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ABSTRACT

We learn to identify ‘decision states’, namely the parsimonious set of states where
decisions meaningfully affect the future states an agent can reach in an environment.
We utilize the VIC framework (Gregor et al.,|2016), which maximizes an agent’s
‘empowerment’, i.e. the ability to reliably reach a diverse set of states — and formu-
late a sandwich bound on the empowerment objective that allows identification of
decision states. Unlike previous work (Goyal et al.,|2019), our decision states are
discovered without extrinsic rewards — simply by interacting with the world. Our
results show that our decision states are: 1) often interpretable, and 2) lead to better
exploration on downstream goal-driven tasks in partially observable environments.

1 INTRODUCTION

Not all states in a decision making process are created equal. Consider the middle illustration
in Figure[I] where a robot has four ‘options’, each representing a goal shape it can potentially reach.
Given its spawn location, it can initially proceed straight regardless of the option it chooses until
the intersection, at which point it needs to utilise 1 bit of (Shannon) information from the option
variable to inform the choice of whether to turn left or right. However, right after it takes the left turn
(say), it again does not need the goal information when choosing actions and can follow ‘default’
or ‘option-independent’ behaviour. Thus, there is a natural difference in the minimum amount of
necessary goal information or ‘relevant information’ (Polani et al.,2006) needed at different states.

Identifying these ‘decision states’, i.e. states in the environment where a high amount of relevant
goal information is needed, leads to better understanding of the environment structure, which has the
potential to enable better transfer to novel environments and tasks. This has previously been shown
by Goyal et al.[(2019) in partially-observable, goal-driven (i.e. with extrinsic rewards) 2D navigation
settings, where using decision states to guide exploration enables faster learning.

Goal-independent Decision States. Our key intuition is that decision states exist in an environment
independent of extrinsic goals. For example, one can imagine the (middle) red tile at the intersection
in Figure[T|being a useful decision state — even across all possible navigation goals the agent could
have. Ofcourse, not all intersections are decision states. For e.g., if the left room was full of lava,
where the robot would die, thinking of the middle red tile as a decision state would have limited
utility, since the relevant goal information (across all reachable goals) in this case would be 0 bits.

Identifying ‘unsupervised’ (or task-agnostic) decision states is advantageous in scenarios where: 1)
rewards are sparse or absent (Pathak et al.| 2017), 2) for an agent to learn meaningful behaviour,
proxy goals and rewards need to be hand engineered (making it hard to scale), and 3) the notion of a
goal might not even be obvious, e.g. in continuous control tasks (Lillicrap et al.|[2015).

Our DS-VIC method identifies decision states without extrinsic rewards, solely by interacting with
partially-observable environments. These decision states are a function of the environment as well
as the states an agent can reliably reach. We demonstrate that our decision states generalise to
novel environments and tasks, leading to comparable (or better) exploration and performance on
downstream tasks compared to|Goyal et al.|(2019)) that identifies goal-driven decision states.

Decision States in Empowered Agents. We build on the VIC framework (Gregor et al., [2016)
(Figure[T)), where the core idea is to maximize the empowerment of an agent. In simple terms, an
empowered agent is able to reliably reach a diverse set of states in the environment, while avoiding
states that are difficult to reach reliably. We use VIC’s formulation to learn options {2 that maximize
(a lower bound Jy ¢ on) the mutual information I(Sy, Q) where Sy is the final state in a trajectory.
We use latent options since we operate in a setting without external goals. To see why this maximizes
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Figure 1: Left: The VIC framework (Gregor et al.,|2016)) in a navigation context: an agent learns high-level
macro-actions (or options) to reach different states in an environment reliably without any extrinsic reward.
Right: DS-VIC identifies decision states (in red) associated with options where the agent is empowered to
make informed decisions. The rest of the states in a trajectory (dotted lines in blue regions) then show default,
option-independent behavior. Identification of decision states leads to improved transfer to novel environments.

empowerment, notice that I(Sy,Q) = H(Sy) — H(Sf|Q2), where H(.) denotes entropy. Thus,
empowerment maximizes the diversity in final states Sy while learning options highly predictive
of Sy (Salge et al,[2013). Using VIC, we identify decision states by attempting to hit the relevant
information required at a particular state by minimizing the mutual information I(€2, A;|S;) (for
every state S, action A;). This is similar in spirit to|Goyal et al.| (2019)); [Polani et al.| (2006), with
the key difference that we use latent options €2 instead of external goals. Interestingly, we prove that
>, 1(2, A¢|Sy) is an upper bound on empowerment, which we minimize, in addition to maximizing
the VIC lower bound 7y ;¢ This shines a connection to VIC— while they optimize a lower bound,
our work optimizes a sandwich bound on the empowermentﬂ To summarize our contributions,

* We propose DS-VIC, a novel framework to identify decision states in a task-agnostic manner.
These decision states align with our intuitive assessments in various partially-observed scenarios.

* We provide an understanding of our proposed objective, proving that our framework optimizes a
sandwich bound on the empowerment I (£, Sy).

* We show that our mechanism to identify decision states is transferable and leads to improved
sample-efficiency on goal-driven tasks in novel environments. On a challenging grid-world
navigation task, our method outperforms (a re-implementation of)|Goyal et al.|(2019).

2 METHODS

2.1 NOTATION

We consider a Partially Observable Markov Decision Process (POMDP), defined by the tuple
(S, A, P,r), where the (discrete or continuous) state-space S is a set of underlying but unobserved
states s € S and A denotes a discrete action space. P : S x § x A denotes an unknown transition
function, representing p (s;41/S¢, at) : St, Sev1 € S, Ar € A. Both VIC and DS-VIC train an option
() conditioned policy m(as|w, s¢), where w € {1,--- ,|Q|}. Following standard practice (Cover &
Thomas),[1991), we denote random variables in uppercase (£2), and items from the sample space of
random variables in lowercase (w).

