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ABSTRACT

Modern deep neural networks (DNNs) require high memory consumption and
large computational loads. In order to deploy DNN algorithms efficiently on edge
or mobile devices, a series of DNN compression algorithms have been explored,
including the line of works on factorization methods. Factorization methods ap-
proximate the weight matrix of a DNN layer with multiplication of two or multiple
low-rank matrices. However, it is hard to measure the ranks of DNN layers during
the training process. Previous works mainly induce low-rank through implicit ap-
proximations or via costly singular value decomposition (SVD) process on every
training step. The former approach usually induces a high accuracy loss while
the latter prevents DNN factorization from efficiently reaching a high compres-
sion rate. In this work, we propose SVD training, which first applies SVD to
decompose DNN’s layers and then performs training on the full-rank decomposed
weights. To improve the training quality and convergence, we add orthogonal-
ity regularization to the singular vectors, which ensure the valid form of SVD
and avoid gradient vanishing/exploding. Low-rank is encouraged by applying
sparsity-inducing regularizers on the singular values of each layer. Singular value
pruning is applied at the end to reach a low-rank model. We empirically show that
SVD training can significantly reduce the rank of DNN layers and achieve higher
reduction on computation load under the same accuracy, comparing to not only
previous factorization methods but also state-of-the-art filter pruning methods.

1 INTRODUCTION

The booming development in deep learning models and applications has enabled beyond human
performance in tasks like large-scale image classification (Krizhevsky et al., 2012; He et al., 2016;
Hu et al., 2018; Huang et al., 2017), object detection (Redmon et al., 2016; Liu et al., 2016; He
et al., 2017), and semantic segmentation (Long et al., 2015; Chen et al., 2017). Such high perfor-
mance, however, comes with a high price of large memory consumption and computation load. For
example, a ResNet-50 model needs approximately 4G floating-point operations (FLOPs) to clas-
sify a color image of 224 × 224 pixels. The computation load can easily expand to tens or even
hundreds of GFLOPs for detection or segmentation models using state-of-the-art (SOTA) DNNs as
backbones (Canziani et al., 2016). This is a major challenge that prevents the deployment of modern
DNN models on resource-constrained platforms, such as phones, smart sensors, and drones.

Model compression techniques for DNN models have been extensively studied. Some successful
methods include element-wise pruning (Han et al., 2015; Liu et al., 2015; Zhang et al., 2018), struc-
tural pruning (Wen et al., 2016; Luo et al., 2017; Li et al., 2019), quantization (Liu et al., 2018;
Wang et al., 2019), and factorization (Jaderberg et al., 2014; Zhang et al., 2015; Yang et al., 2015;
Xu et al., 2018). Among these methods, quantization and element-wise pruning can effectively
reduce model’s memory consumption, but require specific hardware to realize efficient computa-
tion. Structural pruning reduces the computation load by removing redundant filters or channels.
However, the complicated structures adopted in some modern DNNs (i.e., ResNet or DenseNet) en-
force strict constraints on the input/output dimension of certain layers. This requires additional filter
grouping during the pruning and filter rearranging after the pruning to make the pruned structure
valid (Wen et al., 2017a; Ding et al., 2019). Factorization method approximates the weight matrix of
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a layer with a multiplication of two or more low-rank matrices. It by nature keeps the input/output
dimension of a layer unchanged, and therefore the resulted decomposed network can be supported
by any common DNN computation architectures, without additional grouping and post-processing.

The previous investigation show that it is feasible to approximate the weight matrices of a pretrained
DNN model with the multiplication of low-rank matrices, but it may greatly degrade the perfor-
mance (Jaderberg et al., 2014; Zhang et al., 2015; Moczulski et al., 2015). Some other methods at-
tempt to manipulate the “directions” of filters to implicitly reduce the rank of weight matrices (Wen
et al., 2017b; Li et al., 2019). However, the difficulties in training and the implicitness of rank
representation prevent these methods from reaching a high compression rate. Nuclear norm regu-
larizer (Xu et al., 2018) has been used to directly reduce the rank of weight matrices. Optimizing
the nuclear norm requires back propagation through singular value decomposition (SVD). Applying
such a numerical process on every training step is inefficient and unstable.

Our work aims to explicitly achieve a low-rank DNN network during the training without apply-
ing SVD on every step. In particular, we propose SVD training by training the weight matrix of
each layer in the form of its full-rank SVD. The weight matrix is decomposed into the matrices
of left-singular vectors, singular values and right-singular vectors, and the training is done on the
decomposed variables. Furthermore, two techniques are proposed to induce low-rank while main-
taining high performance during the SVD training: (1) Singular vector orthogonality regularization
which keeps the singular vector matrices close to unitary through the training. It mitigates gradient
vanishing/exploding during the training, and provide a valid form of SVD to guarantee the effective
rank reduction. (2) Singular value sparsification which applies sparsity-inducing regularizers on
the singular values during the training to induce low-rank. The low-rank model is finally achieved
through singular value pruning. We evaluate the individual contribution of each technique as well
as the overall performance when putting them together via ablation studies. Results show that the
proposed method constantly beats SOTA factorization and structural pruning methods on various
tasks and model structures.

