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ABSTRACT

Most existing 3D CNN structures for video representation learning are clip-based
methods, and do not consider video-level temporal evolution of spatio-temporal
features. In this paper, we propose Video-level 4D Convolutional Neural Networks,
namely V4D, to model the evolution of long-range spatio-temporal representation
with 4D convolutions, as well as preserving 3D spatio-temporal representations with
residual connections. We further introduce the training and inference methods for
the proposed V4D. Extensive experiments are conducted on three video recognition
benchmarks, where V4D achieves excellent results, surpassing recent 3D CNNs by
a large margin.

1 INTRODUCTION

3D convolutional neural networks (3D CNNs) and their variants (Ji et al., 2010; Tran et al., 2015;
Carreira & Zisserman, 2017; Qiu et al., 2017; Wang et al., 2018b) provide a simple extension from
2D counterparts for video representation learning. However, due to practical issues such as memory
consumption and computational cost, these models are mainly used for clip-level feature learning
instead of training from the whole video. In this sense, during training, the clip-based methods
randomly sample a short clip (e.g., 32 frames) from the video for representation learning. During
testing, they uniformly sample several clips from the whole video in a sliding window manner and
calculate the prediction scores for each clip independently. Finally the prediction scores of all clips are
simply averaged to yield the video-level prediction. Although achieving very competitive accuracy,
these clip-based models ignore the video-level structure and long-range spatio-temporal dependency
during training, as they only sample a small portion of the entire video. In fact, sometimes it could
be very hard to recognize action class only with partial observation. Meanwhile, simply averaging
the prediction scores of all clips could be also sub-optimal during testing. To overcome this issue,
Temporal Segment Network (TSN) (Wang et al., 2016) uniformly samples multiple clips from the
entire video and uses their average score to guide back-propagation during training. Thus TSN is a
video-level representation learning framework. However, the inter-clip interaction and video-level
fusion in TSN is only performed at very late stage, which fails to capture finer temporal structures.

In this paper, we propose a general and flexible framework for video-level representation learning,
called V4D. As shown in Figure 1, to model long-range dependency in a more efficient and principled
way, V4D is composed of two critical design: (1) holistic sampling strategy and (2) 4D convolutional
interaction. We first introduce a video-level sampling strategy by uniformly sampling a sequence of
short-term units covering the holistic video. Then we model long-range spatio-temporal dependency
by designing a unique 4D residual block. Specifically, we present a 4D convolutional operation to
capture inter-clip interaction, which could enhance the representation power of the original clip-
level 3D CNNs. The 4D residual blocks could be easily integrated into the existing 3D CNNs to
perform long-range modeling more earlier and hierarchically than TSN. We also design a specific
video-level inference algorithm for V4D. Specifically, we verify the effectiveness of V4D on three
video action recognition benchmarks, Mini-Kinetics (Xie et al., 2018), Kinetics-400 (Carreira &
Zisserman, 2017) and Something-Something-V1 (Goyal et al., 2017). V4D structures achieve very
competitive performance on these benchmarks and obtain evident performance improvement over
their 3D counterparts.
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2 RELATED WORKS

The architectures for video recognition can be roughly categorized into three groups: Two-stream
CNNs, 3D CNNs, and long-term modeling framework .

2.1 TWO-STREAM CNNS

Two-stream architecture was first proposed by (Simonyan & Zisserman, 2014), where one stream
is used for learning from RGB images, and the other one is applied for modeling optical flow. The
results produced by the two streams are then fused at later stages, yielding the final prediction.
Two-stream CNNs have achieved impressive results on various video recognition tasks. However, the
main drawback is that the computation of optical flow often takes rather long time with expensive
resource explored. Recent effort has been devoted to reducing the computational cost on modeling
optical flow, such as (Dosovitskiy et al., 2015; Sun et al., 2018; Piergiovanni & Ryoo, 2018; Zhang
et al., 2016). Two-stream input and fusion is a general method to boost the accuracy of various CNN
structures, which is orthogonal with our proposed V4D.