2.2 VARIATIONAL INTRINSIC CONTROL (VIC)

The option © in VIC is a global latent variable underlying a trajectory 7 = {So, Ag,--- , Sy}
(Figure[2). To encourage the agent to reach a diverse set of states reliably, VIC proposes maximizing
the mutual information (Cover & Thomas, |1991) between € and final state Sy given sq, i.e. [ (S Y |
So = sp). Informally, this maximizes the empowerment for an agent, i.e. its internal options 2
have a high degree of correspondence to the states of the world Sy that it can reach. VIC formulates
a variational lower bound on this mutual information. Specifically, let p(w | sg) = p(w) be a
prior on options (assumed to be same for all s¢), p”’ (s ¢ | w,s0) denote the (unknown) terminal
state distribution achieved when executing the policy m(a; | w, s¢), and ¢, (w | sy, o) denote a

!'This has potential implications beyond the context of this paper, for example, in training VIC models which
target a particular amount of “compression” in the option (£2) representation, similar representational choices for
supervised (Tishby et al.|{1999)) and unsupervised learning (Alemi et al.| 2016).
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DS-VIC: Policy Parameterization + VIC

@ m(at|w, st)
Y = / dzt p(2¢|se, w)p(at|st, zt)
'y Model (internal to agent)
----- Inference (internal to agent)
T —— = Transitions in environment (external)
Figure 2: Illustration of VIC for 2 timesteps. L: Given a start state Sp, VIC samples option w and follows

policy m(a; | = w, s¢) and infers € from the terminating state (S2), optimizing a lower bound on I(.S2, 2 |
So). R: DS-VIC considers a particular parameterization of 7 and imposes a bottleneck on I(A¢, Q|St).

(parameterized) variational approximation to the true posterior on options given .Sy and Sy. Then:

¢ (2| Sf, S0 = s0)
p(©2)

] = Jvic(2, S5 s0)
€]

I, 8¢ | So = 50) 2 Eqrp(w),S;mp? (s]2,S0=s0) [IOg

2.3 DECISON STATE VIC (DS-VIC)

We identify decision states by employing an information regularizer that finds states with minimum
relevant option information. Formally, this means that at every timestep ¢ in the trajectory, we
minimize the mutual information I(2, A;|S;, So = ). Intuitively, this means that on average (across
different options), a decision state is a state with higher relevant option information than other states
(e.g. the red regions in Figure[I)). Overall, our objective is to maximize:

Jvic(Q, Syis0) BZ (2, Ar | S, So = s0) )

where 8 > 0 is a trade-off parameter. Thus, this is saying that one wants options {2 which allow the
agent to have a high empowerment, while utilizing the least relevant information at each step.

Interestingly, Equation [2] has a clear, principled interpretation in terms of the empowerment
1(92, S¢]Sp) from the VIC model. We state the following lemma (full proof in Appendix):

Lemma 2.1 Let A; be the action random variable at timestep t and state S following an option-
conditioned policy 7(a¢|st,w). Then, I(2, A¢|St, So) i.e. the conditional mutual information between
the option ) and action A; when summed over all timesteps in the trajectory, upper bounds the condi-
tional mutual information I1(S2, S¢|Sy) between §) and the final state Sy — namely the empowerment
as defined by \Gregor et al.|(2016)):

f
I, S¢|S0) < Z (Q, Ay|S:, So) = Ups (7,9, S0) 3)

Implications: With this lens, one can view the optimization problem in Equation [2|as a Lagrangian
relaxation of the following constrained optimization problem:

max jv[c s.t. Z/{DS S R (4)

where & > 0 is a constant. Thus, we can essentially target values of R we have in mind by
maximizing the lower bound and minimizing the upper bound, by (in practice) sweeping different
values of /3 in eq. (2). This is a result potentially of interest beyond the specific context of decision
states (Achiam et al.,[2018};|Gregor et al.,2016)). Specifically, while the VIC objective only allows
us to maximize the empowerment (€2, Sy) = H(Sy) — H(Sy|2), imposing an upper bound can
help control how ‘abstract’ the latent option representation is relative to the states Sy, by finding
solutions that have say a higher entropy H (S|(2) on states given options. This might lead to more
abstract options that achieve better generalisation depending on downstream tasks. Note that most
approaches currently limit the abstraction by constraining the number of discrete options, which
(usually) imposes a (tighter) upper bound on the mutual information of H((2), since H > 0 in the
discrete case. However, this does not hold for the continuous case, where the bound might be more
useful. Investigating this is beyond the scope of this current paper, however, as our central aim is to
identify decision states, and not to scale the VIC framework to continuous options.
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2.4 ALGORITHMIC DETAILS

Upper Bounds for (2, A; | S;, Sp). Inspired by InfoBot (Goyal et al., 2019), we bottleneck the
information in a statistic Z; of the state .S; and option 2 used to parameterize the policy w(A; | €, S;)
(fig.[2)right). This is justified by the the data-processing inequality (DPI) (Cover & Thomas, [1991)
for the markov chain Q, S; > Z; + A, which implies I(2, A; | St, So) < I(2, Z; | S, So). We
can then obtain the following upper bound on I(€2, Z; | S, Sp) (see appendix for derivation):

p(Z: | Q,5)
a(Z¢)
where ¢(z;) is a fixed variational approximation (set to A/(0, I) as in InfoBot), and py(2; | w, s¢) is a

parameterized encoder. As explained in section[I]the key difference between eq. (5) and InfoBot is
that they construct upper bounds on I(G, A; | S, Sp), while we bottleneck the option-information.

I(Qv Zy | Sta So = 5) < EQNp(w),SthJ(st\Q,SO:S),Z,,Np(zt\St,Q) |:10g :| ) (5)

We can compute a Monte Carlo estimate of Equation [5]by first sampling an option w at s, and then
keeping track of all states visited in trajectory 7. In addition to the VIC term and our bottleneck
regularizer, we also include the entropy of the policy over the actions (maximum-entropy RL (Ziebart,
2010)) as a bonus to encourage sufficient exploration. Overall, the DS-VIC objective is:

Iﬂnq%}lf J(ea (,25, V) = EQNp(w),‘rpr(-\Q,So),Zt~p¢(2t|St,Q)

(6)

f-1
q,,(SZ | vaso) p¢(2t | Stv”)
log —— "~ — log —/————~ 4+ «lo A | S, Z
g ) ;:o (5 g «(Z) gmo(As | St t))

where 6, ¢ and v are the parameters of the policy, latent variable decoder and the option inference
network respectively. Note that we abuse the notation slightly in Equation E]by writing 7 ~ p”’ (- |
w, S0) to denote a trajectory sampled by following 7 (- | w, s¢). This is a sequential process where
Zy ~ py(2t | s4,w), Ap ~ mg(ay | S¢, 2¢) and Syq1 ~ p(Se41 | 8¢, ar) (state transition function). The
first term in the objective ensures reliable control in terms of visitation over a diverse set of final
states in the environment while learning options; the second term ensures minimality in using the
options sampled to make decisions (taking actions) and the third provides an incentive for exploration.
See algorithm[I]in appendix for more details on the entire training pipeline.