2 RELATED WORKS ON LOW-RANK DNNS

Approximating a weight matrix with the multiplication of low-rank matrices is a straightforward
idea for compressing DNNs. Early works in this field focus on designing the matrix decomposition
scheme, so that the operation of a pretrained network layer can be closely approximated with cas-
caded low-rank layers (Jaderberg et al., 2014; Zhang et al., 2015; Yang et al., 2015). Notably, Zhang
et al. (2015) propose a channel-wise decomposition, which uses SVD to decompose a convolution
layer with a kernel size w × h into two consecutive layers with kernel sizes w × h and 1 × 1, re-
spectively. The computation reduction can be achieved by exploiting the channel-wise redundancy,
e.g., channels with smaller singular values in both decomposed layers are removed. Similarly, Jader-
berg et al. (2014) propose to decompose a convolution layer into two consecutive layers with less
channels in between. They further utilize the spatial-wise redundancy to reduce the size of convo-
lution kernels in the decomposed layers to 1 × h and w × 1, respectively. These methods provide
a closed-form decomposition for each layer. However, the weights of the pretrained model may not
be low-rank by nature, so the manually imposed low-rank after decomposition inevitably leads to
high accuracy loss as the compression ratio increases (Xu et al., 2018).

Methods have been proposed to reduce the rank of weight matrices during training process in order
to achieve low-rank decomposition with low accuracy loss. Wen et al. (2017b) induce low rank by
applying an “attractive force” regularizer to increase the correlation of different filters in a certain
layer. Ding et al. (2019) achieve a similar goal by optimizing with “centripetal SGD,” which moves
multiple filters towards a set of clustering centers. Both methods can reduce the rank of the weight
matrices without performing actual low-rank decomposition during the training. However, the rank
representations in these methods are implicit, so the regularization effects are weak and may lead
to sharp performance decrease when seeking for a high speedup. On the other hand, Xu et al.
(2018) explicitly estimate and reduce the rank throughout the training by adding Nuclear Norm
(defined as the sum of all singular values) regularizer to the training objective. This method requires
performing SVD to compute and optimize the Nuclear Norm of each layer on every optimization
step. Since the complexity of the SVD operation is O(n3) and the gradient computation through
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Figure 1: The training, compressing and finetuning pipeline of the proposed method.

SVD is not straightforward (Giles, 2008), performing SVD on every step is time consuming and
leads to instability in the training process.

To explicitly achieve a low-rank network without performing decomposition on each training step,
Tai et al. (2015) propose to directly train the network from scratch in the low-rank decomposed form.
Since decomposition typically doubles the number of layers in the network, directly training the
decomposed network may be difficult due to gradient vanishing or exploding. Tai et al. (2015) tackle
this problem by adding batch normalization (Ioffe & Szegedy, 2015) between decomposed layers.
However, adding batch normalization breaks the theoretical guarantee that the decomposed layers
can approximate the operation of the original layer and will largely hurt the inference efficiency.
Moreover, the low-rank decomposed training scheme used in this line of works requires setting the
rank of each layer before the training (Tai et al., 2015; Ioffe & Szegedy, 2015). The manually chosen
low rank may not lead to the optimal compression and will make the optimization harder as lower
rank implies lower model capacity (Xu et al., 2018).

3 PROPOSED METHOD

Building upon previous works, we combine the ideas of decomposed training and trained low-rank
in this work. As shown in Figure 1, the model will first be trained in a decomposed form through
the full-rank SVD training, then undergoes singular value pruning for rank reduction, and finally be
finetuned for further accuracy recovery. As we will explain in Section 3.1, the model will be trained
in the form of the spatial-wise (Jaderberg et al., 2014) or channel-wise decomposition (Zhang et al.,
2015) to avoid the time consuming SVD. Unlike the training procedure proposed by Tai et al. (2015),
we will train the decomposed model in its full-rank to preserve the model capacity. During the SVD
training, we apply orthogonality regularization to the singular vector matrices and sparsity-inducing
regularizers to the singular values of each layer, the details of which will be discussed in Section 3.2
and 3.3, respectively. Section 3.4 will elaborate the full objective of the SVD training and the overall
model compression pipeline. This method is able to achieve optimal compression rate by inducing
low-rank through training without the need for performing decomposition on every training step.

