
Under review as a conference paper at ICLR 2020

LEARNING RELEVANT FEATURES FOR STATISTICAL IN-
FERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce an new technique to learn correlations between two types of data.
The learned representation can be used to directly compute the expectations of
functions over one type of data conditioned on the other, such as Bayesian esti-
mators and their standard deviations. Specifically, our loss function teaches two
neural nets to extract features representing the singular probability vectors of high-
est singular value for the stochastic map (set of conditional probabilities) implied
by the joint dataset, relative to the inner product defined by the Fisher informa-
tion metrics evaluated at the marginals. We test the approach using a synthetic
dataset, analytical calculations, and inference on occluded MNIST images. Sur-
prisingly, when applied to supervised learning (one dataset consists of labels), this
approach automatically provides regularization and faster convergence compared
to the cross-entropy objective. We also explore using this approach to discover
salient independent features of a single dataset.

1 INTRODUCTION

Further progress in artificial intelligence requires algorithms which can learn to model unlabeled
data (unsupervised learning). Here we assume that the data naturally comes in two parts, such as
past and future histories, visual and auditory inputs, actions and their effects, etc. Our goal is to
produce a useful model of the correlations which exist between both variables. By contrast, existing
techniques perform well in assymetric situation, to predict one variable that has a very small number
of possible values (such as labels in supervised learning) or that depends almost deterministically
on the other.

An existing option would be to use an autoencoder with a probabilistic decoder, such as a variational
autoencoder (VAE) (Kingma & Welling, 2013) or further refinements of the concept (Higgins et al.,
2017; Chen et al., 2018), trained to produce one variable given the other instead of the same variable
(such as in Iten et al. (2018)).

Instead, we propose here a new approach which has very different characteristics. We will refer to
it as relevant feature analysis (RFA). Some of the design advantages over a VAE are: (i) there is
no tunable variable in the objective function, (ii) it does not require parametric models of the con-
ditional probability distributions, (iii) it allows for a direct evaluation of expectation values over the
conditional distributions (but doesn’t directly enable sampling from it). Moreover, (iv) the gradient
need not be propagated through latent variables, which ought to ease training.

This last point results from the fact that we do not need to learn a generative model (decoder).
Instead, we use two deterministic encoders, one for each variable. The individual output neurons of
these feed-forwards networks represent functions over the data which we call features. Our learning
objective, or loss function, effectively maximizes the amount of correlations between these features.

The resulting relevant features can then be used to do inference in both directions. Specifically,
they allow one to directly evaluate the expectation of any of the relevant features of one variable
conditioned on the other variable taking a specific value.

1

Under review as a conference paper at ICLR 2020

Moreover, if the number of learned features is sufficiently large for the problem, then one can esti-
mate the conditional expectation of any “smooth”1 function over the conditional probabilities.

2 THEORY

Our approach is based on a theory introduced in Bény & Osborne (2013; 2015b) for understanding
the role of information in effective quantum field theories, but restricted here to the classical non-
quantum setting. Relations to deconvolution Bény (2018b) and kernel PCA Bény (2018c) were also
previously explored.

We formalize the problem by assuming that our data was sampled from an unknown joint distribution
p(x, y) over two random variables X and Y .

Let VX and VY denotes the linear spaces spanned by the probability distributions over X and Y
respectively.

The joint distribution p(x, y) yields conditionals p(y|x) and p(x|y), which can be understood as the
components of stochastic matrices, defining linear mapsN andN ∗ between VX and VY . If µ ∈ VX
and ν ∈ VY , then the images N (µ) ∈ VY and N ∗(ν) ∈ VX are defined by

N (µ)(y) =
∑
x

p(y|x)µ(x) and N ∗(ν)(x) =
∑
y

p(x|y)ν(y). (1)

These stochastic mapsN andN ∗ perform inference of one variable given some (possibly imperfect)
knowledge about the other, with priors given by the marginals p(x) or p(y) of p(x, y) depending on
the direction of the inference.

We want to approximate N and N ∗ by setting their smaller singular values to zero.

However, in order to defined the singular value decomposition, we need inner products on VX and
VY . For that purpose, we use the Fisher information metrics evaluated at the points p(x) and p(y)
respectively (marginals of p(x, y)), that is,

〈µ, µ′〉X :=
∑
x

µ(x)µ′(x)

p(x)
and 〈ν, ν′〉Y :=

∑
y

ν(y)ν′(y)

p(y)
(2)

for any probability distributions µ, µ′ ∈ VX and ν, ν′ ∈ VY .

A beauty of this choice is that it makes N ∗ the transpose of N :

〈ν,N (µ)〉Y = 〈N ∗(ν), µ〉X . (3)

It follows that N and N ∗ have the same set of singular values, which are the square roots of the
eigenvalues of N ∗N . The singular vectors of N and N ∗ are respectively the left- and right- eigen-
vectors ofN ∗N . Moreover, the singular values are all in the interval [0, 1] because the Fisher metric
contracts under any stochastic map.

Another useful fact is the following: if we write µ(x) = p(x)f(x) and ν(y) = p(y)g(y) for all x, y
(we call the function f and g features), then the inner products become simple covariances:

〈µ, µ′〉X :=
∑
x

p(x)f(x)f ′(x) and 〈ν, ν′〉Y :=
∑
y

p(y)g(y)g′(y), (4)

Moreover, it is easy to check that

〈ν,N (µ)〉Y :=
∑
xy

p(x, y)f(x)g(y). (5)

These three covariances can be approximated straightforwardly by averages on the data.