Handling Partial Observability. We are generally interested in identifying decision states in partially
observable environments (similar to InfoBot|Goyal et al.|(2019)). To formalise how we handle this,
let o; be the (partial) observation made by the agent at time ¢. We set the state s; = g(0g, - - ,0;) in
all the equations above, where g is a recurrent neural network (RNN) (Hochreiter & Schmidhuber;,
1997) encoding partial observations. We found it important to parameterize the policy (Figure
right) as: 7(a; | w, s¢) = [dz p(z | s¢,w)p(as | o4, ), i.e. where action distribution p(a; | o¢, z) are
modelled as ‘reactive’ (conditioned only on the current observation) but z distributions p(z; | s¢,w)
are ‘recurrent‘ (conditioning on the entire history of observations via g(-)). This is because the
sequence of observations {o1, - -- ,0+} might be informative of the option 2 being followed i.e.
conditioning p(a; | -) on Sy in addition to z could ‘leak’ information about the underlying option to
the actions, making it the bottleneck penalty on z potentially ineffective. Finally, when maximizing
the likelihood of option €2 given the final state Sy in learning ¢(w | s#) in VIC (the option inference
network), we use the global (x, y) coordinates of the final state of the agent. Note that the agent’s
policy continues to be based only on observations o, and it is only at the end of the trajectory that we
use the global coordinates to compute intrinsic reward. Please refer to Sec.[A.6|for a discussion of
the issues when training the model with partial observations in the option inference network.

Related Objectives. Eysenbach et al.| (2018)) (DIAYN) attempts to learn skills (similar to options)
which can control the states visited by agents while ensuring that states, not actions, are used
to distinguish skills. Thus, for an option €2 and every state .S; in a trajectory, they maximize
> I(2,S:) —I(Ag, QSt) + H(A¢]Sy), as opposed to I(Q2, S¢) — 5, I(As, QW + H(A|St) in
our objective. With the sum over all timesteps for 7(€2, S;), the bound in theorem [2.1|no longer holds
true, which also means that there is no principled reason (unlike our model) to scale the second term
with 8 — which we find to be crucial for identifying decision states (similar to findings in InfoBot).
Experimentally, we show that the decision states with DIAYN are no longer as interpretable, since
options in this case are more low level and correspond to trajectories instead of goals.
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The most closely related work to ours is InfoBot, which maximizes ), R(t) — SI(A¢, G|S;) for
a goal (G) conditioned policy 7(a¢|St, G). The key difference is that InfoBot requires extrinsic
rewards, while our work is strictly more general and scales even in the absence of extrinsic rewards.

Further, in context of both these works, our work provides a principled connection between action-
option information reqularization I (A;, Q|S;) and empowerment of an agent. The tools from Theo-
rem [2.T| might be useful for analysing these previous objectives which both employ this technique.

3 EXPERIMENTS
3.1 TRANSFER TO GOAL-DRIVEN TASKS

Do the unsupervised decision states meaningfully transfer to novel tasks? To address this, we replicate
the InfoBot experimental setup, replacing the decision state identification part with DS-VIC.

Exploration-based Transfer. |Goyal et al.| (2019) pretrain their model to identify decision states,
and then study if decision states improve exploration when training a new policy ., (als, g) from
scratch. Given an environment with reward R, (t), goal G, k > 0, and state visitation count ¢(.Sy),

their reward is: K
Ri = R.(t) + —= I(G, Z:|S) 7
\/C(St) —

Pretrained, Frozen

The count-based rewarcﬂ decays with square root of ¢(.S;) to encourage the model to explore novel
states, and the mutual information between goal GG and bottleneck variable Z; identifies decision
states, and is multiplied with the exploration bonus to encourage visitation of decision states.

-
i

We use an almost identical setup, replacing their
decision-state term from supervised pretraining
with DS-VIC intrinsic reward pretraining:

/{ Four Room
R, = R(t) + NE) 1(, Z¢|Sy, Sp)  (8)  cmvowemen 205
C t D e
Pretrained, Frozen - i == |
I(-) is computed with eq. (5)) with a parameter- -]
ized p(z; | w, s¢) encoder frozen during transfer. . LE —
See Algorithm [I]in appendix for more details. e poies B3 e

Environments. We pre-train and test on grid- - . .

worlds from the MiniGrid (Chevalier-Boisvert Figure 3: Decision states on 51mple environments —
et all 2018) environments. We first consider a 4-Room (top) and maze (bottom). First column depicts
set of simple environments — 4-Room and Maze environment layout, second and third show results for

. . DS-VIC for 8 = 1le 3 and 8 = 1 respectively, and the
(see Fig. ED followed by the MultiRoomNXSY also fourth column shows DIAYN. Figures are from a buffer

used by Goyal et al.. (2019). The Mult.iRoomNXSY of on-policy trajectories during unsupervised training.
environments consist of X rooms of size Y, con- * denotes lower bound on empowerment.

nected in random orientations across multiple runs. We also conduct experiments on Mountain-Car
(Brockman et al,[2016), a continuous state-space environment with discrete actions.

We use Advantage Actor-Critic (A2C) for all experiments. Since code for InfoBot (Goyal et al., [2019)
was not public, we report numbers based on a re-implementation of InfoBot, ensuring consistency
with their architectural and hyperparameter choices. We will release our code upon publication.