3.1 SVD TRAINING OF DEEP NEURAL NETWORKS

In this work, we propose to train the neural network in its low-rank decomposition form, where each
layer is decomposed into two consecutive layers via SVN, without introducing additional operations
in between. For a fully connected layer, the weight W is a 2-D matrix with dimension W ∈
Rm×n. Following the form of SVD, W can be directly decomposed into three variables U ,V , s
as Udiag(s)V T , with dimension U ∈ Rm×r, V ∈ Rn×r and s ∈ Rr. Both U and V shall be
unitary matrices. In the full-rank setting where r = min(m,n), W can be exactly reconstructed as
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W = Udiag(s)V T . For a neural network, this is equivalent to decomposing a layer with weight W
into two consecutive layers with weight W1 = Udiag(

√
s) and W2 = diag(

√
s)V T respectively.

For a convolution layer, the kernel K can be represented as a 4-D tensor with dimension K ∈
Rn×c×w×h. Here n, c, w, h represent the numbers of filters, the number of input channels, the
width and the height of the filter respectively. This work mainly focuses on the channel-wise de-
composition method (Zhang et al., 2015) and the spatial-wise decomposition method (Jaderberg
et al., 2014) to decompose the convolution layer, as these methods have shown their effectiveness
in previous CNN decomposition research. For channel-wise decomposition, K is first reshaped to
a 2-D matrix K̂ ∈ Rn×cwh. K̂ is then decomposed with SVD into U ∈ Rn×r, V ∈ Rcwh×r

and s ∈ Rr, where U and V are unitary matrices and r = min(n, cwh). The original convolution
layer is therefore decomposed into two consecutive layers with kernels K1 ∈ Rr×c×w×h reshaped
from diag(

√
s)V T and K2 ∈ Rn×r×1×1 reshaped from Udiag(

√
s). Spatial-wise decomposition

shares a similar process as the channel-wise decomposition. The major difference is that K is now
reshaped to K̂ ∈ Rnw×ch and then decomposed into U ∈ Rnw×r, V ∈ Rch×r, and s ∈ Rr

with r = min(nw, ch). The resulting decomposed layers would have kernels K1 ∈ Rr×c×1×h and
K2 ∈ Rn×r×w×1 respectively. Zhang et al. (2015) and Jaderberg et al. (2014)’s works theoreti-
cally show that the decomposed layers can exactly replicate the function of the original convolution
layer in the full-rank setting. Therefore training the decomposed model at full-rank should achieve
a similar accuracy as training the original model.

During the SVD training, for each layer we use the variables from the decomposition, i.e., U , s,V ,
instead of the original kernel K or weight W as the trainable variables in the network. The forward
pass will be executed by converting the U , s,V into a form of the two consecutive layers as demon-
strated above, and the back propagation and optimization will be done directly with respect to the
U , s,V of each layer. In this way, we can access the singular value s directly without performing
the time-consuming SVD on each step.

Note that U and V need to be orthogonal for efficient rank reduction via SVD, but this is not nat-
urally induced by the decomposed training process. Also, Training with the decomposed variables
may aggravate gradient vanishing/exploding during the optimization. Therefore we add orthogonal-
ity regularization to U and V to tackle the aforementioned problems, as discussed in Section 3.2.
Rank reduction is induced by adding sparsity-inducing regularizers to the s of each layer, which will
be discussed in Section 3.3.

3.2 ORTHOGONALITY REGULARIZATION ON SINGULAR VECTORS

In a standard SVD procedure, the resulted U and V should be orthogonal by construction, which
provides theoretical guarantee for the low-rank approximation. However, U and V in each layer
are treated as free trainable variables in the decomposed training process, so the orthogonality may
not hold. Without the orthogonal property, it is unsafe to prune s even if it reaches a small value,
because the corresponding singular vectors in U and V may have high energy and induce a large
difference to the result. To make the form of SVD valid and enable effective rank reduction via
singular value pruning, we introduce an orthogonality regularization loss to U and V as:

Lo(U ,V ) =
1

r2
(||UTU − I||2F + ||V TV − I||2F ), (1)

where || · ||F is the Frobenius norm of matrix and r is the rank of U and V . Note that the ranks
of U and V are same given their definition in the decomposed training procedure. Adding the
orthogonality loss in Equation (1) to the total loss function forces Us and V s of all the layers close
to be orthogonal matrices.

Meanwhile, one layer in the original network is converted to two consecutive layers in the decom-
posed training, therefore doubles the number of layers. As aforementioned by Ioffe & Szegedy
(2015), this may worsen the problem of exploding or vanishing gradient during the optimization,
degrading the performance of the achieved model. Since the proposed orthogonality loss can keep
all the columns of U and V to have the L2 norms close to 1, adding it to the decomposed training
objective can effectively mitigate the exploding or vanishing gradient, therefore achieving high ac-
curacy. The accuracy gain brought by training with the orthogonality loss will be discussed in our
ablation study in Section 4.1.
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3.3 SPARSITY-INDUCING REGULARIZERS ON SINGULAR VALUES

With orthogonal singular vector matrices, reducing the rank of the decomposed network is equiva-
lent to making the singular value vector s of each layer sparse. Although the sparsity of a vector is
directly represented by its L0 norm, it is hard to optimize the norm through gradient-based methods.
Inspired by the recent works in DNN pruning (Liu et al., 2015; Wen et al., 2016), we use differen-
tiable sparsity-inducing regularizer to make more elements in s closer to zero, and apply post-train
pruning to make the singular value vector sparse.