If we have neural network producing some arbitrary functions f1(x), . . . , fk(x) and
g1(y), . . . , gk(y), then we can use the above three equations to compute the components ofN in the

1In the sense that their expectation values over the training data should be reliable. E.g., they cannot be
peaked on a single data point.

2

Under review as a conference paper at ICLR 2020

subspaces spanned by the corresponding functions µi(x) = p(x)fi(x) and νj(y) = p(y)gj(y),
i.e., the numbers Nij such that N (µj) =

∑
j Nijνi. Indeed, using Aij = 〈νi,N (µj)〉Y and

Lij = 〈νi, νj〉Y , we have N = L−1A (using the matrix inverse and matrix product). Similarly we
can define the components N∗ij of N ∗, which are given by N∗ = K−1A> where Kij = 〈µi, µj〉X .

We observe that Tr (N∗N) is the sum of the square of the singular values ofN restricted to the span
of the functions µi and νi. Maximizing Tr (N∗N) over the parameters of the networks then yields
the subspaces of VX and VY spanned by the k singular vectors of N with largest singular values.
We refer to the corresponding features as the k most relevant features.

Since we know explicitly the components ofN andN ∗ with respect to these subspaces, we can also
perform any inference using these projected forms of the channels.

Of course, This approach can produce a faithful representation of the correlations only if N is
actually close to being of rank k (see Appendix B for a more precise statement). If we interpret the
relevant subspace as a space of probability over latent variable, this means that our latent variables
have at most k discrete states.

However, even if the rank-k projection on N is a not a good approximation, this strategy allows us
to do exact inference on certain random variables, namely those which are in the span of the relevant
features!

Indeed, N maps any of the most k relevant functions µi(x) to the span of the most k relevant
functions νi(y), i.e., for any i = 1, . . . , k, N (µi) =

∑k
j=1 cjνj . Hence the expectation value of the

feature fi(x) = 1
p(x)µi(x) conditioned on Y = y∗ is given by

fi =
∑
x

p(x|y∗)fi(x) =
∑
x

1

p(x)
p(x|y∗)µi(x) = 〈N ∗(δy∗), µi〉X = 〈δy∗ ,N (µi)〉Y

=
1

p(y∗)
N (µi)(y

∗) =

k∑
j=1

cjgj(y
∗).

(6)

The role of the variables X and Y can be exchanged in this result by the swaps N ↔ N ∗, fi ↔ gi.

For instance, if p(x, y) is Gaussian, the singular vectors can be computed analytically following
Bény & Osborne (2013); Bény (2018a) (Appendix A). Notably, for any two dimensional Gaussian,
the space of k most relevant features is simply spanned by the moments fn(x) = xn and gn(y) = yn

for n = 0, . . . , k − 1. Hence, in this case the first k moments can be inferred exactly using only
k + 1-dimensional subspaces of features (See Appendix C).

3 RFA ALGORITHM

Let us explicit the algorithm resulting from the above analysis.

We assume that we are given independent samples (x1, y1), (x1, y2), . . . from the otherwise un-
known joint distribution p(x, y).

We need two independent deterministic feed-forward neural networks. The first maps x to a set
of k0 real-valued features f1(x), . . . , fk0(x). The second maps y to a different set of k0 features
g1(y), . . . , gk0(y).

The parameters of the neural networks are to be set to minimize the positive loss function

C = k0 − Tr (K−1A>L−1A), (7)

where the matrices K,L,A can be approximated over a mini-batch (xn, yn), n = 1, . . . , N via

Kij =
1

N

N∑
n=1

fi(xn)fj(xn), Lij =
1

N

N∑
n=1

gi(xn)gj(xn), Aij =
1

N

N∑
n=1

gi(xn)fj(xn). (8)

Once the features have been learned, we still need to use the training data in a second step. Indeed,
suppose that we wish to use our model to infer the value of some function Θ(x), i.e., to compute it’s

3

Under review as a conference paper at ICLR 2020

approximate expectation value in terms of the conditional distribution x 7→ p(x|y). Then we need
to store, for each feature j = 1, . . . , k0, the quantities

Θj =
1

Nfull

Nfull∑
n=1

Θ(xn)fj(xn), (9)

where the average is to be taken on the full training batch (of size Nfull). The same can be done
exchanging x with y and fj with gj for the reverse inference.

For instance, if we are interested in the Bayesian estimator for an l2 distance, then we need at least
the expectation values of the real components Θ(x) = x of the data, and possibly higher moments
to gain more knowledge about the shape of the posterior distribution, such as the second moments
Θ′(x) = x2, etc.

Inference can then be performed with new data using

Θ =
∑
x

p(x|y) Θ(x) ≈
k0∑

i,j=1

(K−1A>L−1)jiΘjgi(y). (10)

Moreover, the accuracy of these predictions does not depend on the rank k0 if Θ is taken in the span
of the relevant features, i.e., Θ(x) =

∑k
i=1 cifi(x), for which Θj =

∑k0

i=1 ciKij .

The reverse inference formulas are obtained simply by the exchanges K ↔ L, A ↔ A>, and
gi ↔ fi.