4 RESULTS

Baselines. We evaluate the following on quality of exploration and transfer to downstream goal-driven
tasks with sparse rewards: 1) InfoBot (our implementation) — which does goal-driven extraction
of decision states, 2) DIAYN — whose focus is unsupervised skill acquisition (and not decision
statesﬂ but has an I (A, ©|:S;) term which can be used for the bonus in Equation 3) count-based

ZVisitation counts have several limitations including the requirement of a discrete state space and a state
table for maintaining visit counts in POMDPs. However, our exploration bonus need not be restricted by these
assumptions. One could alternatively use a technique similar toBurda et al where the incentive is to
learn to distill a trained encoder network, alleviating the need for visitation counts altogether.

*Note that to keep things consistent with our method and InfoBot, we use I(Z:, 2| S;) to impose the mutual
information regularization in DIAYN, whereas |[Eysenbach et al.|(2018)) use a different construction.
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exploration which uses visitation counts as exploration incentive (this corresponds to replacing
I(Q, Z4|St, Sp) with 1 in Equation , 4) a randomly initialized encoder p(z; | w, s¢) to check if
learning in DS-VIC or InfoBot models improves over random initialization, 5) how different values
of 3 affect performance, and 6) a heuristic baseline that looks for local features like corners and
doorways and uses every such occurrence as a decision state. This validates the extent to which
relevant goal information is useful in identifying decision states, vs. local, feature-based heuristics.

4.1 QUALITATIVE RESULTS

Grid Worlds: Figure |3 shows results on 4-Room and maze. We notice that when § = 1, DS-VIC
collapses to identifying every state as a decision state and gets poor empowerment: 0.51 (row 1,
column 3 in Figure[3)), indicating that /3 is too large and the upper bound on the empowerment too tight.
At lower values of § = 1e-3, we get more discernible decision states. Across both environments, we
notice that some corners and intersections are identified as decision states. In general, for DS-VIC
on maze with 5 = 1e-3 (when it gets an empowerment of 2.61), we notice that if an intersection is
a decision state, and there is a corner next to it, it is often not a decision state since it is likely one
is following default behaviour having already made the decision. Finally, for maze we see that for a
similar value of empowermenﬂ DS-VIC leads to a sparser decision state distribution than DIAYN.
This makes sense, since intuitively, one expects to have to make more decisions when following a
particular trajectory (as in DIAYN), as opposed to a terminal state (as in DS-VIC).
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Figure 4: We visualize identified decision states for 3 options by DS-VIC on the Mountain Car environment. (a)
shows the environment layout, (b) the trajectories corresponding to the 3 options in position-velocity space, (c)
the final-state distributions in the position-velocity space, and (d) the identified decision states. In (b), (c), (d),
x-axis (position) shows the x-coordinate of the car, while y-axis shows the velocity of the car.

Mountain Car Environment: We also use DS-VIC to identify decision states in the Mountain
Car (Brockman et al.l [2016) environment — a continuous state-space (position and velocity of
the car) environment with three discrete actions {+1(right), 0, —1(1left)}, which correspond to
the direction of the force being applied to the car (see Fig. a)). Fig. b) shows the trajectories
and Fig. f[c) shows the final state(s) corresponding to 3 specific options (out of 8) overlaid on a
position-velocity plane. Upon observing decision states in the same position-velocity plane (see
Fig. [[d), point-radius indicating (£, Z;|s;, so), we find that decision states occur at points in the
state-space where trajectories associated with different options intersect. Intuitively, these are the
states where the agent can switch from one option (mode of behavior) to another and therefore, needs
to make a decision. Interestingly, there is a dominance of decision states along the velocity = 0 line,
which indicates that the model identifies decision states to be points where the cart has velocity = 0
at some position (specific to the option). Finally, decision states often occur, for say, the orange option
(€21) in the right half of the position-velocity plane and never in the bottom-left quadrant, where it is
the only option covering that part of the state-space, and thus default behavior can be practiced.

4.2 QUANTITATIVE RESULTS

Transfer to Goal-Driven Tasks. Next, we evaluate Equation|[8] i.e. whether incentivizing the agent
to visit decision states in addition to extrinsic reward can aid in transfer to goal-driven tasks in
different environments (see Sec. [3.1). We restrict ourselves to the point-navigation task (Goyal et al.,
2019) transfer in the MultiRoomNXSY set of partially-observable environments. In this task, the agent is
always spawned in the first room, and has to go to a randomly sampled goal location in the last room,
and is rewarded only when it reaches the correct cell.|Goyal et al.[(2019) test the efficacy of different

4Since DIAYN maximizes the mutual information with every state in a trajectory, we report the empowerment
for the state with maximum mutual information with the option.
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Method MultiRoomN3S4 MultiRoomN5S4 MultiRoomN6S25
(Encoder py(Z:|St, ) pretrained on) MultiRoomN2S6  MultiRoomN2S6 ~ MultiRoomN2S10
InfoBot (Goyal et al.|[2019) 90% 85% N/A
InfoBot (Our Implementation) 99.6%+0.2% 98.9%+0.8% 86.8%+2.3%
Count-based Exploration (Our Implementation) 99.8%++0.2% 71.4%+28.1% 88.4%+2.3%
DIAYN-based Exploration Bonus (3 = 1) 99.7%+0.2% 99.7%-+0.2% 0.1%+0.1%
Randomly Initialized Encoder 100%+0% 98.8%++0.7% 67.9%+7.7%
Heuristic Decision States N/A N/A 81.3%+3.0%
DS-VIC (B = 1073) 99.9%+0.1% 99.1%=+0.3% 90.9%+0.6%
DS-VIC (8 = 1072) 100% 0% 71.1%+28.1% 92.6%+0.6%

Table 1: Success rate (mean + standard error) of the goal-conditioned policy when trained with different
exploration bonuses in addition to the extrinsic reward R.(t). We report results at ~5 x 10° timesteps for
MultiRoomN3S4, MultiRoomN5S4 and at ~8.2 x 10° timesteps for MultiRoomN6S25. We also report the
performance of InfoBot for completeness. Note that for rooms of size 4 (MultiRoomN3S4, MultiRoomN5S54),
incentivizing to visit corners and doorways (Heuristic Decision States) is equivalent to count-based exploration.

exploration objectivesﬂ and show that this is a hard setting where efficient exploration is necessary.
They show that InfoBot outperforms several state-of-the art exploration methods in this environment.