For the choice of the sparsity-inducing regularizer, the L1 norm has been commonly applied in
feature selection (Tibshirani, 1996) and DNN pruning (Wen et al., 2016). The L1 regularizer takes
the form of L1(s) =

∑
i |si|, which is both almost everywhere differentiable and convex, making it

friendly for optimization. Moreover, applying L1 regularizer on the singular value s is equivalent to
regularizing with the nuclear norm of the original weight matrix, which is a popular approximation
of the rank of a matrix (Xu et al., 2018).

However, the L1 norm is proportional to the scaling of parameters, i.e., ||αW ||1 = α||W ||1, with a
non-negative constant α. Therefore, minimizing the L1 norm of s will shrink all the singular values
simultaneously. In such a situation, some singular values that are close to zero after training may
still contain a large portion of the matrix’s energy. Pruning such singular values may undermine the
performance of the neural network.

To mitigate the proportional scaling problem of the L1 regularizer, previous works in compressed
sensing have been using Hoyer regularizer to induce sparsity in solving non-negative matrix factor-
ization (Hoyer, 2004) and blind deconvolution (Krishnan et al., 2011), where the Hoyer regularizer
shows superior performance comparing to other methods. The Hoyer regularizer is formulated as

LH(s) =
||s||1
||s||2

=

∑
i |si|√∑

i s
2
i

, (2)

which is the ratio of the L1 norm and the L2 norm of a vector (Krishnan et al., 2011). It can be
easily seen that the Hoyer regularizer is almost everywhere differentiable and scale-invariant. The
differentiable property implies that the Hoyer regularizer can be easily optimized as part of the
objective function. The scale-invariant property shows that if we apply the Hoyer regularizer to s,
the total energy will be retained as the singular values getting sparser. Therefore most of the energy
will be kept within the top singular values while the rest getting close to zero. This makes Hoyer
regularizer attractive in our training process. The effectiveness of the L1 regularizer and the LH

regularizer is explored and compared in Section 4.2.

3.4 OVERALL OBJECTIVE AND TRAINING PROCEDURE

With the analysis above, we propose the overall objective function of the decomposed training as:

L(U , s,V ) = LT (diag(
√
|s|)V T ,Udiag(

√
|s|)) + λo

D∑
l=1

Lo(Ul,Vl) + λs

D∑
l=1

Ls(sl). (3)

Here LT is the training loss computed on the model with decomposed layers. Lo denotes the orthog-
onality loss provided in Equation (1), which is calculated on the singular vector matrices Ul and Vl

of layer l and added up over all D layers. Ls is the sparsity-inducing regularization loss, applying
to the vector of singular values sl of each layer. We explore the use of both the L1 regularizer and
the LH regularizer in Equation (2) as Ls in this work. λs and λo are the decay parameters for the
sparsity-inducing regularization loss and the orthogonality loss respectively, which are hyperparam-
eters of the proposed training process. λo can be chosen as a large positive number to enforce the
orthogonality of singular vectors, and λs can be modified to explore the tradeoff between accuracy
and FLOPs of the achieved low-rank model.

As shown in Figure 1, the low-rank decomposed network will be achieved through a three-stage
process of full-rank SVD training, singular value pruning and low-rank finetuning. First we train
a full-rank decomposed network using the objective function in Equation (3). Training at full rank
enables the decomposed model to easily reach the performance of the original model, as there is no
capacity loss during the full-rank decomposition. With the help of the sparsity-inducing regularizer,
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Table 1: Comparison of top 1 accuracy on CIFAR-10 of ResNet models after decomposed training,
with or without orthogonality loss. [-Ch] means using channel-wise decomposition and [-Sp] means
using spatial-wise decomposition.

