. The complete proof can be found in Appendix A.

So far, all the description and theoretical results are based on a binary classification setting. However,
the results can be generalized to a multiclass setting without any technical difficulties. Informally,
we state the following corollary (proof omitted).
Corollary 1. LRT-Correctioncan be generalized to multiclass classification tasks, by flipping
ỹ to the best prediction of f when the null hypothesis is rejected. Theorem 1 can be generalized to
multiclass classification tasks, by considering all pairs of class values.

1Here u is irrelevant for choosing ∆ value here. But we keep it as a parameter for ∆ as it will be necessary
in the proof (Appendix A).
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2.3 TRAINING DEEP NEURAL NETWORKS WITH LRT-LABEL-CORRECTION

Procedure 2 AdaCorr
Input: S = {x, ỹ}, ∆, m, T

1: for epoch=1 to m do
2: Train neural network with LCE
3: end for
4: f ′ = current model prediction
5: for epoch=m+ 1 to T do
6: if epoch ≥ m+ 10 then
7: f = current model prediction
8: for all (x, ỹ) ∈ S do
9: ỹnew= LRT-Correction(f ,(x, ỹ),∆)

10: ỹ = ỹnew
11: end for
12: end if
13: Train using Lretro + LCE , with f ′ and ỹ
14: end for

Our training algorithm continuously trains
a deep neural network while correcting
the noisy labels. Procedure 2 is the
pseudocode of the training method, called
AdaCorr. It trains a neural network
model iteratively. Each iteration includes
both label correction and model training
steps. In label correction step, the pre-
diction of the current neural network, f ,
is used to run LRT test on all training
data, and to correct their labels accord-
ing to the test result. Since f is used to
approximate the conditional probability η̃,
we use the softmax layer output of the neu-
ral network as f . After the labels of all
training data are updated, we use them to
train the neural network incrementally. We
continue this iterative procedure until the
whole training converges.

We also have a burn-in stage in which we
train the network using the original noisy labels for m epochs. During the burn-in stage, we use the
original cross-entropy loss, LCE . Afterwards, we add an additional retroactive loss which will be
explained below.

Training with retroactive loss. After the burn-in stage, we want to avoid overfitting of the neural
network, so that its output better approximates η̃. To achieve this goal, we introduce a retroactive
loss term Lretro(f(x), ỹ). The idea is to enforce the consistency between f and the prediction of
the model at a previous epoch, f ′. It has been observed that a neural network at earlier training stage
tends to learn the true pattern rather than to overfit the noise (Arpit et al., 2017a). Formally, the loss
can be written as

∑Nc

c=1 f
′
c(x) log fc(x), in which Nc is the number of possible label classes. The

training loss is the sum of the retroactive loss and the cross-entropy loss

L(f(x), ỹ) = Lretro(f(x), ỹ) + LCE(f(x), ỹ) =

Nc∑
c=1

f ′c(x) log fc(x) +

Nc∑
c=1

ỹc log fc(x).

In practice, we set f ′ to be the prediction of the model at the m-th epoch. In other words, once the
burn-in stage is finished, the training switches from LCE to LCE+Lretro. And the model at the end
of the burn-in stage is used for the retroactive loss. We also set the label correction to start slightly
after the burn-in stage, say m + 10. The key hyperparameter is the starting epoch m. Another
hyperparameter is ∆. We select both m and ∆ empirically. Ablation study in Section 4 shows that
our method is robust to these hyperparameters.

3 EXPERIMENTS

In this section we empirically evaluate our proposed method with several datasets, where noisy
labels are injected according to specified noise transition matrices.

Datasets. We use the following datasets: MNIST (LeCun & Cortes 2010), CIFAR10 (Krizhevsky
et al. a), CIFAR100 (Krizhevsky et al. b) and ModelNet40 (Z. Wu & Xiao 2015). MNIST consists
of 28 × 28 grayscale images with 10 categories. It contains 60,000 images, and we use 45,000 for
training, 5,000 for validation and 10,000 for testing. CIFAR10 and CIFAR100 share the same 60,000
32×32×3 image data, with CIFAR10 having 10 categories while CIFAR100 having 100 categories.
Similar to MNIST, we split 90% and 10% data from the official training set for the training and
validation respectively, and use the official test set for testing. ModelNet40 contains 12,311 CAD
models from 40 categories, where 8,859 are used for training, 984 for validation and the remaining
2,468 for testing. We follow the protocol of (Qi et al. (2017)) to convert the CAD models into point
clouds by uniformly sampling 1,024 points from the triangular mesh and normalizing them within a
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unit ball. In all experiments, we use early stopping on validation set to tune hyperparameters and to
report the performance on test set.