Concretely, we 1) train DS-VIC to identify de-
cision states (Equation [2) on MultiRoomN2S6 and
transfer to a goal-driven task on MultiRoomN3S4
and MultiRoomN5S4 (similar to (Goyal et al.| (2019)),
and 2) train on MultiRoomN2S1@ and transfer to
MultiRoomN6S25, which is a more challenging transfer
task i.e. it has larger rooms (25x25) making efficient
exploration critical to find doors quickly.

B=
— Ours (§=10°
= === Random-nit
= === Count-based

Success

Timesteps (x 106)
Figure 5: Effect of 8 during DS-VIC pre-training
on success with exploration bonus for the goal-
conditioned policy. Shaded areas represent stan-
dard error of the mean over 10 random seeds.

Overall Trends. Table. [I|reports success rate — the
% of times the agent reaches the goal on validation.
First, our implementation of InfoBot is competitive
with|Goyal et al. (2019ﬂ For the MultiRoomN2S6
to N5S4 transfer (middle column), methods which identify decision states outperform count-based
exploration. Interestingly, in this setup, a randomly initialized encoder is competitive with both
InfoBot and DS-VIC, and serves as an important baseline. In MultiRoomN2S10 to N6S25 transfer,
which has a large state space, we find that DS-VIC (at 3 = 10~2) achieves the best performance,
followed by count-based exploration and InfoBot (that are both within standard-error of each other).
This shows that decision states identified by DS-VIC effectively guide exploration in sparse-reward
settings. More importantly, our model beats a strong heuristic baseline which treats every corner
and doorway as a decision state (more details on this are in the appendix). Finally, the randomly
initialized encoder as well as DIAYN generalize much worse in this transfer task.

(3 sensitivity. We sweep over (3 in log-scale from {10~%,--.  107¢}, as shown in Figure (except
B =101 which does not converge to > 0 empowerment). We find that 102 works best, followed
by 107° and 103, In general, performance is robust, i.e. across /3, we reach ~ 90% succesﬂ

== |nfoBot
= = == Count-based
= = = » Heuristic-based
Random-Init
== DIAYN
—Ours (5=107)

Timesteps (x 106)

Timesteps (x 106)

(b) Avg. Task Returns
Figure 6: Transfer results on MultiRoomN6S25 after unsupervised pre-training to identify decision states on
MultiRoomN2S6. Shaded regions represent standard errors of the mean over 10 random seeds.

SWhile our focus is on identifying and probing how good the decision states from intrinsic training are, more
broader comparisons to exploration baselines are in InfoBot (Goyal et al., 2019) (reproduced in the appendix).

8We found it important to run all models (inlcuding InfoBot) an order of magnitude more steps compared to
Goyal et al.{(2019), but our models also appear to converge to higher success values.

"An outlier appears to be 3 = 10™*, which gets poorer performance but also higher variance.

Timesteps (x 10°)

(a) Success Rate (c) # Unique Rooms Reached
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More results on N6S25. To better understand Equation [8|compared to other exploration incentives,
in addition to success rate and sample-efficiency (Figure|6), we also consider another metric where
we count the number of unique rooms reached (other than the starting room 0) as training progresses
(Figure [6] (c)). Across metrics, DS-VIC performs the best on the challenging N6S25 transfer.
Furthermore, the unique room metric reveals that DIAYN gets stuck after exploring the first room.

5 RELATED WORK

Intrinsic Control and Intrinsic Motivation. Learning how to explore without extrinsic rewards is a
foundational problem in Reinforcement Learning (Machado et al., 2017} [Pathak et al.,|2017; |Gregor
et al} 2016; |Strehl & Littman, 2008, [Schmidhuber, 1990). Typical curiosity-driven approaches
attempt to visit states that maximize the surprise of an agent (Pathak et al.,|2017) or improvement in
predictions from a dynamics model (Stadie et al., [2015; |Lopes et al.||2012). While curiosity-driven
approaches seek out and explore novel states, they typically do not measure how reliably the agent
can reach them. In contrast, approaches for intrinsic control (Eysenbach et al., 2018;/Achiam et al.,
2018, |Gregor et al., [2016) explore novel states while ensuring those states are reliably reachable.
Gregor et al.| (2016) maximize the number of final states that can be reliably reached by the policy,
while Eysenbach et al.| (2018)) distinguish an option at every state along the trajectory, and |Achiam
et al.|(2018) learn options for entire trajectories by encoding the sequence of states at regular intervals.
Since decision states are more related to reliably acting in an environment rather than just visiting
novel states (without an estimate of reachability), we formulate our regularizer in the intrinsic control
framework, specifically building on the work of |Gregor et al.| (2016).

Default Behavior and Decision States. Recent work in policy compression has focused on learning
a default policy when training on a family of tasks, to be able to re-use behavior across tasks.
In (Galashov et al.| 2018} [Teh et al.l [2017)), default behavior is learnt using a set of task-specific
policies which then regularizes each policy, while Goyal et al.|(2019)) learn a default policy using an
information bottleneck on task information and a latent variable the policy conditions on. We devise a
similar information regularization objective that learns default behavior shared by all intrinsic options
without external rewards so as to reduce learning pressure on option-conditioned policies.

Bottleneck states in MDPs. There is rich literature on identification of bottleneck states in MDPs.
The core idea is to either identify all the states that are common to multiple goals in an environment
(McGovern & Barto, 2001) or use a diffusion model built using an MDP’s transition matrix (Machado
et al., [2017; |Simsek & Barto} 2004} Theocharous & Mahadevanl 2002). The key distinction between
bottleneck states and decision states is that the latter are more closely tied to the information available
to the agent and what it can act upon, whereas bottleneck states are more tied to the connectivity
structure of an MDP and intrinsic to the environment, representing states which when visited allow
access to a novel set of states (Goyal et al.,[2019). Concretely, while a corner in a room need not be a
bottleneck state, since visiting a corner does not ‘open up’ new states (the way a doorway would),
it is still a useful state for a goal-driven agent with partial observation to visit (since it is a distinct
landmark in the state space where meaningful decisions can be made).