4 EXPERIMENTS

For all our experiments, we used the Flux package (Innes, 2018) for Julia, and the built-in ADAM
optimizer with default parameters.

As usual the data is divided into a training set and a testing set. No aspect of the testing set is used
during training. The loss function refers to Eq. (7). In order to monitor overfitting, we compute a
“test loss” and a “training loss”. The test loss is computed from the trained features using only the
test data, and accordingly, the training loss is computed purely using the training data.

Moreover, when performing inference on test data using Eq. (10), we use the covariances A,L,K
and expectations Θj (Equ. (9)) built from the training data only.

4.1 SUPERVISED LEARNING

In the context of a supervised classification task, one of the dataset (the labels) is of sufficiently
low dimensionality that we can use a complete basis over its probability space as our features. This
serves as a good first sanity test for our approach. Surprisingly, we find that RFA converges faster
than standard approaches, and without the need for regularization.

Let the variable Y stands for the labels, with values in {1, . . . , n}. The probability space consists of
vectors with n real components. The canonical basis corresponds to the one-hot encoding gi(j) =
δij (Kronecker delta). All we need is a neural network to encode n features f1, . . . , fn on X . After
learning the most relevant features fi. We apply the reverse of Eq. (10) for function Θ(y) = y, and
use the maximum component of expected value y to infer the labels from the data.

We tested this approach on the MNIST and CIFAR10 datasets, and compared the results to the
standard cross-entropy objective (Fig. 1).

We found that, without regularization, simply changing the objective from cross-entropy to RFA
provided a large improvement both of convergence speed and final accuracy for both models.

On MNIST, RFA alone also outperformed cross-entropy with dropout. (Dropout did not yield any
improvement in conjunction with RFA). However, adding batch-normalization layers on the CIFAR
example, erased any distinction between RFA and cross-entropy.

The code containing all parameters used can be found in (Bény), including a Tensorflow/Keras
implementation.

4

Under review as a conference paper at ICLR 2020

Inaccuracy on MNIST (%) Inaccuracy on CIFAR10 (%)

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

CE
CE, Dropout
RFA

0 10 20 30 40 50
0

10

20

30

40

CE
RFA
CE, BatchNorm
RFA, BatchNorm

epoch epoch

Figure 1: Loss and inaccuracy (error rate) on test sets for two classification tasks. The models were
trained either using the cross-entropy (CE) or our objective (RFA), with or without regularization
layers. On the MNIST dataset, we used an “all CNN” network, and for the CIFAR10 dataset we used
a short VGG variation with 10 convolutions and 3 fully connected layers. In the regularized form,
post-activation Batchnorm layers were placed after each convolutional layers on the VGG network.
What is shown is the mean over 10 independent runs for MNIST and 5 runs for CIFAR10. The
shaded area spans the standard deviation. ADAM with default parameters was used in all cases. No
data augmentation was used except for horizontal flips for CIFAR10 (resulting in epochs of 100,000
images).

4.2 INFERENCE

In this next experiment, we used the left and right halves of the MNIST digit images as correlated
variables X and Y . The goal is to obtain the expected left halves given the right halves, or vice
versa.

The features were represented by two identical convolutional neural networks with the same archi-
tecture as in the previous section.

After training the features, we used the training dataset to also compute the expected pixel gray
value as well as their covariance for each feature using Eq. (9).

These were used into Eq. (10) to compute the mean pixel gray values and their covariances over the
conditional probability of X given Y on test data. This mean is the Bayesian estimator for the l2
distance between half images, i.e., it should minimize the expected distance dl2 over the conditional
distribution, where d2l2(x, y) =

∑
i(xi − yi)2, where xi ∈ [0, 1] is the value of the ith pixel. (This

is equivalent to minimizing the mean square error).

The results are shown in Fig. 2. For each example, we also computed the images obtained by adding
plus or minus one standard deviation along the direction of greatest variance in the space of features.
This reveals the main ambiguities (such as between 8 and 3 or 7 and 9 which share a similar right
half).

The graph of the singular values shows that the rank cutoff of 120 is too low to capture all of the
relevant features, but the results are reasonable nevertheless.

An IPython notebook reproducing this result and more can be found in (Bény).

4.3 FEATURE DISCOVERY

We mentioned in Section 2 that if p(x, y) is a two-dimensional Gaussian distribution with zero
mean, then the n most relevant features of X are the first n powers of X itself, independently of the
covariance matrix. This implies that the singular features are the Hermite polynomials in X (which
results from applying the Gram-Schmidt procedure to the basis {1, x, x2, . . . }).

5

Under review as a conference paper at ICLR 2020

0 20 40 60 80
0

20

40

60

80
test loss
training loss

epochs

0 25 50 75 100
0.7

0.8

0.9

1.0

singular values

Figure 2: The left halves of the MNIST digits in the test set are inferred from the right half. Three
images are shown for each random sample. The middle image represents the mean over pixel in-
tensity of the inferred condition distribution. Left and right images corresponds to a plus and minus
one standard deviation from the mean in the direction of largest covariance (in the space of half-
images). We used two independent convolutional neural nets to learn 120 pairs of features. We used
the features for which the test loss was smallest (epoch 45, with a test loss of 16.43). The average l2
distance between the original and mean image over all 10, 000 test images is 3.276.