Noise patterns. Following (Reed et al. 2014; Patrini et al. 2017), we corrupt our labels artificially
using a noise transition matrix T , where Tij = τij = Pr(ỹ = j|y = i) is the probability that
category i is flipped to category j. In our work we focus on two types of T : (1) uniform, where
the true label i is flipped to other classes with equal probabilities, i.e., Tij = p/(Nc − 1) for i 6= j
and Tii = 1 − p, where p is the noise level and Nc is the class number; (2) pair flipping, where the
true label i is flipped to j with Tij = p for i 6= j and Tii = 1 − p. Examples of these two types of
transition matrices are as follows:

T1 =

 0.7 0.1 0.1 0.1
0.1 0.7 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

 T2 =

 0.7 0.3 0.0 0.0
0.0 0.7 0.3 0.0
0.0 0.0 0.7 0.3
0.3 0.0 0.0 0.7


in which T1 is for uniform noise pattern with noise level 0.3 and T2 is for pair flipping with noise
level 0.3.

Baselines. We compare the proposed method with the following methods: (1) Standard, which trains
the network in a standard manner, without any label resistance technique; (2) Forward correction
(Patrini et al. 2017), which explicitly estimates the noise transition matrix to correct the training loss;
(3) Decoupling (Malach & Shalev-Shwartz 2017), which trains two networks simultaneously and
updates the parameters on selected data whose labels are possibly clean; (4) Coteaching (Han et al.
2018), which also trains two networks but exchanges their error information for network update;
(5) MentorNet (Jiang et al. 2018), which learns a curriculum to filter out noisy data; (6) Forgetting
(Arpit et al., 2017b), which uses dropout to help deep models resist label noise.

Experimental Setup. For the classification of MNIST, CIFAR10 and CIFAR100, we use preactive
resnet34 (He et al. 2016) as the backbone for all the methods. On ModelNet40, we use PointNet (Qi
et al. 2017). We train the models for 180 epochs to ensure that all the methods have converged. We
utilize RAdam (Liu et al. 2019) for the network optimization, and adopt batch size 128 for all the
datasets. The experimental results are listed in Table 2. As is shown, our method outperforms the
competing methods across the datasets under different noise settings.

Table 2: The classification accuracies of different methods.
Data Set Method Noise Level of Uniform Flipping Noise Level of Pair Flipping

0.2 0.4 0.6 0.8 0.2 0.3 0.4

MINIST

Standard 99.0 ± 0.2 98.7 ± 0.4 98.1 ± 0.3 91.3 ± 0.9 99.3 ± 0.1 99.2 ± 0.1 98.8 ± 0.1
Forget 99.0 ± 0.1 98.8 ± 0.1 97.7 ± 0.2 62.6 ± 8.9 99.3 ± 0.1 96.5 ± 2.0 89.7 ± 1.9
Forward 99.1 ± 0.1 98.7 ± 0.2 98.0 ± 0.4 89.6 ± 4.8 99.4 ± 0.0 99.2 ± 0.2 96.5 ± 4.4
Decouple 99.3 ± 0.1 99.0 ± 0.1 98.5 ± 0.2 94.6 ± 0.2 99.4 ± 0.0 99.3 ± 0.1 99.1 ± 0.2
MentorNet 99.2 ± 0.2 98.7 ± 0.1 98.1 ± 0.1 87.5 ± 5.2 98.6 ± 0.4 99.1 ± 0.1 98.9 ± 0.1
Coteach 99.1 ± 0.2 98.7 ± 0.3 98.2 ± 0.3 95.7 ± 0.7 99.1 ± 0.1 99.0 ± 0.2 98.9 ± 0.2
AdaCorr 99.5 ± 0.0 99.4 ± 0.0 99.1 ± 0.0 97.7 ± 0.2 99.5 ± 0.0 99.6 ± 0.0 99.4 ± 0.0