Information Bottleneck in Machine Learning. Since the foundational work of Tishby et al.|(1999);
Chechik et al.| (2005), there has been a lot of interest in making use of ideas from information
bottleneck (IB) for various tasks such as clustering (Strouse & Schwabl [2017;|Still et al.,2004), sparse
coding (Chalk et al.,2016), classification using deep learning (Alemi et al.,|2016; |Achille & Soattol
2016)), cognitive science and language (Zaslavsky et al.,|2018)) and reinforcement learning (Goyal
et al.,|2019; |Galashov et al., 2018}, |Strouse et al., [2018)). We apply an information regularizer to an
RL agent that must learn without extrinsic rewards to identify decision states.

6 CONCLUSION

We devise a principled approach to identify decision states in an environment without any extrinsic
reward supervision using a sandwich bound on the empowerment of |Gregor et al.| (2016). Our
approach yields decision states that align with human intuition across environments, and aid directed
exploration on external-reward tasks and subsequently lead to better success rate and sample com-
plexity in novel environments (competitive to supervised decision states of |(Goyal et al.[(2019)). All
our code and environments will be made publicly available.
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A APPENDIX

A.1 ALGORITHM

We present the algorithm summarizing our proposed approach DS-VIC- (1) unsupervised discovery
of decision states and (2) transfer to goal-driven tasks.

Algorithm 1 DS-VIC

Require: A parameterized encoder py(z: | w, s¢), policy m(a; | w, s¢)
Require: A parameterized option inference network ¢, (w | so, sf)
Require: A parameterized goal-conditioned policy 7 (a|st, g)
Require: A prior on discrete options p(w)
Require: A variational approximation of the option-marginalized encoder g(z:)
Require: A regularization weight 8 and max-ent coefficient v
Require: A set of training environments pirain(F) and transfer environments prranster (E)
Unsupervised Discovery
Sample training environment Firain ~ Dirain(E)
for episodes = 1 to max — episodes do
Sample a spawn location Sy ~ p(So|Ftrain) and an option 2 ~ p(w)
Unroll a state-action trajectory 7 under g (a¢|st, z¢) with reparametrized Z; ~ pg(2¢|s¢, w)
Infer €2 from ¢, (w]So, s5)
Update the parameters 6, v and ¢ based on Eqn. [f]
end for
Transfer to Goal-Driven Tasks
Sample transfer environment Firanster ~ Dtranster (F)
for episodes = 1 to max — episodes do
Sample a goal G ~ p(g|Ftranster)
Unroll a state-action trajectory under the goal-conditioned policy 7~ (at|s¢, g)
Update policy parameters -y to maximize the reward given by Eqn.[§]
end for

A.2 LEMMA PROOF

We state a proof of the Lemmaﬁstating that our proposed regularizer 2{21 1(Q, A¢|St, So) forms
an bound on empowerment (€2, 5¢|Sy) from the main paper. This, combined with the lower-bound
presented in VIC (Gregor et al.,|2016), forms a sandwich bound on (€2, S¢ [So)-

Lemma 2.1 Let A; be the action random variable at timestep ¢ and state S; following an option-
conditioned policy m(a|st,w). Then, I(€2, A¢|St, So) i.e. the conditional mutual information be-
tween the option {2 and action A; when summed over all timesteps in the trajectory, upper bounds
the conditional mutual information (€2, S¢|Sy) between 2 and the final state Sy — namely the
empowerment as defined by (Gregor et al.| (2016):

f
I(9, S¢1S0) < Y I(Q, Ay Si, So) = Ups(T,9, Sp) ©)
t=1

Proof. To begin, observe that the graphical model presented in Fig. [2] satisfies the markov chain
Qe {s1,a1 }{:_11 <+ Sy (assuming every node is conditioned on the intitial state Sp). Therefore, the
data-processing inequality (DPI) |Cover & Thomas| (1991) implies:

I(2, S¢|S0) < I(Q, (Sf—1,A47-1)]5) (10)

Furthermore, using the chain rule of mutual information |Cover & Thomas|(1991)), we can write:

I(82,5¢]S0) < I(Q, (Sy-1,A7-1)[S0) = 1(Q2, Sy_11S0) + I(Q2, Ay _1]Sy_1,5) (A1)

11
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Repeating the same set of steps recursively gives us:

I(2,S¢1S0) < I(2, (Sf-1,A5-1)|50) DPI (Cover & Thomas|,[1991) (12a)
:I(Q,Sf,ﬂSO)-I-I(Q,Af,l‘Sf,l,So) Chain rule of MI (l2b)
= 1(Q, Sy—2|S0) + 1(Q, Ay—2[ S -2, 50)
+I(Q,A;_1|Sy_1,50) Same as 12a-12b (12¢)
(12d)
f
= 1(9, S|S0) + > I(2, A¢|Sy, So) (12e)
t=1
(12f)
Note that the graphical model presented in Fig. [2]implies that 2 L Sy and hence,
1(92, 50/50) = H(Q?) — H(QS0) = H(?) — H(?) =0 (13)
f
= I(Q, 57|S) <> 1(, A|Sy, So) (14)
t=1

A.3 UPPER BOUND ON I (A, Q|S:, So)

We explain the steps to derive Eqn. (4) in the main paper, as an upper bound on (A, Q|St, Sp). By
the data processing inequality (Cover & Thomasl(1991) I(A;, Q]S So) < I(Z, S, So) for the
graphical model in Fig[2] So we will next derive an upper bound on I(Z;, Q|S:, So).

We write I($2, Z;|S¢, So = s), given a start state Sy = s as:

HE00.5)) s

E ~ ~pv(s =S ~ 1
Qp(w),Sevp? (512,80 =5), Ze~vp(2:15:.2) {Og (2,5

The key difference here is that our objective here uses the options € internal to the agent as opposed
to|Goyal et al.| (2019), who use external goal specifications g provided to the agent. Similar to VIC,
p” here denotes the (unkown) state distribution at time ¢ from which we can draw samples when we
execute a policy.

We then assume a variational approximation q(zt)[i’_r] for p(z¢|S¢), and using the fact that
Dxrlp(zt]st)||q(z:)] > 0, we get a the following lower bound:

p(Z¢|2, S
I(2, Z1|St, So = 8) 2 Eqp(w),Simp” (s¢192,S0=5), Z: ~p(2:|S:,2) [log (;(Zt)t)} (16)

A.4 DECISION STATE IDENTIFICATION — ON POLICY WITH OPTIONS.