2.2 3D CNNS

3D CNNs have recently been proposed (Tran et al., 2015; Carreira & Zisserman, 2017; Wang et al.,
2018a;b; Feichtenhofer et al., 2018). By considering a video as a stack of frames, it is natural to utilize
3D convolutions directly on video data. However, 3D CNNs often have a larger number of model
parameters, which require more training data to achieve high performance. Recent experimental
results on large scale benchmark of Kinetics-400 (Carreira & Zisserman, 2017), as reported in (Wang
et al., 2018b; Feichtenhofer et al., 2018), show that 3D CNNs can surpass their 2D counterparts in
most cases, even on par with or better than the two-stream 2D CNNs. It is noteworthy that most of 3D
CNNs are clip-based methods, which means that they only explore a certain part of the holistic video.

2.3 LONG-TERM MODELING FRAMEWORKS

Long-term modeling frameworks have been developed for capture more complex temporal structure
for video-level represenation learning. A mainstream method operated on a continuous video frame
sequence with recurrent neural networks Ng et al. (2015); Donahue et al. (2015) with 2D CNNs
for frame-level feature extraction. Temporal Segment Network (TSN) (Wang et al., 2016) has been
proposed to model video-level temporal information with a sparse sampling and aggregation strategy.
TSN sparsely sampled frames from the whole video and these frames are modelled by the same
CNN backbone. These scores are averaged to generate video-level prediction. Although originally
designed for 2D CNNs, TSN can also be applied to 3D CNNs, which is set as one of the baselines in
this paper. One obvious drawback of TSN is that due to the simple average aggregation, it can not
model finer temporal structure. Temporal Relational Reasoning Network (TRN) (Zhou et al., 2018)
models temporal segment relation by encoding individual representation of each segment with relation
networks. TRN is able to model video-level temporal order but lacks capacity of capturing finer
temporal structures. Our proposed V4D, however, significantly surpass these previous video-level
learning methods on both appearance-dominated video recognition benchmark (e.g., Kinetics) and
motion-dominated video recognition benchmark (e.g., Something-Something). V4D framework is
able to model both short-term and long-term temporal structures with a unique design of 4D residual
block.

3 VIDEO-LEVEL 4D COVOLUTIONAL NEURAL NETWORKS

In this section, we introduce novel Video-level 4D Convolution Neural Networks, namely V4D,
for video action recognition. This is the first attempt to design 4D convolutions for RGB-based
video recognition. Existing 3D CNNs take a short-term snippet as input, without considering the
evolution of 3D spatio-temporal features for video-level representation. Wang et al. (2018b); Yue et al.
(2018); Liu et al. (2019) proposed self-attention mechanisms to model non-local spatio-temporal
features, but these methods are originally designed for clip-based 3D CNNs. It remains unclear how
to incorporate such operations on holistic video representation, and whether such operations are
useful for video-level learning. Our goal is to model 3D spatio-temporal features globally, which can
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Figure 1: Video-level 4D Convolutional Neural Networks for video recognition.

be implemented in a higher dimension. In this work, we introduce new Residual 4D Blocks, which
allow us to cast 3D CNNs into 4D CNNs for learning long-range interactions of the 3D features,
resulting in a “time of time” video-level representation.

3.1 A VIDEO-LEVEL SAMPLING STRATEGY

To model meaningful video-level representation for action recognition, the input to the networks has
to cover the holistic duration of a given video, and at the same time preserve short-term action details.
A straightforward approach is to implement per-frame training of the networks yet this is not practical
by considering the limit of computation resource. In this work, we uniformly divide the whole video
into U sections, and randomly select a snippet from each section to represent a short-term action
pattern, called ”action unit”. Then we have U action units to represent the holistic action in a video.

3.2 4D CONVOLUTIONS FOR LEARNING SPATIO-TEMPORAL INTERACTIONS

3D Convolutional kernels have been proposed for years, and are powerful to model short-term spatio-
temporal features. However, the receptive fields of 3D kernels are often limited due to the small
sizes of kernels, and pooling operations are often applied to enlarge the receptive fields, resulting
in a significant cost of information loss. This inspired us to develop new operations which are
able to model both short- and long-term spatio-temporal representations simultaneously, with easy
implementations and fast training. From this prospective, we propose 4D convolutions for better
modeling long-range spatio-temporal interactions.