CIFAR10

Standard 87.5 ± 0.2 83.1 ± 0.4 76.4 ± 0.4 47.6 ± 2.0 88.8 ± 0.2 88.4 ± 0.3 84.5 ± 0.3
Forget 87.1 ±0.2 83.4 ± 0.2 76.5 ± 0.7 33.0 ± 1.6 89.6 ± 0.1 83.7 ± 0.1 86.4 ± 0.5
Forward 87.4 ± 0.8 83.1 ± 0.8 74.7 ± 1.7 38.3 ± 3.0 89.0 ± 0.5 87.4 ± 1.1 84.7 ± 0.5
Decouple 87.6 ± 0.4 84.2 ± 0.5 77.6 ± 0.1 48.5 ± 0.9 90.6 ± 0.3 89.1 ± 0.3 86.3 ± 0.5
MentorNet 90.3 ± 0.3 83.2 ± 0.5 75.5 ± 0.7 34.1 ± 2.5 90.4 ± 0.2 88.9 ± 0.1 83.3 ± 1.0
Coteach 90.1 ± 0.4 87.3 ± 0.5 80.9 ± 0.5 25.0 ± 3.6 91.8 ± 0.1 89.9 ± 0.2 80.1 ± 0.7
AdaCorr 91.0 ± 0.3 88.7 ± 0.5 81.2 ± 0.4 49.2 ± 2.4 92.2 ± 0.1 91.3 ± 0.3 89.2 ± 0.4

CIFAR100

Standard 58.9 ± 0.8 52.1 ± 1.0 42.1 ± 0.7 20.8 ± 1.0 59.5 ± 0.4 52.9 ± 0.6 44.7 ± 1.3
Forget 59.3 ± 0.8 53.0 ± 0.2 40.9 ± 0.5 7.7 ± 1.1 61.4 ± 0.9 54.6 ± 0.6 37.7 ± 4.6
Forward 58.4 ± 0.5 52.2 ± 0.3 41.1 ± 0.5 20.6 ± 0.6 58.3 ± 0.7 53.2 ± 0.6 44.4 ± 2.8
Decouple 59.0 ± 0.7 52.2 ± 0.7 40.2 ± 0.4 18.5 ± 0.8 60.8 ± 0.7 56.1 ± 0.7 48.4 ± 1.0
MentorNet 63.6 ± 0.5 51.4 ± 1.4 38.7 ± 0.8 17.4 ± 0.9 64.7 ± 0.2 57.4 ± 0.8 47.4 ± 1.7
Coteach 66.1 ± 0.5 60.0 ± 0.6 48.3 ± 0.1 16.1 ± 1.1 63.4 ± 0.9 57.6 ± 0.3 49.2 ± 0.3
AdaCorr 67.8 ± 0.1 60.2 ± 0.8 46.5 ± 1.2 24.6 ± 1.1 68.3 ± 0.2 61.1 ± 0.5 49.8 ± 0.7

ModelNet40

Standard 79.1 ± 2.6 75.3 ± 3.3 70.0 ± 3.0 57.9 ± 2.3 84.4 ± 1.2 82.3 ± 1.3 78.9 ± 0.7
Forget 80.1 ± 1.8 73.9 ± 0.6 69.0 ± 0.7 26.2 ± 4.8 83.3 ± 1.1 62.0 ± 3.0 59.5 ± 2.9
Forward 52.3 ± 5.1 49.4 ± 6.8 43.5 ± 5.2 28.2 ± 5.5 48.1 ± 6.8 48.0 ± 3.7 49.1 ± 4.4
Decouple 82.5 ± 2.2 80.7 ± 0.7 72.9 ± 1.0 55.4 ± 2.7 85.7 ± 1.4 84.3 ± 1.0 80.5 ± 2.4
MentorNet 86.5 ± 0.5 75.4 ± 1.8 70.9 ± 1.9 52.7 ± 3.1 83.7 ± 1.8 81.0 ± 1.5 79.3 ± 2.1
Coteach 85.6 ± 0.9 84.2 ± 0.8 81.8 ± 1.1 68.9 ± 2.8 85.7 ± 0.8 79.1 ± 3.0 69.1 ± 2.4
AdaCorr 86.9 ± 0.3 85.1 ± 0.6 78.6 ± 1.4 72.1 ± 1.1 87.6 ± 0.4 84.6 ± 0.5 83.7 ± 0.5
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4 ABLATION STUDY AND DISCUSSION

We conduct ablation study to see the significance of our contributions. We compare our method
(LRT + Lce+Lretro) with two baselines: our method without the retroactive loss (LRT+Lce) and
using cross-entropy loss only without LRT-Correction (Lce Only). We report the test accuracy on
CIFAR10 in Table 3. We observe that adding LRT Label Correction to Lce alone helps improve the
performance significantly. The numbers inside the parenthesis are the percentage of correct labels
after the training and label correction. We observe that the LRT Correction corrected a large portion
of noise labels. Also we observe adding the retroactive loss improves the method further in both test
accuracy and label correction rates.