Model λo Accuracy (%) Model λo Accuracy (%)

ResNet-56 N/A 93.14 ResNet-110 N/A 93.62

ResNet-56-Ch 1.0 93.28 ResNet-110-Ch 1.0 93.58
ResNet-56-Ch 0.0 91.28 ResNet-110-Ch 0.0 91.83

ResNet-56-Sp 1.0 93.36 ResNet-110-Sp 1.0 93.93
ResNet-56-Sp 0.0 90.70 ResNet-110-Sp 0.0 91.86

most of the singular values will be close to zero after the full-rank training process. Inspired by Xu
et al. (2018)’s work, we prune the singular values using an energy based threshold. For each layer
we find a set K with the largest number of singular values subject to:∑

j∈K
s2j ≤ e

r∑
i=1

s2i , (4)

where e ∈ [0, 1] is a predefined energy threshold. We use the same threshold for all the layers in our
experiments. When e is small enough, the singular values in set K and the corresponding singular
vectors can be removed safely with negligible performance loss. The pruning step will dramatically
reduce the rank of the decomposed layers. For a convolution layer with kernel K ∈ Rn×c×w×h, if
we can reduce the rank of the decomposed layers to r, the number of FLOPs for the convolution will
be reduced by (n+chw)r

nchw or (nw+ch)r
nchw when channel-wise or spatial-wise decomposition is applied,

respectively. The resulted low-rank model will then be finetuned with λs set to zero for further
performance recovery.

4 EXPERIMENT RESULTS

In this section, we first perform ablation studies on the importance of the singular vector orthogo-
nality regularization and the choice of singular value sparsity regularizers. The studies use ResNet
models (He et al., 2016) on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009). We then apply the
proposed decomposed training method on various DNN models on the CIFAR-10 dataset and the
ImageNet ILSVRC-2012 dataset (Russakovsky et al., 2015). Different hyperparameters are used to
explore the accuracy-FLOPs trade-off induced by the proposed method. Our results constantly stay
above the Pareto frontier of previous works.

4.1 IMPORTANCE OF THE ORTHOGONAL CONSTRAINTS

Here we demonstrate the importance of adding the singular value orthogonality loss to the decom-
posed training process. We separately train two decomposed model with the same optimizer and
hyperparameters, one with the orthogonality loss of λo = 1.0 and the other with λo = 0. No
sparsity-inducing regularizer is applied to the singular values in this set of experiments. The ex-
periments are conducted on ResNet-56 and ResNet-110 models, both trained under channel-wise
decomposition and spatial-wise decomposition. The CIFAR-10 dataset is used for training and test-
ing. As shown in Table 1, the orthogonality loss enables the decomposed model to achieve similar
or even better accuracy comparing to that of the original full model. On the contrary, training the
decomposed model without the orthogonality loss will cause around 2% accuracy loss.

4.2 COMPARISON OF DECOMPOSITION METHODS AND SPARSITY-INDUCING REGULARIZERS

With the proposed decomposed training method, there are two main factors related to the final com-
pression rate and the performance of the compressed model: the decomposition method for the DNN
layers and the choice of sparsity-inducing regularizers for the singular values. As mentioned in Sec-
tion 3.1 and Section 3.3, we mainly consider the channel-wise and the spatial-wise decomposition
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Figure 2: Effect of different decomposition methods and regularizers. Dash lines show the approxi-
mated tendency of the accuracy-compression tradeoff. See Appendix B for detailed data.

method, with the L1 and the Hoyer regularizer. In this section, we comprehensively explore the
accuracy-compression rate tradeoff of ResNet models in various depths and under different configu-
rations by changing the strength of the sparsity-inducing regularizer (λs in Equation (3)). From the
results shown in Figure 2, we make the following observations:

Channel-wise decomposition works as well as spatial-wise decomposition in deeper neural net-
works Here we compare the accuracy-#FLOPs tradeoff tendency of the channel-wise decomposi-
tion (red) and the spatial-wise decomposition (blue), both with the Hoyer regularizer. The spatial-
wise decomposition shows a large advantage comparing to the channel-wise decomposition in the
experiments with a shallower network like ResNet-20 or ResNet-32. However, with a deeper net-
work like ResNet-110, these two decomposition methods perform similarly. Spatial-wise decompo-
sition can utilize both spatial-wise redundancy and channel-wise redundancy, while the channel-wise
decomposition utilizes channel-wise redundancy only. The observations indicate that as networks
get deeper, the channel-wise redundancy will become a dominant factor comparing to the spatial-
wise redundancy. This corresponds to the fact that deeper layers in modern DNN typically have
significantly more channels than shallower layers, resulting in significant channel-wise redundancy.

Hoyer achieves higher speedup under low accuracy loss comparing to the L1 regularizer
Here we compare the effect of the L1 regularizer (magenta) and the Hoyer regularizer (red), both
with spatial decomposition. As shown in Figure 2, the tradeoff tendency of the L1 regularizer con-
stantly demonstrates a larger slope than that of the Hoyer regularizer. Under low accuracy loss, the
Hoyer regularizer achieves a higher compression rate comparing to that of the L1 regularizer. How-
ever, if we are aiming for extremely high compression rate while allowing higher accuracy loss, the
L1 regularizer can have a better performance. One possible reason for the difference in tendency is
that the L1 regularizer will make all the singular values small through the training process, while the
Hoyer regularizer will maintain the total energy of the singular values during the training, focusing
more energy in larger singular values. Therefore more singular values can be removed from the
decomposed model trained with the Hoyer regularizer without significantly hurting the performance
of the model, resulting in higher compression rate at low accuracy loss. But it would be harder to
keep most of the energy in a tiny amount of singular values than simply making everything closer to
zero, therefore the L1 regularizer may perform better in the case of extremely high speedup.