Formally, we denote the input to 4D convolutions as a tensor V of size (C,U, T,H,W ), where C is
number of channel, U is the number of action units (the fourth dimension in this paper), T,H,W are
temporal length, height and width of the action units, respectively. We omit the batch dimension for
simplicity. Following the annotations from Ji et al. (2010), a pixel at position (u, t, h, w) of the jth
channel in the output is denoted as outhwj , a 4D convolution operation can be formulated as :

outhwj = bj +

Cin∑
c

S−1∑
s=0

P−1∑
p=0

Q−1∑
q=0

R−1∑
r=0

Wspqr
jc v(u+s)(t+p)(h+q)(w+r)

c (1)

where bj is the bias term, c is one of the Cin input channels of the feature maps from input V ,
S×P ×Q×R is the shape of 4D convolutional kernel,Wspqr

jc is the weight at the position (s, p, q, r)
of the kernel, corresponding to the c-th channel of the input feature maps and j-th channel of the
output feature maps.

Convolution operation are linear, and the sequence of sum operations in E.q. 1 are exchangeable.
Thus we can generate E.q. 2, where the expression in the parentheses can be implemented by 3D
convolutions. This is how we implement 4D convolutions with 3D convolutions while most deep
learning libraries do not provide 4D convolutional operations.

outhwj = bj +

S−1∑
s=0

(

Cin∑
c

P−1∑
p=0

Q−1∑
q=0

R−1∑
r=0

Wspqr
jc v(u+s)(t+p)(h+q)(w+r)

c ) (2)

With the 4D convolutional kernel, the short-term 3D features of an individual action unit and long-
term temporal evolution of multiple action units can be modeled simultaneously in the 4D space.
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Figure 2: We visualize the implementation of 4D kernels which is compared to that of 3D kernels.
U denotes the number of action units, each of which has a shape of T,H,W . Channel and batch
dimensions are omitted for clarity. The kernels are colored in Blue, with the center of each kernel
colored in Green.

Compared to 3D convolutions, the proposed 4D convolutions are able to model videos in a more
meaningful 4D feature space that enables it to learn more complicated interactions of long-range 3D
spatio-temporal representations. However, 4D convolutions inevitably introduce more parameters
and computation cost. In practice, for example, a 4D convolutional kernel of k × k × k × k employs
k times more parameters than a 3D kernel of k × k × k. Besides k × k × k × k kernels, we also
explore k × k × 1× 1 and k × 1× 1× 1 kernels, for reducing parameters and avoiding the risk of
overfitting. The implementations of different kernels are shown in Figure 2.

3.3 VIDEO-LEVEL 4D CNN ARCHITECTURE

In this section, we aim to incorporate 4D convolutions into existing CNN architecture for action
recognition. To fully utilize current state-of-the-art 3D CNNs, we propose a new Residual 4D
Convolution Block, by designing a 4D convolution in a residual structure (He et al., 2016). This
allows it to aggregate both short-term 3D features and long-term evolution of the spatio-temporal
representations for video-level action recognition. Specifically, we define a permutation function
ϕ(di,dj) : M

d1×...×di×...×dj×...×dn 7→Md1×...×dj×...×di×...×dn , which permutes dimension di and
dj of a tensor M ∈ Rd1×...×dn . The Residual 4D Convolution Block can be formulated as:

Y3D = X3D + ϕ(U,C)(F4D(ϕ(C,U)(X3D);W4D)) (3)

where F4D(X ;W4D) is the 4D convolution introduced. X3D, Y3D ∈ RU×C×T×H×W , and U is
merged into batch dimension so that X3D, Y3D can be directly processed by standard 3D CNNs. Note
that we employ ϕ to permute the dimensions ofX3D from U×C×T×H×W to C×U×T×H×W
so that it can be processed by 4D convolutions. Then the output of 4D convolution is permuted back
to 3D form so that the output dimensions are consistent with X3D. Batch Normalization (Ioffe &
Szegedy, 2015) and ReLU activation (Nair & Hinton, 2010) are then applied. The detailed structure
is shown in Figure 1.

Theoretically, any 3D CNN structure can be cast to 4D CNNs by integrating our 4D Convolutional
Blocks. As shown in previous works (Zolfaghari et al., 2018; Xie et al., 2018; Wang et al., 2018b;
Feichtenhofer et al., 2018), better performance can be obtained by applying 2D convolutions at lower
layers and 3D convolutions at higher layers of the 3D networks. In our framework, we utilize the
”Slowpath” from Feichtenhofer et al. (2018) as our backbone, denoted as I3D-S. Although the original
”Slowpath” is designed for ResNet50, we can extend it to I3D-S ResNet18 for further experiments.
The detailed structures of our 3D backbones are shown in Table 1.