Figure 3: Top-left: First 20 eigenrelevance features (onX) determined by our algorithm for a system
where X consists of two coordinates uniformly sampled over a circle and a surrounding ring, and
Y consists of the same points but shifted by a small normally distributed vector. The features
are arranged from left-to-right and top-to-bottom in order of decreasing relevance. Top-right: the
same features multiplied by the marginal pX . Bottom row: introducing a gap in the ring allows
for a monotonous function of the angle to serve as second most relevant variable (instead of the
sine/cosine couple). Hence the angle is automatically “disentangled” from the other variables. (Mid-
gray represents the value 0).

6

Under review as a conference paper at ICLR 2020

A similar property holds for multivariate Gaussians, namely, the less relevant singular values are
polynomials in the more relevant ones. If this is true more generally, it should be possible to further
compress and organize the latent space extracted with RFA by finding a minimal set of generators,
which ought to also be in the span of the most relevant features.

We applied RFA to a synthetic dataset to explore this idea, shown in Fig. 3. Here, X consists of two
real numbers, distributed uniformly within a ring and a disk. The variable Y is obtained by adding a
random Gaussian shift to X with a small standard deviation. The more relevant features ought to be
those which are more robust to such small random displacement. This formalizes the idea that we
are interested in extracting “large-scale” features.

We would expect the relevant independent variables to be: the binary variable indicating whether
the point is in the disk or the ring and the angle around the ring, followed by the radial component
in the ring, and finally the Cartesian coordinates inside the disk. This is precisely what we see in
Fig. 3.

Indeed—if we put aside for now the fact that the angle itself is not directly represented—besides the
constant function, the two most relevant variables are the sine and cosine of the angle, followed by
the binary variable separating the disk from the ring.

But these features ought to span the space of probabilities over the relevant variables, not just the
variables themselves. Hence the next six features are sines and cosines of smaller wavelength,
which can encode probability distributions which are increasingly more precisely localized, down to
a precision (wavelength) comparable with the diameter of the inner disk. Accordingly, the next two
most relevant features are the Cartesian coordinates inside the disk. This is followed by additional
moments of the angle, down to a wavelength equal to the ring’s thickness, at which point we see the
radius in the ring appear.

As mentioned, we see that the angle itself is not represented, likely because it is discontinuous.
However, as shown also in Fig. 3, creating a gap in the ring allows for the angle to emerge as
most relevant variable. This suggests that this approach may be able to automatically learn intrinsic
coordinates of the latent variable manifold.

4.4 DISENTANGLED FEATURES AND GENERATIVE MODEL

If we postulate that the independent (or disentangled) relevant latent variables can be found in the
linear span of the relevant features, we can attempt to extract them by optimizing a neural network
composed of two parts. Firstly, a linear layer maps the relevant features to a small number of outputs
(equal to the latent dimension). The purpose of this linear layer is to find the independent variables.
These latent variables are then processed by an arbitrarily complex generative network to produce
a possible value of the variable X . As objective function, we may us an appropriate measure of
similarity between the output and the data element from which the features were obtained.

We tested this idea as follows. We took X to consist of the MNIST digits, and produced Y by
randomly permuting neighboring pixels in the image, until the mean displacement per pixel is of
order 1. In addition, we added independent Gaussian noise to the pixel values. (Hence the noise
map N simulates the coarse-graining channel introduced in Bény & Osborne (2015a)).

As in the previous experiment, we do so to implement our intuition that the more relevant features
ought to be the ones which are of larger scale, or more robust to local perturbations.

The features of the clean images were produced by the same convolutional neural network as in
Section 4.1, while the features of the coarse-grained images were extracted by a network of the
same geometry, but with half the number of filters and neurons.

We extracted the 1000 most relevant out of 1200 learned features in this way. (The least relevant
features in this system happen to be highly dependent on the total number of features and hence
cannot be trusted to be correct). As a second step, we trained a linear layer coupled to a network
composed of 5 fully-connected layers of 800 hidden neurons each. We refer to the number of output
neurons in the first linear layer as the latent dimension.

7

Under review as a conference paper at ICLR 2020

reconstruction error vs latent dimension

100.50 100.75 101.00 101.25 101.50

10-2.0

10-1.9

10-1.8

10-1.7

10-1.6

10-1.5

latent dimension 2 8 19

Figure 4: Left: Best mean squared error for images reconstructed from a subspace of the features, as
a function of the subspace dimension. This logarithmic plot shows that improvements stop once the
dimension reaches 19 (where the two lines cross). Right: images produced by the generator from
latent variables sampled according to the best Gaussian fit in latent space, for feature subspaces of
dimensions 2, 8 and 19.

As input, this network received the features extracted from MNIST images using the above convolu-
tional neural net (after it was fully trained using RFA), and was trained to minimize the mean square
error between its output and the original MNIST digit.

The resulting best mean square errors are shown in Fig. 4, as function of the latent dimension. Here
we see a distinct change of polynomial scaling law at dimension 19. Increasing the dimension further
provides no improvement. This behaviour is compatible with our hypothesis that the extra features
are just functions of those first twenty features (functions which are effectively re-implemented by
the generative network).

Images generated by sampling from a Gaussian approximation of the latent distribution for different
latent dimensions are shown in Fig. 4. Below dimenson 20, most generated image can be recognized
as a specific digit.