4.3 COMPARING WITH PREVIOUS WORKS

We apply the proposed SVD training framework on the ResNet-20, ResNet-32, ResNet-56 and
ResNet-110 models on the CIFAR-10 dataset as well as the ResNet-50 model on the ImageNet
ILSVRC-2012 dataset to compare the accuracy-#FLOPs tradeoff with previous methods. The hy-
perparameter choices of these models can be found in Appendix A. Here we mainly compare our

7



Under review as a conference paper at ICLR 2020

Figure 3: Comparison of accuracy-#FLOPs tradeoff against previous methods. Being closer to the
top-right corner indicates a better tradeoff point. See Appendix B for detailed data.

method with state-of-the-art low-rank compression methods like TRP (Xu et al., 2018) and C-
SGD (Ding et al., 2019), as well as recent filter pruning methods like NISP (Yu et al., 2018), SFP (He
et al., 2018) and CNN-FCF (Li et al., 2019). The results of different models are shown in Figure 3.
As analyzed in Section 4.2, the spatial-wise decomposition methods achieves significantly higher
compression rate than the channel-wise decomposition in shallower networks, while similar perfor-
mance can be achieved when compressing a deeper model. Thus we compare the results of only the
spatial-wise decomposition against previous works for ResNet-20 and ResNet-32. For other deeper
networks, we report the results for both channel-wise and spatial-wise decomposition. As most of
the previous works focus on compressing the model with a small accuracy loss, here we use the
Hoyer regularizer for the singular values sparsity, as it can achieve a better compression rate than
the L1 norm under low accuracy loss (see Section 4.2). We use multiple strength for the Hoyer reg-
ularizer to explore the accuracy-#FLOPs tradeoff, in order to compare against previous works with
different accuracy levels. As shown in Figure 3, our proposed method can constantly achieve higher
FLOPs reduction with less accuracy loss comparing to previous methods on different models and
datasets. These comparison results prove that the proposed SVD training and singular value pruning
scheme can effectively compress modern deep neural networks through low-rank decomposition.

5 CONCLUSION

In this work, we propose the SVD training framework, which incorporates the full-rank decomposed
training and singular value pruning to reach low-rank DNNs with minor accuracy loss. We apply
SVD to decompose each DNN layer before the training and directly train with the decomposed
singular vectors and singular values, so we can keep an explicit measure of layers’ ranks without
performing the SVD on each step. Orthogonality regularizers are applied to the singular vectors
during the training to keep the decomposed layers in a valid SVD form. And sparsity-inducing
regularizers are applied to the singular values to explicitly induce low-rank layers.

Thorough experiments are done to analyse each proposed technique. We demonstrate that the or-
thogonality regularization on singular vector matrices is crucial to the performance of the decom-
posed training process. For decomposition methods, we find that the spatial-wise method performs
better than channel-wise in shallower networks while the performances are similar for deeper mod-
els. For the sparsity-inducing regularizer, we show that higher compression rate can be achieved by
Hoyer regularizer comparing to that of the L1 regularizer under low accuracy loss. We further apply
the proposed method to various depth of ResNet models on both CIFAR-10 and ImageNet dataset,
where we find the accuracy-#FLOPs tradeoff achieved by the proposed method constantly stays
above the Pareto frontier of previous methods, including both factorization and structural pruning
methods. These results prove that this work provides an effective way for learning low-rank deep
neural networks.
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A EXPERIMENT SETUPS

Our experiments are done on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) and the ImageNet
ILSVRC-2012 dataset (Russakovsky et al., 2015). We access both datasets via the API provided
in the “TorchVision” Python package. As recommended in the PyTorch tutorial, we normalize the
data and augment the data with random crop and random horizontal flip before the training. We use
batch size 100 to train CIFAR-10 model and use 256 for the ImageNet model. For all the models on
CIFAR-10, both the full-rank SVD training and the low-rank finetuning are trained for 164 epochs.
The learning rate is set to 0.001 initially and decayed by 0.1 at epoch 81 and 122. For models on
ImageNet, the full-rank SVD training is trained for 90 epochs, with initial learning rate 0.1 and
learning rate decayed by 0.1 every 30 epochs. The finetuning is done for 60 epochs, starting at
learning rate 0.01 and decay by 0.1 at epoch 30. We use pretrained full-rank decomposed model
(trained with the orthogonality regularizer but without sparsity-inducing regularizer) to initialize
the SVD training. SGD optimizer with momentum 0.9 is used for optimizing all the models, with
weight decay 5e-4 for CIFAR-10 models and 1e-4 for ImageNet models. The accuracy reported in
the experiment is the best testing accuracy achieved during the finetuning process.