3.4 TRAINING AND INFERENCE

Training. As shown in Figure 1, the convolutional part of the network is composed of 3D convolution
layers and the proposed Residual 4D Blocks. Each action unit is trained individually and in parallel in
the 3D convolution layers, which share the same parameters. These individual 3D features computed
from each action units are then fed to the Residual 4D Block for modelling the long-term temporal
evolution of the consecutive action units. Finally, global average pooling is applied on the sequence
of all action units to form a video-level representation.

Inference. Given U action units {A1, A2, ..., AU} of a video, we denote Utrain as the number of
action units for training and Uinfer as the number of action units for inference. Utrain and Uinfer are
usually different because computation resource is limited in training, but high accuracy is encouraged
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layer I3D-S ResNet18 I3D-S ResNet50 output size
conv1 1×7×7, 64, stride 1, 2, 2 1×7×7, 64, stride 1, 2, 2 4×112×112

res2

[
1×3×3, 64
1×3×3, 64

]
×2

 1×1×1, 64
1×3×3, 64
1×1×1, 256

×3 4×56×56

res3

[
1×3×3, 128
1×3×3, 128

]
×2

 1×1×1, 128
1×3×3, 128
1×1×1, 512

×4 4×28×28

res4

[
3×3×3, 256
3×3×3, 256

]
×2

 3×1×1, 256
1×3×3, 256

1×1×1, 1024

×6 4×14×14

res5

[
3×3×3, 512
3×3×3, 512

]
×2

 3×1×1, 512
1×3×3, 512

1×1×1, 2048

×3 4×7×7

global average pool, fc 1×1×1
Table 1: We use I3D-Slowpath from (Feichtenhofer et al., 2018) as our backbone. The output size of
an example is shown in the right column, where the input has a size of 4×224×224. No temporal
degenerating is performed in this structure.

in inference. We develop a new video-level inference method, which is shown in Algorithm 1. The
3D convolutional layers are denote as N3D, followed by the proposed 4D Blocks, N4D.

Algorithm 1: V4D Inference.
Network :The network structure is divided into two sub-networks by the first 4D Block,

namely N3D and N4D.
Input :Uinfer action units from a holistic video: {A1, A2, ..., AUinfer

}.
Output :The video-level prediction.

V4D Inference :
1 {A1, A2, ..., AUinfer

} are fed into N3D, generating intermediate feature maps for each unit
{F1, F2, ..., FUinfer

},Fi ∈ RC×T×H×W ;
2 For the Uinfer intermediate features, we equally divide them into Utrain sections. Then we

select one unit from each section Fseci and combine these Utrain units into a video-level
intermediate representation F video = (Fsec1 , Fsec2 , ..., FsecUtrain

). These video-level
representations form a new set {F video

1 , F video
2 , ..., F video

Ucombined
}, where

Ucombined = (Uinfer/Utrain)
Utrain , F video

i ∈ RUtrain×C×T×H×W ;
3 Each F video

i in set {F video
1 , F video

2 , ..., F video
Ucombined

} are processed by N4D to form a prediction
score set {P1, P2, ..., PUcombined

};
4 {P1, P2, ..., PUcombined

} are averaged to give the final video-level prediction.

3.5 DISCUSSION

In this section, we will show that the proposed V4D can be considered as a 4D generalization of a
number of recent widely-applied methods, which may partially explain why V4D works practically
well on learning meaningful video-level representation.

Temporal Segment Network. Our V4D is closely related to Temporal Segment Network (TSN).
Although originally designed for 2D CNN, TSN can be directly applied to 3D CNN to model video-
level representation. It also employs a video-level sampling strategy with each action unit named
”segment”. During training, each segment is calculated individually and the prediction scores after
the fully-connected layer are then averaged. Since the fully-connected layer is a linear classifier, it is
mathematically identical to calculating the average before the fully-connected layer (similar to our
global average pooling) or after the fully-connected layer (similar to TSN). Thus our V4D can be
considered as 3D CNN + TSN if all parameters in 4D Blocks are assigned zero.