Table 3: Effect of LRT Correction and Lretro. The experiments are performed on CIFAR10 (accu-
racy in %). The number in parenthesis denotes the rate of correct labels after training.

Method uniform 0.2 uniform 0.4 uniform 0.6 uniform 0.8 pair 0.4
Lce Only 87.5(80.0) 83.1(60.0) 76.4(40.0) 47.6(20.0) 84.5(60.0)
LRT+Lce 91.1(95.7) 87.9(91.2) 80.7(81.7) 47.3(47.1) 87.5(91.9)
LRT+Lce+Lretro 91.0(95.7) 88.7(90.5) 81.2(82.5) 49.2(49.0) 89.2(91.3)

We evaluate how different hyperparameters affect the performance of our method. We compare our
method with different m, the length of the burn-in stage. We start introducing the retroactive loss
after m epochs, and start label corrections after m + 10 epochs. The final testing accuracies are
shown in Table 4. We observe the performance of our method is rather robust w.r.t. different m’s.
We choose m = 20 in this data set (CIFAR10) and similarly in other datasets.

Table 4: Effect of different m’s. The experiments are performed on CIFAR10 (accuracy in %). The
number in parenthesis denotes the rate of correct labels after training.

Noisy Type Epoch 15 Epoch 20 Epoch 25 Epoch 30 Epoch 35 Epoch 40
uniform 0.4 87.6(90.1) 88.7(90.5) 87.4(90.7) 86.7(90.6) 84.8(88.7) 84.1(87.2)
uniform 0.6 79.4(81.0) 81.2(82.5) 80.9(81.9) 79.3(81.9) 79.1(81.8) 78.1(81.7)
pair 0.4 75.8(80.0) 89.2(80.1) 90.8(87.0) 89.2(89.3) 88.2(90.1) 86.7(90.1)

We also evaluate the performance on different ∆’s. ∆ is the unknown value for our likelihood ratio
test. It controls how aggressive we would like to correct the labels. From Table 5, we observe a
bigger ∆ tends to give better results (as it is less aggressive in correcting labels). We observe 1/1.2
is the best one for CIFAR10. Similar values of optimal ∆ are found in other data sets.

Table 5: Effect of ∆. The experiments are performed on CIFAR10, and the number in parenthesis
denotes the rate of correct labels after flipping.

Noisy Type 1/1.0 1/1.2 1/1.5 1/2.0 1/2.5 1/3.0
uniform 0.4 88.3(91.7) 88.7(90.5) 83.0(89.3) 77.1(86.7) 75.2(85.1) 75.5(84.0)
uniform 0.6 79.9(81.0) 81.2(82.5) 80.9(81.9) 79.3(81.9) 79.1(81.8) 78.1(81.7)
pair 0.4 88.2(92.2) 89.2(80.1) 84.4(89.8) 77.0(86.8) 76.4(85.1) 77.0(84.1)

In general, we observe our hyperparameters are rather consistent across different datasets. This
reveals a better generalization power of our method over other datasets and noise patterns. We
believe this is due to the principled approach we take in label cleaning.

5 CONCLUSION

We propose a label correction algorithm to combat label noise. We perform a likelihood ratio test
for each input label such that if it is rejected, this label is flipped to the class that has the highest
likelihood. Theoretically, we prove that our method corrects noisy labels with high probability.
Experiments on various datasets show that our method outperforms state-of-the-arts and is robust to
hyperparameters.
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A PROOF OF THEOREM 1

Recall u ∈ {−1, 0, 1} is a number indicating whether τ10 < τ01, τ10 = τ01, or τ10 > τ01, respec-
tively. We restate the theorem as follows for completeness.

Theorem 1. Assume η satisfies the Tsybakov condition with constants C > 0 and λ > 0. Let h∗
denote the Bayes classifier. Let η̃(x) = (1 − τ01 − τ10)η(x) + τ01 denote the corrupted Bayesian
classifier. Let f(x) = aη(x) + b with a and b unknown, such that f(x) ∈ [η̃(x)− ε, η̃(x) + ε] for
some ε > 0. Let u ∈ {−1, 0,+1} be known. Let ∆(ỹ, f(x), u, a, b) be as in Table 1. Let ∆

′
> 0

be a constant such that ∆
′ ∈ [∆− ε,∆ + ε]. If ỹnew denotes the output of the LRT-algorithm with

input (ỹ,x, f,∆
′
), then

Pr(x,y)∼D(ỹnew 6= h∗) ≤ 8C

(
| τ10 − τ01
2(1− τ10 − τ01)

|+O(ε)

)λ
.
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If τ01 = τ10, then Pr(x,y)∼D(ỹnew 6= h∗) = 8C (O(ε))
λ.