We use Eqn. [I6to identify and visualize the decision states learned in an environment, augmented
with random sampling of the start state Sy. Thus, we compute our decision states in an on-policy
manner. Mathematically, we can write this as:

Zt|Q7St):| (17)

IEQN()SN( ),Se~p” (5¢10,80), Ze ~p(2¢|Se, ) logp(i
p(w),o0~p(S0),ot~pP” (St|88,00),4t~P(2t|Ot, q(Zt)

where Sy is a random spawn location uniformly chosen from the set of states in the environment
and (2 is a random option chosen at each of the spawn locations. Thus, for each state .S; in the

environment, we look at the aggregate of all the trajectories that pass through it and compute the

values of log 2212551) 1o identify / visualize decision states. In addition to being principled, this

methodology also precisely captures our intuition that it is possible to identify decision states which
are common to, or frequented across multiple options. Our results section 4] show that the identified
decision states match our assessments of decision states corresponding to some structural regularities
in the environment.

8For our experiments, we fix g(z:) to be a unit gaussian, however it could also be learned.
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A.5 IDENTIFICATION OF DECISION STATES DURING TRANSFER

As mentioned in the main paper, we would like to compute (€2, Z;|S:, Sp) to identify decision
states and given a (potentially) novel environment and a novel goal-conditioned task, to provide it
an exploration bonus. Given a state s, that we would like to compute (Q, Z;|S; = &, Sp), we can
write:

p(2t|w7 St = S/)

18
q(zt) (1%)

Z/ dz p(w)p(so)pJ(St = §'|sg, w)p(z¢|s¢,w) log

w,S80

However, this cannot be computed in this form in a transfer task, since a goal driven agent is not
following on-policy actions for an option 2 that would allow us to draw samples from p” (-|Sp, )
above (in order to do a monte-carlo estimate of the integral above). Thus instead, we propose to
compute the mutual information as follows:

p(z|w, Sy = &)

19
e (19)

3 / dze plso, ]Sy = 8 )p(z2]S; = o', w) log

w,S0

Now, given a state S; = &', this requires us to draw samples from p(sg,w|S; = s’), which in general
is intractable (since this requires us to know p”(s;|$2), which is not available in closed form). In
order to compute the above equation, we make the assumption that p(sg,w|S; = s) = p(so)p(w).
Breaking it down, this makes two assumptions: firstly, p(w|S; = §', so) = p(w|so). This means that
all options have equal probability of passing through a state s’ at time ¢, which is not true in general.
The second assumption is the same as VIC, namely that p(w|sg) = p(w). Instead of making this
assumption, one could also fit a parameterized variational approximation to p(w|S; = &, s¢) and
train it in conjunction with VIC. However, we found our simple scheme to work well in practice, and
thus avoid fitting an additional variational approximation.

A.6 DECISION STATES FROM LOCAL OBSERVATIONS

In the main paper, our results assumed that one had access to a good SLAM routine that did mapping
and localization from partial observations {ug,--- ,u:}. In general, as we discuss in the main
paper, this is not a bad assumption since our model is always trained on a single environment,
and thus it is reasonable for us to expect it to have a sense of the (x, y) coordinates in its internal
representation / weights as training progresses. In this section, we detail some of the pathologies
that we observed when kicking off training, if we took a naive approach to SLAM, estimating a
function f({ug, - ,us}) to directly regress to €2 from partial observations (Algorithm 1). We note
that since our particular choice of environment is a discrete gridworld, several partial observations
(especially for small agent view sizes like the 3x3 window) look the same to the agent and the agent
has a tendency to converge to the most trivial optima for learning options — one which learns to end
at an easily obtainable partial observation given an option. For instance, while training DS-VIC, one
particular policy simply learned 4 options corresponding to the four cardinal directions the agent can
face, and each can be achieved by left or right turns, without actually requiring any movement by the
agent. Since the agent has a compass which tells it the direction it is facing, it can ignore the partial
observation and just use the direction vector to predict which of the 4 options was sampled.

A.7 BASELINES

We use an exploration bonus coefficient of £ = 0.1 for the count-based exploration bonus baseline.
The heuristic baseline identifies all occurrences of the following types of states in the MultiRoom
environments — (1) corners of the room, (2) doorways, and gives them a slightly higher coefficient of
exploration bonus than the « used for the count-based bonus. We ran a sweep for the values of this
higher coefficient and found that 0.105 (i.e. a +5% increase) gave best results.

A.8 IMPLEMENTATION DETAILS

Network Architecture: We use a 3 layered convolutional neural network with kernels of size 3x3,
2x2 and 2x2 in the 3 layers respectively to process the agent’s egocentric observation. We use
ReLU as the non-linear activation function after each convolutional layer. The output of the CNN
is then concatenated with the agent’s direction vector (compass) and the option (or goal encoding).
The concatenated features are then passed through a linear layer with hidden size 64 to produce
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the final features used by option encoder py (2¢|s¢,w) head and the policy head 7y (a¢|s¢, z¢). We
use the (X, y) coordinates of the final state (embedded through a linear layer of hidden size 64) to
regress to the option via g, (w|s¢, 7). Furthermore, our parameterized policy is a reactive one and
the encoder pg(2:|s¢, w) is recurrent over the sequence of states encountered in the episode. The
bottleneck random variable Z; is sampled from the parameterized gaussian py (2¢|s:, w) and is made
a differentiable stochastic node using the re-parmaterization trick for gaussian random variables.

Training Details: We use Advantage Actor-Critic (A2C) (open-sourced implementation by Kostrikov
(2018)) for all our experiments. We use RMSprop as the optimizer for all our experiments. For the
partially-observable grid world settings, the agent receives an egocentric view of it’s surroundings
as input, encoded as an occupancy grid where the channel dimension specifies whether the agent or
an obstacle is present at an (x, y) location. We set the coefficient « in Eqn. E]to be 103 for all our
experiments based on sweeps conducted across multiple values. In practice, we found it to be difficult
to optimize our unsupervised objective in absence of an entropy bonus — the parameterized policy
collapses to a deterministic one and no options are learned in addition to inefficient exploration of the
state-space. Moreover, we found that it was hard to obtain reasonable results by optimizing for both
the terms in the objective from scratch and therefore, we optimize the intrinsic objective itself for ~ 8k
episodes (i.e., we set 5 = 0) after which we turn on the regularization term and let 5 grow linearly
for another ~ 8k episodes to get feasible outcomes at convergence. We experiment with a vocabulary
of 2, 4 and 32 options (imitating undercomplete and overcomplete settings) for all the environments.
For all the exploration incentives presented in Table 1, we first picked a value of « in Eqn. [7] (decides
how to weigh the bonus with respect to the reward) from {10, 1,0.1,0.01,0.001, 0.0001} based on
the best sample-complexity on goal-driven transfer.