Dilated Temporal Convolution. One special form of 4D convolution kernel, k×1×1×1, is closely
related to Temporal Dilated Convolution (Lea et al., 2016). The input tensor V can be considered as
a (C,U × T,H,W ) tensor when all action units are concatenated along the temporal dimension. In
this case, the k × 1× 1× 1 4D convolution can be considered as a dilated 3D convolution kernel
of k × 1 × 1 with a dilation of T frames. Note that the k × 1 × 1 × 1 kernel is just the simplest
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form of our 4D convolutions, while our V4D architectures utilize more complex kernels and thus can
be more meaningful for learning stronger video representation. Furthermore, our 4D Blocks utilize
residual connections, ensuring that both long-term and short-term representation can be learned
jointly. Simply applying the dilated convolution might discard the short-term fine-grained features.

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on three standard benchmarks: Mini-Kinetics (Xie et al., 2018), Kinetics-400
(Carreira & Zisserman, 2017), and Something-Something-v1 (Goyal et al., 2017). Mini-kinetics
dataset covers 200 action classes, and is a subset of Kinetics-400. Since some videos are no longer
available for Kinetics dataset, our version of Kinetics-400 contains 240,436 and 19,796 videos in the
training and validation subsets, respectively. Our version of Mini-kinetics contains 78,422 videos for
training, and 4,994 videos for validation. Each video has around 300 frames. Something-Something-
v1 contains 108,499 videos totally, with 86,017 for training, 11,522 for validation, and 10,960 for
testing. Each video has 36 to 72 frames.

4.2 ABLATION STUDY ON MINI-KINETICS

We use pre-trained weights from ImageNet to initialize the model. For training, we adapt the holistic
sampling strategy mentioned in section 3.1. We uniformly divide the whole video into U sections,
and randomly select a clip of 32 frames from each section. For each clip, by following the sampling
strategy in Feichtenhofer et al. (2018), we uniformly sample 4 frames with a fixed stride of 8 to form
an action unit. We will study the impact of U in the following experiments. We first resize every
frame to 320× 256, and then randomly cropping is applied as Wang et al. (2018b). Then the cropped
region is further resized to 224× 224. We utilize SGD optimizer with an initial learning rate of 0.01,
weight decay is set to 10−5 with a momentum of 0.9. The learning rate drops by 10 at epoch 35, 60,
80 and the model is trained for 100 epochs in total.

To make a fair comparison, we use spatial fully convolutional testing by following Wang et al.
(2018b); Yue et al. (2018); Feichtenhofer et al. (2018). We sample 10 action units evenly from a
full-length video, and crop 256× 256 regions to spatially cover the whole frame for each action unit.
Then we apply the proposed V4D inference. Note that, for the original TSN, 25 clips and 10-crop
testing are used during inference. To make a fair comparison between I3D and our V4D, we instead
apply this 10 clips and 3-crop inference strategy for TSN.

Results and Effectiveness. To verify the effectiveness of V4D, we compare it with the clip-based
method I3D-S, and video-based method TSN+3D CNN. To compensate the extra parameters intro-
duced by 4D blocks, we add a 3×3×3 residual block at res4 for I3D-S for a fair comparison, denoted
as I3D-S ResNet18++. As shown in Table 2a, even V4D uses 4 times less frames than I3D-S during
inference and with less parameters than I3D-S ResNet18++, V4D still obtain a 2.0% higher top-1
accuracy than I3D-S. Comparing with current state-of-the-art video-level method TSN+3D CNN,
V4D significantly outperforms it by 2.6% top-1 accuracy, by using the same protocol for training and
inference.

Different Forms of 4D Convolution Kernels. As mentioned, our 4D convolution kernels can use 3
typical forms: k× 1× 1× 1, k× k× 1× 1 and k× k× k× k. In this experiment, we set k = 3 for
simplicity, and apply a single 4D block at the end of res4 in I3D-S ResNet18. As shown in Table
2c, V4D with 3× 3× 3× 3 kernel can achieve the highest performance. However, by considering
the trade-off between model parameters and performance, we use the 3 × 3 × 1 × 1 kernel in the
following experiments.