To prove this theorem, we first prove two lemmas. In the following we will state and prove the
lemmas, and then continue to finish the proof of Theorem 1.
Lemma 2. Assume η satisfies the Tsybakov condition with constants C > 0 and λ > 0. Let h∗
denote the Bayes classifier. If f depends linearly on η, i.e., f(x) = aη(x) + b, a, b > 0, and a, b
and u are known, and ∆ is chosen as in Table 1, then

• If LRT-Correction(f ,(x, ỹ),u, a, b) flips the label of ỹ, then ỹnew = h∗(x), and
• Pr(x,y)∼D(ỹnew(x, ỹ) 6= h∗(x)) = 0.

Lemma 3. Assume η satisfies the Tsybakov condition with constants C > 0 and λ > 0. Let h∗
denote the Bayes classifier. Let η̃(x) = (1 − τ01 − τ10)η(x) + τ01 denote the corrupted Bayesian
classifier. If ∆ is chosen as in Table 6, then

• If LRT-Correction(f ,(x, ỹ),u, a, b) flips the label of ỹ, then ỹnew = h∗(x),

• Pr(x,y)∼D(ỹnew(x, ỹ) 6= h∗(x)) ≤ C
(
| τ01−τ10
2(1−τ10−τ10) |

)λ
, and

• If τ01 = τ10, Pr(x,y)∼D(ỹnew(x, ỹ) 6= h∗(x)) = 0.

Table 6: Values of ∆ given η̃
ỹ η̃ < 1/2 η̃ > 1/2

ỹ = 1 1+τ01−τ10
1+τ10−τ01 0

ỹ = 0 0 1+τ10−τ01
1+τ01−τ10

Proof of Lemma 2:

We begin with some observations:

Observation 1: If ỹ = 1(f > b+a/2), the algorithm never flips. This is because ∆ = 0 in all such
cases, and since the likelihood ratios f/(1− f) or (1− f)/f are always positive, ỹ is not flipped.

Observation 2: f(x) < b + a/2 if, and only if, η(x) < 1/2. This follows by a straightforward
calculation using f(x) = aη(x) + b.

In the remainder of this proof, we assume that u = 1, i.e., τ10 > τ01. The proof when u = −1
follows by symmetry.

Observation 3: Assume u = 1. If ỹ(x) = 1 and f(x) < b+ a/2 (so a non-trivial test (unlike ones
in Observation 1) is performed), then f(x)/(1− f(x) < ∆(ỹ = 1, f(x) < b+ a/2) if, and only if,
η(x) < 1/2. Similarly if ỹ(x) = 0 and f(x) > b+a/2 then (1−f(x))/f(x) < ∆(ỹ = 0, f(x) >
b+ a/2) if, and only if, η(x) > 1/2.

Proof of Observation 3: First notice from the table that ∆(ỹ = 1, f(x) < 1/2) is the reciprocal of
∆(ỹ = 0, f(x) > 1/2). Since the likelihood test ratio is also the reciprocal in the two situations,
proving one statement suffices. We prove the first statement. For convenience we denote ∆(ỹ =
1, f(x) < 1/2) by ∆.

f(x)

1− f(x)
< ∆ (4)

⇐⇒ f(x) < ∆/(1 + ∆) (5)

⇐⇒ f(x) <
a+2b

2−a−2b

1 + a+2b
2−a−2b

(6)

⇐⇒ f(x) <
a+ 2b

2
(7)

⇐⇒ η(x) <
a+2b
2 − b
a

(8)

⇐⇒ η(x) < 1/2. (9)
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We can now prove the first assertion of Lemma 2 for the case u = 1. That is, if
LRT-Correction(f ,(x, ỹ),u, a, b) flips the label of ỹ, then ỹnew = h∗(x). Let us first consider
the case ỹ(x) = 1. If f(x) > b+ a/2, then it implies that η(x) > 1/2 (Observation 2). The corre-
sponding ∆ in the table is 0, meaning that no test is performed, and ỹnew(x, ỹ) = ỹ(x) = h∗(x). On
the other hand, if f(x) < b+a/2, we perform a likelihood ratio test on f/(1−f), which is less than
the corresponding value of ∆ iff η(x) < 1/2 (Observation 3), so again ỹnew(x, ỹ) = ỹ(x) = h∗(x).
The case ỹ(x) = 0 can be analyzed analogously.