During the SVD training, the decay parameter of the orthogonality regularizer λo is set to 1.0 for
both channel-wise and spatial-wise decomposition on CIFAR-10. On ImageNet, λo is set to 10.0 for
channel-wise decomposition and 5.0 for spatial-wise decomposition. The decay parameter λs for
the sparsity-inducing regularizer and the energy threshold used for singular value pruning are altered
through different set of experiments to fully explore the accuracy-#FLOPs tradeoff. In most cases,
the energy threshold is selected through a line search, where we find the highest percentage of energy
that can be pruned without leading to a sudden accuracy drop. The λs and the energy thresholds used
in each set of the experiments are reported alongside the experiment results in Appendix B.

B DETAILED EXPERIMENT RESULTS

In this section we list the exact data used to plot the experiment result figures in Section 4. The results
of our proposed method with various choice of decomposition method and sparsity-inducing regu-
larizer tested on the CIFAR-10 dataset are listed in Table 2. All of these data points are visualized
in Figure 2 to compare the tradeoff tendency. As discussed in Section 4.3, the results of spatial-
wise decomposition with the Hoyer regularizer for ResNet-20 and ResNet-32 are shown in Figure 3
to compare with previous methods. The results of both channel-wise and spatial-wise decomposi-
tion with the Hoyer regularizer are compared with previous methods in Figure 3 for ResNet-56 and
ResNet-110. The results of our method for the ResNet-50 model tested on the ImageNet dataset are
listed in Table 3. All reported ImageNet results are compared with previous methods in Figure 3.

Model Reg Type Decay Energy Pruned Accuracy Gain(%) Speed Up

ResNet-20 Hoyer 0.03 1.5e-5 0.04 2.20 ×
Channel 0.07 6.0e-6 -0.27 2.66 ×

0.1 3.0e-6 -0.54 2.94 ×
Base Acc: L1 0.01 7.0e-2 1.13 1.43 ×
90.93% 0.001 2.7e-2 0.63 1.59 ×

0.1 1.0e-1 0.32 2.10 ×
0.3 1.0e-1 -0.48 2.84 ×

ResNet-20 Hoyer 0.01 1.0e-3 0.40 3.26 ×
Spatial 0.03 2.0e-5 -0.10 3.87 ×

0.1 4.0e-6 -0.86 4.77 ×
Base Acc: 0.01 7.0e-3 -1.03 5.16 ×
90.99% L1 0.01 6.0e-2 0.58 2.26 ×

0.1 1.0e-1 -0.52 3.55 ×
0.3 1.0e-1 -0.83 4.79 ×

ResNet-32 Hoyer 0.003 3.0e-3 0.04 2.22 ×
Channel 0.01 1.0e-4 -0.10 2.44 ×

0.03 2.0e-6 -0.86 2.56 ×
Base Acc: L1 0.03 2.0e-2 0.22 1.58 ×
92.12% 0.1 1.0e-1 -0.21 2.84 ×
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0.3 5.0e-2 -0.96 3.08 ×
ResNet-32 Hoyer 0.001 5.0e-2 0.52 2.56 ×
Spatial 0.005 5.0e-3 -0.38 3.93 ×

0.01 8.0e-4 -0.62 4.57 ×
Base Acc: 0.03 8.0e-6 -1.12 5.30 ×
92.14% L1 0.03 7.0e-2 0.13 2.60 ×

0.1 2.5e-2 -0.34 4.20 ×
0.1 1.5e-1 -0.96 5.32 ×

ResNet-56 Hoyer 0.001 2.0e-2 0.39 2.70 ×
Channel 0.003 1.0e-3 -0.29 3.49 ×

0.01 7.0e-6 -0.41 4.35 ×
Base Acc: 0.01 2.0e-5 -0.68 4.94 ×
93.28% 0.03 3.0e-7 -1.20 5.16 ×

L1 0.1 3.0e-2 -0.30 4.25 ×
0.1 1.5e-1 -0.59 4.86 ×

ResNet-56 Hoyer 0.001 3.0e-2 0.17 3.07 ×
Spatial 0.003 1.0e-3 -0.09 3.75 ×

0.01 1.0e-4 -0.70 5.43 ×
Base Acc: 0.03 1.0e-6 -1.37 6.90 ×
93.36% L1 0.03 5.0e-3 -0.24 3.19 ×