Position and Number of 4D Blocks. We evaluate the impact of position and number of 4D Blocks
for our V4D. We investigate the performance of V4D by using one 3× 3× 1× 1 4D block at res3,
res4 or res5. As shown in Table 2d, a higher accuracy can be obtained by applying the 4D block at
res3 or res4, indicating that the merged long-short term features of the 4D block need to be further
refined by 3D convolutions to generate more meaningful representation. Furthermore, inserting one
4D block at res3 and one at res4 can achieve a higher accuracy.
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model Ttrain ×Utrain Tinfer ×Uinfer× #crop top-1 top5 parameters
I3D-S ResNet18 4 × 1 4 × 10 × 3 72.2 91.2 32.3M
I3D-S ResNet18 16 × 1 16 × 10 × 3 73.4 91.1 32.3M

I3D-S ResNet18++ 16 × 1 16 × 10 × 3 73.6 91.5 34.1M
TSN+I3D-S ResNet18 4 × 4 4 × 10 × 3 73.0 91.3 32.3M

V4D ResNet18 4 × 4 4 × 10 × 3 75.6 92.7 33.1M

(a) Effectiveness of V4D. T represents temporal length of each action unit. U represents the
number of action units.

model input size flops
I3D-S ResNet18 16 × 256 × 256 55.1G

TSN+I3D-S ResNet18 4 × 4 × 256 × 256 55.1G
V4D ResNet18 4 × 4 × 256 × 256 58.8G

(b) Forward flops of previous works and V4D. One
4D block at res3 and one at res4 for V4D.

model form of 4D kernel top-1 top5
I3D-S ResNet18 - 72.2 91.2

TSN+I3D-S ResNet18 - 73.0 91.3
V4D ResNet18 3 × 1 × 1 × 1 73.8 92.0
V4D ResNet18 3 × 3 × 1 × 1 74.5 92.4
V4D ResNet18 3 × 3 × 3 × 3 74.7 92.5

(c) Different Forms of 4D Convolution Kernel.

model 4D kernel top-1 top5
I3D-S ResNet18 - 72.2 91.2

TSN+I3D-S ResNet18 - 73.0 91.3
V4D ResNet18 1 at res3 74.2 92.3
V4D ResNet18 1 at res4 74.5 92.4
V4D ResNet18 1 at res5 73.6 91.4
V4D ResNet18 1 at res3, 1 at res4 75.6 92.7

(d) Position and Number of 4D Blocks.

model Utrain top-1 top5
I3D-S ResNet18 1 72.2 91.2

TSN+I3D-S ResNet18 4 73.0 91.3
V4D ResNet18 3 74.3 92.2
V4D ResNet18 4 74.5 92.4
V4D ResNet18 5 74.5 92.3
V4D ResNet18 6 74.6 92.5

(e) Effect of Utrain.
Table 2: Ablations on Mini-Kinetics, with top-1 and top-5 classification accuracy (%).

Number of Action Units U . We further evaluate our V4D by using different numbers of action
units for training, with different values of hyperparameter U . In this experiment, one 3× 3× 1× 1
Residual 4D block is inserted at the end of res4 of ResNet18. As shown in Table 2e, U does not
have a significant impact on the performance, which suggests that: (1) V4D is a video-level feature
learning model, which is robust against the number of short-term units; (2) an action generally does
not contain many stages, and thus increasing U is not helpful. Also, the number of action units
increasing means that the fourth dimension is increasing, which needs a larger 4D kernel to cover the
long-range evolution of spatio-temporal representation.

Comparison with State-Of-The-Art. We compare our V4D with previous state-of-the-art methods
on Mini-Kinetics. 4D Residual Blocks are added into every other 3D residual blocks in res3 and res4.
With much fewer frames utilized during training and inference, our V4D ResNet50 achieves a higher
accuracy than all reported results on this benchmark, which is even higher than 3D ResNet101 with 5
Compact Generalized Non-local Blocks. Note that our V4D ResNet18 can achieve a higher accuracy
than 3D ResNet50, which further verify the effectiveness of our V4D structure.

Model Backbone Ttrain × Utrain Tinfer × Uinfer× #crop top-1 top5
S3D (Xie et al., 2018) S3D Inception 64 × 1 N/A 78.9 -
I3D (Yue et al., 2018) 3D ResNet50 32 × 1 32 × 10 × 3 75.5 92.2
I3D (Yue et al., 2018) 3D ResNet101 32 × 1 32 × 10 × 3 77.4 93.2
I3D+NL (Yue et al., 2018) 3D ResNet50 32 × 1 32 × 10 × 3 77.5 94.0
I3D+CGNL (Yue et al., 2018) 3D ResNet50 32 × 1 32 × 10 × 3 78.8 94.4
I3D+NL (Yue et al., 2018) 3D ResNet101 32 × 1 32 × 10 × 3 79.2 93.2
I3D+CGNL (Yue et al., 2018) 3D ResNet101 32 × 1 32 × 10 × 3 79.9 93.4
V4D(Ours) V4D ResNet18 4 × 4 4 × 10 × 3 75.6 92.7
V4D(Ours) V4D ResNet50 4 × 4 4 × 10 × 3 80.7 95.3

Table 3: Comparison with state-of-the-art on Mini-Kinetics. T indicates temporal length of each
action unit. U represents the number of action units.