Thus the only points x where we may not match h∗(x) are ones where the flipping algorithms does
not flip, and the result mismatches with h. By the above observations, the following is where this
happens.

Observation 4: Assume u = 1. Then

{x : ỹnew(x, ỹ) 6= h∗(x)} = {x : ỹ(x) = 0, f(x) < b+ a/2, η(x) > 1/2}.

However, according to Observation 2, f(x) < b + a/2 implies η(x) < 1/2. Thus this case cannot
happen. Hence Pr(x,y)∼D(ỹnew(x, ỹ) 6= h∗(x)) = 0, and Lemma 2 is proved.

Proof of Lemma 3

This proof is an extension of the proof of Lemma 2. All the steps are analogous, except in Observa-
tion 4, we get the following

Observation 5: Assume u = 1. Then

{x : ỹnew(x, ỹ) 6= h∗(x)} = {x : ỹ(x) = 0, η̃(x) < 1/2, η(x) > 1/2}.

This measure is non zero. However, it is bounded above by the measure of the set {η̃(x) <
1/2, η(x) > 1/2}. Since η̃(x) = (1 − τ01 − τ10)η(x) + τ01, this is the same as the measure
of the set {x : 1/2 < η(x) < 1/2−τ01

1−τ10−τ01 . By the Tsybakov condition, this measure is at most(
τ10−τ01

2(1−τ10−τ01)

)λ
. This was for the case u = 1, and when u = −1 we can check by analogous

calculation that the numerator is reversed. Hence we have proved

Pr
(x,y)∼D

(ỹnew(x, ỹ) 6= h∗(x)) ≤ C
(
| τ01 − τ10
2(1− τ10 − τ10)

|
)λ

.

The last assertion of Lemma 3 follows by just substituting τ01 = τ10 in the above formula. Hence
Lemma 3 is proved.

Proof of Theorem 1 We give here a sketch of the proof. Let A denote the event
(

f
1−f < ∆

′
)

, and

B denote the event
(

1−f
f < ∆

′
)

. In the following we describe the cases when our algorithm results
(flips or does not flip) in a label inconsistent with h∗.

• (ỹ = 1, f < 1/2, η > 1/2,LRT flips). According to the LRT scheme, this happens with
probability at most Pr(A ∩ (η > 1/2)).

• (ỹ = 1, f < 1/2, η < 1/2,LRT does not flip). According to the LRT scheme, this happens
with probability at most Pr(Ac ∩ (η < 1/2)). Here Ac denotes the complement of the
event A.

• (ỹ = 1, f > 1/2, η > 1/2,LRT flips). According to the LRT scheme, this happens with
probability at most Pr(A ∩ (η > 1/2)).

• (ỹ = 1, f > 1/2, η < 1/2,LRT does not flip).According to the LRT scheme, this happens
with probability at most Pr(Ac ∩ (η < 1/2)).

• (ỹ = 0, f < 1/2, η > 1/2,LRT does not flip). According to the LRT scheme, this happens
with probability at most Pr(Bc ∩ (η > 1/2)).

• (ỹ = 0, f < 1/2, η < 1/2,LRT flips). According to the LRT scheme, this happens with
probability at most Pr(B ∩ (η < 1/2)).

• (ỹ = 0, f > 1/2, η < 1/2,LRT flips).According to the LRT scheme, this happens with
probability at most Pr(B ∩ (η < 1/2)).

• (ỹ = 0, f > 1/2, η > 1/2,LRT does not flip). According to the LRT scheme, this happens
with probability at most Pr(Bc ∩ (η > 1/2)).
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In all of these cases, one observes that the probability of these 8 events is either of the
form Pr

(
1/2 < η(x) < 1/2−τ01

1−τ01−τ10 +O(ε)
)

or Pr
(

1/2−τ01
1−τ01−τ10 −O(ε) < η(x) < 1/2

)
. Assum-

ing Tsybakov condition, one can bound each of these probabilities (and hence the sum by)

8
(
| τ10−τ01
2(1−τ10−τ01) |+O(ε)

)λ
. Thus we have proved

Pr
(x,y)∼D

(ỹnew 6= h∗) ≤ 8C

(
| τ10 − τ01
2(1− τ10 − τ01)

|+O(ε)

)λ
,

which finishes the proof of Theorem 1.
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