5 OUTLOOK

We only brushed a few potential applications of RFA. More detailed studies will be needed to see
if it can be used to obtain state-of-the art results for inference, disentangled feature extraction or for
data generation. The regularizing effect for supervised learning also warrants further study.

We have not explored potential applications of one of the salient aspect of RFA, namely the fact
that it provides the functions which can be most reliably predicted. To see why this is potentially
significant, we observe that a central feature of scientific exploration is that the properties of a system
which can be predicted and understood are not given a priori, but must be discovered.

Another important feature of RFA is the fact that the resulting model allows for the direct evaluation
of the expectation values in the posterior distribution without sampling. In particular this allows for
the evaluation of credible intervals. Hence it should be especially suited to scientific applications
where the ability to quantify uncertainty is essential.

The fact that RFA is grounded in a consistent information-theoretical analysis which comes with
a large class of analytically solvable examples (namely all Gaussian joint distributions), presents
exciting potentials for further refinements and developments of the approach.

Another interesting aspect of this approach is that the theory it is based on has a complete quantum-
theoretical formulation. Hence it would be natural to find extensions of the present work to contexts
where the data is quantum, or results from quantum measurements.

8

Under review as a conference paper at ICLR 2020

ACKNOWLEDGMENTS

We would like to thank Joël Bény and Raban Iten for helpful suggestions. This work was supported
by the National Research Foundation of Korea (NRF-2018R1D1A1A02048436).

REFERENCES

C. Bény and T. J. Osborne. Information geometric approach to the renormalisation group. Phys.
Rev. A, 92:022330, 2015a. doi: 10.1103/PhysRevA.92.022330. (arXiv:1206.7004).

Cédric Bény. RFA examples source code. http://github.com/cbeny/RFA. Accessed:
2019-09-22.

Cédric Bény. Coarse-grained distinguishability of field interactions. Quantum, 2:67, 2018a.
(arXiv:1509.03249).

Cédric Bény. Quantum deconvolution. Quantum Information Processing, 17(2):26, 2018b.
(arXiv:1708.03215).

Cédric Bény. Inferring relevant features: from qft to pca. International Journal of Quantum Infor-
mation, 16:1840012, 2018c. (arXiv:1802.05756).

Cédric Bény and Tobias J Osborne. Renormalisation as an inference problem. (arXiv:1310.3188),
2013.

Cédric Bény and Tobias J Osborne. The renormalisation group via statistical inference. New J.
Phys., 17:083005, 2015b. doi: 10.1088/1367-2630/17/8/083005. (arXiv:1402.4949).

Ricky TQ Chen, Xuechen Li, Roger Grosse, and David Duvenaud. Isolating sources of disentangle-
ment in vaes. 2018.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
volume 3, 2017. (semanticscholar.org).

Mike Innes. Flux: Elegant machine learning with julia. Journal of Open Source Software, 2018.
doi: 10.21105/joss.00602.

Raban Iten, Tony Metger, Henrik Wilming, Lı́dia Del Rio, and Renato Renner. Discovering physical
concepts with neural networks. (arXiv:1807.10300), 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. (arXiv:1312.6114), 2013.

M. Ohya and D. Petz. Quantum entropy and its use. Springer Verlag, 2004.

A EXTRA INFORMATION ABOUT THE ALGORITHM

A.1 ALTERNATIVE INTERPRETATION OF THE LOSS

If we write Fij := fj(xi) and Gij := gj(yi) for the value of the features on the dataset, then
K = 1

N F
>F , L = 1

NG
>G and A = 1

NG
>F . The relevance can then be written as

Tr (K−1A>L−1A) = Tr (PQ)

where P = F (F>F)−1F> and Q = G(G>G)−1G> are the projectors on the ranges of F and
G respectively. Hence, we are maximizing the overlap between those ranges (which represents
possible linear combinations of datapoints, respectively determined from features of one or the other
correlated variables.)

9

https://arxiv.org/abs/1206.7004
http://github.com/cbeny/RFA
https://arxiv.org/abs/1509.03249
https://arxiv.org/abs/1708.03215
https://arxiv.org/abs/1802.05756
https://arxiv.org/abs/1310.3188
https://arxiv.org/abs/1402.4949
https://pdfs.semanticscholar.org/a902/26c41b79f8b06007609f39f82757073641e2.pdf
https://arxiv.org/abs/1807.10300
https://arxiv.org/abs/1312.6114

Under review as a conference paper at ICLR 2020

A.2 HEURISTIC

Batch size—In our experiments, we observed that the batch size during training needs to be an order
of magnitude larger than the number of features (rank cutoff). When the batch size was too small,
learning seemed to converge normally in terms of training and test loss, but resulted in features which
yield dramatically different losses when evaluated on larger batches, and yield spurious predictions.

Constant features—The loss function C takes value between 0 and k0 − 1 because the constant
feature always has relevance 1. The constant feature could be enforced a priori rather than learned,
which, due to the objective, automatically forces the learned features to have zero expectation values
(be orthogonal to the constant feature). This might have advantages in certain circumstances, but in
our experiments we found that this sometime hindered convergence.

Invertibility issues—The covariance matrices K and L can be ill-conditioned, potentially causing
the gradient to “explode” because of the inversesK−1 et L−1 involved in the loss function. This can
be avoided either by using the Moore-Penrose pseudo-inverse, or by replacing K−1 by (K + ε1)−1

in the loss for some small positive number ε, and likewise for L−1.