0.03 5.0e-2 -0.90 5.61 ×
0.03 2.5e-1 -1.38 6.76 ×

ResNet-110 Hoyer 0.001 5.0e-3 0.38 3.85 ×
Channel 0.003 3.0e-4 -0.34 5.00 ×

0.01 3.0e-7 -0.60 6.66 ×
Base Acc: 0.03 1.0e-6 -1.27 8.76 ×
93.58% L1 0.03 1.0e-1 -0.28 5.02 ×

0.03 3.0e-1 -1.27 7.44 ×
ResNet-110 Hoyer 0.001 1.3e-2 0.10 4.75 ×
Spatial 0.003 7.0e-4 -0.46 6.42 ×

0.01 2.0e-5 -1.28 8.76 ×
Base Acc: 0.03 2.0e-8 -2.03 10.06×
93.93% L1 0.03 3.0e-2 -0.42 5.02 ×

0.03 1.0e-1 -0.67 6.45 ×
0.03 1.5e-1 -1.01 7.21 ×
0.03 2.5e-1 -1.36 8.66 ×

Table 2: Results of applying the proposed method on ResNet models on
the CIFAR-10 dataset with various hyperparameters. [Decay] marks the
decay variable for the sparse regularization, i.e. λs. [Energy Pruned]
means the energy threshold used for singular value pruning, i.e. e. [Ac-
curacy Gain] denotes the gain of Top-1 accuracy from the accuracy of the
baseline full-rank model. [Speed Up] is computed as the ratio of #FLOPs
of the original model and the achieved low-rank model.

The baseline results of previous works on compressing CIFAR-10 and ImageNet models used for
comparison in Figure 3 are listed in Table 4 and Table 5 respectively. As there are a large amount
of previous works in this field, we only list the results of the most recent works here to show the
state-of-the-art Pareto frontier. Therefore we choose state of the art low-rank compression methods
like TRP (Xu et al., 2018) and C-SGD (Ding et al., 2019), as well as recent filter pruning methods
like NISP (Yu et al., 2018), SFP (He et al., 2018) and CNN-FCF (Li et al., 2019) as the baseline to
compare our results against.
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Table 3: Results of applying the proposed method on ResNet-50 model on the ImageNet dataset.
Hoyer regularizer is used as the sparsity-inducing regularizer for the singular values. Top-5 testing
accuracy is reported in the [Base Acc] and the [Accuracy Gain] columns. [Speed Up] is computed
as the ratio of #FLOPs of the original model and the achieved low-rank model.

Decompose Base Acc Decay Energy Pruned Accuracy Gain Speed Up

Channel 91.72% 0.001 1.0e-4 0.02% 1.37 ×
0.002 1.0e-4 -0.12% 1.92 ×
0.003 5.0e-5 -0.54% 2.51 ×
0.005 5.0e-5 -1.56% 4.17 ×

Spatial 91.91% 0.0005 1.0e-3 0.06% 1.44 ×
0.001 1.0e-4 -0.10% 1.79 ×
0.002 2.0e-4 -1.09% 3.05 ×

Table 4: Baselines on the CIFAR-10 dataset. [Accu.↑] means the Top-1 accuracy gain comparing to
that of the full model. [Sp. Up] denotes speed up computed as the ratio of #FLOPs before and after
the model compression. [-] is marked when no result is available in the paper.

Method ResNet-20 ResNet-32 ResNet-56 ResNet-110
Accu.↑ Sp. Up Accu.↑ Sp. Up Accu.↑ Sp. Up Accu.↑ Sp. Up

TRP-Ch -0.43% 2.17× -0.72% 2.20× - - - -
TRP-Sp -0.37% 2.84× -0.75% 3.40× - - - -
SFP -1.37% 1.79× -0.55% 1.71× 0.19% 1.70× 0.18% 1.69×
CNN-FCF -1.07% 1.71× -0.25% 1.73× 0.24% 1.75× 0.09% 1.76×

-2.67% 3.17× -1.69% 3.36× -1.22% 3.44× -0.62% 2.55×
C-SGD-5/8 - - - - 0.23% 2.55× 0.03% 2.56×
Nisp - - - - -0.03% 1.77× -0.18% 1.78×

Table 5: Baselines on the ImageNet dataset. [Accu.↑] means the Top-5 accuracy gain comparing to
that of the full model. [Sp. Up] denotes speed up computed as the ratio of #FLOPs before and after
the model compression.

Method Accu.↑ Sp. Up Method Accu.↑ Sp. Up

SFP -0.81% 1.72× NISP-50-A -0.21% 1.38×
CNN-FCF-A +0.26% 1.41× NISP-50-B -0.89% 1.79×
CNN-FCF-B -0.19% 1.85× C-SGD-70 -0.10% 1.58×
CNN-FCF-C -0.69% 2.33× C-SGD-50 -0.29% 1.86×
CNN-FCF-D -1.37% 2.96× C-SGD-30 -0.47% 2.26×
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