InfoBot Implementation: Since code to reproduce InfoBot (Goyal et al., [2019) was not publiclt
available, we implemented InfoBot ourselves while making sure that we are consistent with the
architectural and hyper-parameter choices adopted by InfoBot (as per the A2C implementation
by (Chevalier-Boisvert et al., 2018)). (i) We replace the convolution layers with fully connected
layers to process the observations, and (ii) we use the layer sizes as mentioned by (Goyal et al.l|2019)
in the appendix. The checkpoint used to report the final performance for N3S4 and N5S4 were picked
by doing validation on the transfer task based on the success metric. However, this procedure was
infeasible for the bigger N6S25 environment and we chose the last checkpoint from the training for
this environment.

Convergence Criterion. In practice, we observe that it is hard to learn a large number of discrete
options using the unsupervised objective. From the entire option vocabulary, the agent only learns a
few number of options discriminatively (as identified by the option termination state), with the rest
collapsing into the same set of final states. To pick a suitable checkpoint for the transfer experiments,
we pick the ones which have learned the maximum number of options reliably — as measured by the
likelihood of the correct option from the final state log g, (w|so, S7).

Option Curriculum It is standard to have a fixed-sized discrete option space €2 with a uniform
pior (Gregor et al., 2016). However, learning a meaningful option space with larger option vocabulary
size || = K has been reported to be difficult|Achiam et al.|(2018). We adopt a curriculum based
approach proposed in|Achiam et al.| (2018) where the option vocabulary size is gradually increased
as the option decoder ¢, (w|ss) becomes more confident in mapping back the final state back to
the corresponding option sampled at the beginning of the episode. More concretely, whenever
qv(w|so,s¢) > 0.75 (threshold chosen via hyperparameter tuning), the option vocabulary size
increases according to

K + min ( int( 1.5 x K + 1),Kmam)
For our experiments, we start from K = 2 and terminate the curriculum when K = K4, = 32.
We run each of our experiments on a single GTX Titan-X GPU, and use no more than 1 GB of GPU

memory per experimental setting.

A.9 ADDITIONAL RESULTS

In Fig. [7]and Fig.[8] we show further results on the MultiRoomN3S4 and MultiRoomN5S4 environ-
ments to compare DS-VIC with other exploration incentives in terms of sample-complexity and the
quality of the exploration incentive. As seen in the figures, DS-VIC is either competitive with or
better than the presented baselines. As highlighted before, MultiRoomN3S4 and MultiRoomN5S4
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Method MultiRoomN3S4 MultiRoomN5S4 MultiRoomN6S25
(Encoder py(Z:|St, Q) pretrained on) MultiRoomN2S6  MultiRoomN2S6 ~ MultiRoomN2S10
Goal-conditioned A2C 0% 0% 0%
TRPO + VIME 54% 0% N/A
Curiosity-based Exploration 95% 54% N/A
Count-based Exploration |Goyal et al.|(2019) 95% 0% N/A
InfoBot|Goyal et al.|(2019) 90% 85% N/A

InfoBot (Our Implementation)
Count-based Exploration (Our Implementation)
DIAYN-based Exploration Bonus (5 = 1)

99.6%+0.2%
99.8%+0.2%
99.7%+0.2%

Randomly Initialized Encoder 100%=+0%
Heuristic Decision States N/A
DS-VIC (3 = 1073%) 99.9%:+0.1%
DS-VIC (8 = 1072) 100%:+0%

98.9%+0.8%
71.4%+28.1%
99.7%0.2%
98.8%+0.7%
N/A
99.1%+0.3%
T1.1%x28.1%

86.8%+2.3%
88.4%+2.3%
0.1%+0.1%
67.9%+7.7%
81.3%+3.0%
90.9%+0.6%
92.6%:+0.6%

Table 2: Success rate (mean + standard error) of the goal-conditioned policy when trained with different
exploration bonuses in addition to the extrinsic reward R.(t). We report results at ~5 x 10° timesteps for
MultiRoomN3S4, MultiRoomN5S4 and at ~8.2 x 10° timesteps for MultiRoomN6S25. We also report
results from InfoBot (Goyal et al.|[2019) for completeness. Note that for rooms of size 4 (MultiRoomN3S4,
MultiRoomN5S4), incentivizing to visit corners and doorways (Heuristic Decision States) is equivalent to

count-based exploration.

are relatively simpler environments where simpler baselines like count based exploration incentives
also perform quite well due to the small size of rooms.

In Table. 2] we report broader comparisons with other exploration baselines InfoBot (Goyal et al,

2019) compare with.

2 3 5 2 3 5
Timesteps (x10°) Timesteps (x 10”)

(a) Success Rate

(b) Avg. Task Returns

~
o
1

15=

#Unique Rooms Reached
o
1

IS
o

2 3
Timesteps (x 10°)

(c) Farthest Room Reached (running best)

s Inf0BOL
m— Count-based
m— Heuristic-based
Random-lnit
e DIAYN
— Ours (8=10")
— Ours (8=107)

|
5

Figure 7: (a) Success Rate, (b) Avg. Task Returns, (c) farthest room reached so far, versus time-steps on
MultiRoomN3S4. Unsupervised pre-training to identify decision states was done on MultiRoomN2S6. Shaded
areas represent standard error of the mean over 3 random seeds.
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Figure 8: (a) Success Rate, (b) Avg. Task Returns, (c) farthest room reached so far, versus time-steps on

MultiRoomNS5S4. Unsupervised pre-training to identify decision states was done on MultiRoomN2S6. Shaded

areas represent standard error of the mean over 3 random seeds.
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