Symmetries in the loss function—The loss C only depends on the span of the features fi and gj ,
hence it has a very large group of symmetries. In particular, it is invariant under a change of the
norm of each features independently from each other. Because of that, it is preferable not to have a
linear last layer. Using a hyperbolic tangent as last nonlinearity worked in our experiments.

Regularization—In all our tests, dropout had no beneficial effect. In fact, our objective seems to
already provide a form of regularization, as shown in Section 4.1.

B THEORY IN MORE DETAILS

We consider two correlated random variables X and Y with a joint probability distribution p(x, y).
We assume that we are able to numerically evaluate expectations with respect to this distribu-
tion, for instance because we can sample from it. We want to use this ability in order to com-
pute expectations with respect to the conditional distributions pX|Y (x|y) = p(x, y)/pX(x) and
pY |X(y|x) = p(x, y)/pY (y), where pX(x) =

∑
y p(x, y) and pY (y) =

∑
x p(x, y) are the

marginals of p. Below we sometime remove the subscripts X , X|Y or Y |X if there is no ambi-
guity.

For instance, suppose we generated samples of y given x, through explicit knowledge of pY |X . Then
the evaluation of expectations with respect to pX|Y is the subject of Bayesian inference. However,
this is generally done in a context where the variable X has low dimensionality and parameterizes
a hand-crafted model. Our approach, however, is free of such a model and the variable X can be of
very high dimensionality.

B.1 INNER PRODUCT ON PROBABILITY VECTORS

In order to define our strategy, we need to equip the spaces of probability distributions for X and Y
with an inner product structure. Let us focus on X , and assume that it takes discrete values to avoid
unnecessary technicalities. The set of probability vectors is a convex subset of the real linear space
VX = Rn. Let us equip this space with the product

〈µ, µ′〉X :=
∑
x

µ(x)µ′(x)

pX(x)
(11)

for any µ, µ′ ∈ VX . We also write ‖µ‖2X = 〈µ, µ〉X . Importantly, this depends explicitly on the
fixed probability vector pX(x), which we took to be the marginal of p(x, y). If pX has full support,
this makes VX into a real inner product space. The same can be done for the variable Y , yielding
the inner product 〈ν, ν′〉Y for ν, ν′ ∈ VY .

10

Under review as a conference paper at ICLR 2020

Had we interpreted µ and µ′ as tangent vectors to VX , considered as a manifold, this would be the
Fisher information (Riemannian) metric, as in Bény & Osborne (2015b). But this quantity is also
meaningful for finite vectors: the induced norm distance between pX and any probability vector q is
the χ2-divergence:

χ2(q, pX) = 〈q − pX , q − pX〉X . (12)
It measures how distinguishable q is from pX in the contexts of the Pearson χ2-test. Specifically, it
quantifies how easy it is to reject the null hypothesis that the state is pX when it is actually q, based
on the empirical distribution obtained from independent samples.

The set of conditional probability distributions pY |X form a stochastic map, i.e., a linear map N :
VX → VY , µ 7→ N (µ), where

N (µ)(y) =
∑
x

pY |X(y|x)µ(x) (13)

for any µ ∈ VX .

It is straightforward to check that the stochastic map N ∗ defined by

N ∗(ν)(x) =
∑
x

pX|Y (x|y)ν(x) (14)

is the transpose N ∗ of N with respect to the inner products we defined (Ohya & Petz, 2004), i.e.,
for all ν ∈ VY and µ ∈ VX ,

〈ν,N (µ)〉Y = 〈N ∗(ν), µ〉X . (15)
Also, we observe that N (pX) = pY and N ∗(pY) = pX .

B.2 EIGEN-RELEVANCE DECOMPOSITION

We can use the inner products on VX and VY to define a singular value decomposition of the stochas-
tic map N . That is, there is an orthonormal family u1, . . . , uk of VX and an orthonormal family
v1, . . . , vk of VY , such that

N (uj) = ηjvj , (16)
for j = 1, . . . , k. For each j, ηj is a singular value of N , whose square we call the relevance of
the vector vj . Moreover ηj ∈ [0, 1] since the χ2 divergence is contractive under any stochastic map.
Given that N ∗ is the transpose of N :

N ∗(vj) = ηjuj . (17)

Equivalently, uj is an eigenvector of N ∗ ◦ N and vj is an eigenvectors of N ◦ N ∗, both with
eigenvalue η2j .

Because N maps pX to pY , we always have the dual eigenvectors u0 = pX and v0 = pY with
eigenvalue 1.

B.3 LOW-RANK APPROXIMATION

Typically, the dimension k of the space of probabilities is more than astronomically large. For
instance, if the values of X consists of small 256 gray level images of 28 × 28 pixels, then k =

25628
2 ' 101888. However, in many case, only very few of these dimensions may be relevant for

the purpose of inferring other variables.

The core of our approach is to approximateN andN ∗ by restricting them to the span of the first k0
eigenvectors uj and vj with largest singular values ηj . That is, if we order the singular values ηj ,
j = 1, . . . , k in decreasing order, we propose to use the approximations

N0(µ) =
∑
j≤k0

ηj〈uj , µ〉Xvj (18)

N ∗0 (ν) =
∑
j≤k0

ηj〈vj , ν〉Y uj (19)

(20)

11

Under review as a conference paper at ICLR 2020

to N and N ∗ respectively, for some k0 typically much smaller than k, and any µ ∈ VX , ν ∈ VY .