4.3 RESULTS ON KINETICS

We further conduct experiments on large-scale video recognition benchmark, Kinetics-400, to evaluate
the capability of our V4D. To make a fair comparison, we utilize ResNet50 as backbone for V4D. The
training and inference sampling strategy is identical to previous section, except that each action unit
now contains 8 frames instead of 4. We set U = 4 so that there are 8× 4 frames in total for training.
Due to the limit of computation resource, we choose to train the model in multiple stages. We first
train the 3D ResNet50 backbone with 8-frame inputs. Then we load the 3D ResNet50 weights to
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V4D ResNet50, with all 4D Blocks fixed to zero. The V4D ResNet50 is then fine-tuned with 8× 4
input frames. Finally, we optimize all 4D Blocks and train the V4D with 8× 4 frames.

As shown in Table 4, our V4D achieves competitive results on Kinetics-400 benchmark.

Model Backbone top-1 top-5
ARTNet with TSN (Wang et al., 2018a) ARTNet ResNet18 70.7 89.3
ECO (Zolfaghari et al., 2018) BN-Inception+3D ResNet18 70.0 89.4
S3D-G (Xie et al., 2018) S3D Inception 74.7 93.4
Nonlocal Network (Wang et al., 2018a) 3D ResNet50 76.5 92.6
SlowFast (Feichtenhofer et al., 2018) SlowFast ResNet50 77.0 92.6
I3D(Carreira & Zisserman, 2017) I3D Inception 72.1 90.3
Two-stream I3D(Carreira & Zisserman, 2017) I3D Inception 75.7 92.0
I3D-S(Feichtenhofer et al., 2018) Slow pathway ResNet50 74.9 91.5
V4D(Ours) V4D ResNet50 77.4 93.1

Table 4: Comparison with state-of-the-art on Kinetics.

4.4 RESULTS ON SOMETHING-SOMETHING-V1

Something-Something is a rather different dataset compared to Mini-Kinetics and Kinetics. Instead
of enhancing high-level action concepts, Something-Something focuses on modeling temporal
information and motion. The background is much cleaner than Kinetics but the motions of action
categories are much more complicated. Each video in Something-Something contains one single and
continuous action with clear start and end on temporal dimension.

Comparison with Prior Works. As shown in Table 4.4, our V4D achieves competitive results on
the Something-Something-v1. We use V4D ResNet50 pre-trained on Kinetics for experiments.

Model Backbone top-1
MultiScale TRN (Zhou et al., 2018) BN-Inception 34.4
ECO (Zolfaghari et al., 2018) BN-Inception+3D ResNet18 46.4
S3D-G (Xie et al., 2018) S3D Inception 45.8
Nonlocal Network+GCN (Wang & Gupta, 2018) 3D ResNet50 46.1
TrajectoryNet (Zhao et al., 2018) S3D ResNet18 47.8
V4D(Ours) V4D ResNet50 50.4

Table 5: Comparison with state-of-the-art on Something-Something-v1.

Temporal Order As shown in Xie et al. (2018), the performance can drop considerably by reversing
the temporal order of short-term 3D features, which demonstrates that the strong temporal order
information has been learned by 3D CNNs. For our V4D, there are two levels of temporal order, a
short-term order and a long-term order. As shown in Table 6, either by reversing the frames inside
each action unit or by reversing the sequence of action units, the top-1 accuracy drops significantly,
which indicates that our V4D is able to capture both long-term and short-term temporal order.

Action Unit Temporal Order Video-level Temporal Order top-1
Normal Normal 50.4
Normal Reversed 20.1

Reversed Normal 17.2

Table 6: V4D is able to capture the arrow of time.

5 CONCLUSIONS

We have introduced new Video-level 4D Convolutional Neural Networks, namely V4D, to learn
strong temporal evolution of long-range spatio-temporal representation, as well as retaining 3D
features with residual connections. In addition, we further introduce the training and inference
methods for our V4D. Experiments were conducted on three video recognition benchmarks, where
our V4D achieved the state-of-the-art results.
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