We denote the components of N0 and N ∗0 by q(y|x) and q(x|y), e.g.,

N0(µ)(y) =
∑
x

q(y|x)µ(x). (21)

Since N0 and N ∗0 are adjoint, we can define q(x, y) = q(x|y)pY (y) = q(y|x)pX(x). Although
the marginals of q(x, y) are the probability distributions pX and pY , the numbers q(x, y) are not
necessarily positive.

The quality of this approximation for a given k0 does not directly depend on the dimensionality of
X and Y , but only on the amount of correlations between the two variables. Our aim is to use a k0
small enough that the components of N0 and N ∗0 can be computed explicitly.
Theorem 1. N0 is the map of rank k0 which minimizes the average distance∑

x

p(x)‖N0(δx)−N (δx)‖2Y =
∑
xy

(q(x, y)− p(x, y))2

p(x)p(y)
. (22)

Proof. The low rank approximation N0 minimizes the distance ‖N0 −N‖F where

‖M‖2F = Tr (M∗M) (23)

is the Hilbert-Schmidt (or Frobenius) norm (Eckart & Young, 1936). This follows from the fact
that this is also the l2-norm of the vector of singular values of M. Let us find the explicit form
of the trace. Each possible value x of the variable X is associated with a probability distribution
δx(y) = 1 when x = y and zero otherwise. These distributions form an orthogonal basis of VX , and
have norms 〈δx, δx〉 = 1/pX(x). Therefore,

Tr (M∗M) =
∑
x

pX(x)〈δx,M∗M(δx)〉Y

=
∑
x

pX(x)‖M(δx)‖2Y

B.4 FEATURES

We express the elements µ ∈ VX and ν ∈ VY in terms of the marginals pX and pY as simple
products:

µ(x) = pX(x)f(x) and ν(y) = pY (y)g(y) (24)
for all x, y, where f and g are real functions of x and y which we call features.

The inner products then simply become correlations among features. Using also µ′ = pXf
′ and

ν′ = pY g
′, we obtain

〈µ, µ′〉X =
∑
x

pX(x)f(x)f ′(x) = ff ′, (25)

〈ν, ν′〉Y =
∑
y

pY (y)g(y)g′(y) = gg′. (26)

These are simple expectation values with respect to p, which we assumed is the type of quantity we
can evaluate for arbitrary functions f, f ′, g, g′.

Since N ∗N is self-adjoint in terms of this inner product, its eigenvectors ui are orthogonal, and
hence the corresponding features ai defined by ui(x) = pX(x)ai(x) are uncorrelated. Indeed,

aiaj = 〈ui, uj〉X = 0, (27)

for all i, j. Moreover, accounting for the eigenvector u0 = pX (corresponding to the constant feature
a0(x) = 1 for all x),

ai = 0 (28)

12

Under review as a conference paper at ICLR 2020

for all i 6= 0. Hence we trivially have
aiaj = aiaj (29)

for all i, j 6= 0.

Likewise for the eigenvectors of NN ∗. If vi(y) = pY (y)bi(y):

bibj = 〈vi, vj〉Y = 0 = bibj . (30)
for all i, j 6= 0.

Importantly, this does not mean that the features u1, u2, . . . nor v1, v2, . . . are “disentangled”, i.e.,
they are not statistically independent. These features represent components in the space of proba-
bility vectors, rather than the “sample” space. They should be understood as spanning a subspace
of the space of functions over the relevant independent variables. We discuss this in more detail in
Section 4.3.

B.5 CORNERS OF N AND LOSS FUNCTION

The final piece of puzzle we need, is the ability to express the components (corners) of N and N ∗
in the span of possible non-orthogonal families of features.

Let us therefore consider two arbitrary families f1, . . . , fk0 and g1, . . . , gk0 of features, which re-
spectively represent the vectors pXfj ∈ VX and pY gj ∈ VY .

Firstly, we need matrices representing the components of the inner products on VX and VY . Those
are the symmetric matrices

Kij = 〈pXfi, pXfj〉X = fifj , (31)
Lij = 〈pY gi, pY gj〉Y = gigj . (32)

The components Nij of N are defined by

N (pXfj) =
∑
i

NijpY gi. (33)

Taking the inner product with pY gk, we obtain

〈pY gk,N (pXfj)〉 =
∑
i

NijLki. (34)

The left-hand side can be computed using Equ. 13. It is the matrix
Akj = 〈pY gk,N (pXfj)〉

=
∑
x,y

pY (y)gk(y)pY |X(y|x)pX(x)fj(x)

pY (y)

=
∑
x,y

p(x, y)gk(y)fj(x) = gkfj .

(35)

Therefore, in matrix notation, Equ. (34) is A = LN , or
N = L−1A. (36)

The components N∗ij of N ∗ are obtained by just swapping X and Y , yielding

N∗ = K−1A>. (37)

Hence the singular values of the corner of N defined by the features fj and gj are just the square-
root of the eigenvalues of the matrix N∗N = K−1A>L−1A. In order to find the features fj and gj
with the same span as the first k0 eigenvectors uj , vj , we just need to maximize all the eigenvalues
of N∗N . A simple way to do this is to use (minus) the trace of N∗N as loss function, since it is the
sum of the square of the singular values. We call Tr (N∗N) the relevance of the subspaces defines
by the features fj ad gi for all i, j. This yields the loss/cost function:

C = k0 − Tr (N∗N) = k0 − Tr (K−1A>L−1A). (38)

Once optimal features have been found, one can obtain the components of the eigenvectors in the
span of f1, . . . , fk0 through standard numerical diagonalization of N∗N .

13

Under review as a conference paper at ICLR 2020

B.6 INFERENCE

The features minimizing C can be used to infer one variable from the other. For instance, given y,
the inferred probability distribution over x is given by pX|Y (x|y) = N ∗(δy)(x), where δy(y′) is
1 when y = y′ and zero otherwise. In order to compute this, we first need the components of the
distribution δy in terms of the family pY g1, . . . , pY gk0

, i.e., the real numbers (δy)j such that

δy(y′) = pY (y′)

k0∑
i=1

(δy)igi(y
′) + r(y′), (39)

where 〈r, pY δi〉Y = 0 for all i. Taking the inner product with pY gj , we obtain

〈pY gj , δy〉Y =

k0∑
i=1

(δy)iLji, (40)

where the left hand side is also just

〈pY gj , δy〉Y = gj(y). (41)

Therefore the components of δy are explicitly

(δy)i =
∑
j

(L−1)ijgj(y). (42)

It follows that

pX|Y (x|y) = N ∗(δy)(x) ≈ N ∗0 (δy)(x)

=
∑
ijk

N∗ki(L
−1)ijgj(y)fk(x). (43)

Then, for instance, the expected inferred value of X is

x =
∑
ijk

N∗ki(L
−1)ijgj(y)

∑
x

pX(x)xfk(x). (44)

For the inference of Y from x, we have

pY |X(y|x) ≈
∑
ijk

Nki(K
−1)ijfj(x)gk(y). (45)

C ANALYTICAL EXAMPLE

When p(x, y) is any multivariate Gaussian distribution, everything can be computed analytically. Let
us consider here the one-dimensional case. We use p(x) ∝ exp

(
−x2/2τ2

)
, and the conditional

p(y|x) ∝ exp
(
−(y − x)2/2σ2

)
. That is, y is equal to x but with some added Gaussian noise.

This gives

pX|Y (x|y) ∝ exp

(
− (x− γy)2

2τ2(1− γ)

)
, where γ =

τ2

σ2 + τ2
. (46)

It was show in Bény & Osborne (2013), that the most relevant subspace of dimension k0 on the
variable X is simply spanned by the features

fn(x) = xn, (47)

n = 0, . . . , k0 − 1. Similarly for Y ;
gn(y) = yn. (48)

This independence of the relevant features on the detailed parameters of p is a general property of
Gaussian joint distributions.

14

Under review as a conference paper at ICLR 2020

This means, for instance, that the most relevant feature (n = 1) for predicting the value of X given
Y = y is simply Y itself. The higher order features have to do with inferring extra aspects of the
probability distribution over X .

A set of orthogonal features can be obtain from the Gram-Schmidt procedure, which, if done from
small to large n much necessarily yield the eigenvectors un and vn. For illustration purpose, let us
work with the non-orthogonal vectors fn and gn, keeping only the first k0 = 3 vectors.

The three matrices (correlators) we need can be easily computed:

K =

 1 0 τ2

0 τ2 0
τ2 0 3τ4

 L =

 1 0 τ2 + σ2

0 τ2 + σ2 0
τ2 + σ2 0 3(τ2 + σ2)2

 (49)

A =

 1 0 τ2

0 τ2 0
τ2 + σ2 0 τ2(σ2 + 3τ2)

 . (50)

We obtain

M = K−1A>L−1A =

1 0 τ2(1− γ2)
0 γ 0
0 0 γ2

 . (51)

The eigenvalues of M can be read on the diagonal, and the corresponding eigenvectors are (1, 0, 0),
(0, 1, 0) and (−τ2, 0, 1), which means that the eigen-features are in order u0(x) = 1, u1(x) = x
and u2(x) = x2 − τ2.
Because we are working with continuous variables, the true rank ofN is infinite, even for any finite
cutoff on the singular values. Nevertheless, it is instructive to see how the approximate inference
fares for rank k0 = 3. Given the value y for Y , the inferred distribution over X is

N ∗0 (δy)(x) = pX(x)pY (y)

2∑
j,k=0

(K−1A>L−1)kjy
jxk. (52)

The approximately inferred first and second moments of X is given by integrating the above times
x (resp. x2) over x. We obtain

x = γ y and x2 = γ2y2 + (1− γ)τ2, (53)

which are actually exact: they are equal to the first two moments ofX over pX|Y as given in Eq. (46).

In fact, it is easy to see that this would be true for the first k0 − 1 moments had we kept the k0 most
relevant features.

15

	Introduction
	Theory
	RFA Algorithm
	Experiments
	Supervised learning
	Inference
	Feature discovery
	Disentangled features and generative model

	Outlook
	Extra information about the algorithm
	Alternative interpretation of the loss
	Heuristic

	Theory in more details
	Inner product on probability vectors
	Eigen-relevance decomposition
	Low-rank approximation
	Features
	Corners of N and loss function
	Inference

	Analytical example

