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ABSTRACT

Given a set of distances amongst points, determining what metric representation is most “consistent”
with the input distances or the metric that best captures the relevant geometric features of the data
is a key step in many machine learning algorithms. In this paper, we focus on metric constrained
problems, a class of optimization problems with metric constraints. In particular, we identify three
types of metric constrained problems: metric nearness (Brickell et al. (2008)), weighted correlation
clustering on general graphs (Bansal et al. (2004)), and metric learning (Bellet et al. (2013); Davis
et al. (2007)). Because of the large number of constraints in these problems, however, these and other
researchers have been forced to restrict either the kinds of metrics learned or the size of the problem
that can be solved.
We provide an algorithm, PROJECT AND FORGET, that uses Bregman projections with cutting planes,
to solve metric constrained problems with many (possibly exponentially) inequality constraints. We
also prove that our algorithm converges to the global optimal solution. Additionally, we show that
the optimality error (L2 distance of the current iterate to the optimal) asymptotically decays at an
exponential rate. We show that using our method we can solve large problem instances of three types
of metric constrained problems, out-performing all state of the art methods with respect to CPU times
and problem sizes.

1 INTRODUCTION

Given a set of distances amongst data points, many machine learning algorithms are considerably “easier” once these
distances adhere to a metric. Furthermore, learning what metric is most “consistent” with the input distances or the
metric that best captures the relevant geometric features of the data (e.g., the correlation structure in the data) is a key
step in efficient, approximation algorithms for classification, clustering, regression, feature selection, etc. Indyk (1999)
provides a list of other computational problems such as nearest neighbor search, (approximate) proximity problems,
facility location, and a variety of graph problems for which we have efficient approximation algorithms in a general
metric space. Given the importance of metric representations of data sets, we focus on metric constrained problems,
a class of optimization problems with metric constraints; i.e., optimization of a convex function subject to metric
constraints, such as the triangle inequality, on all the output variables.

In particular, we identify three types of metric constrained problems: metric nearness (Brickell et al. (2008)), weighted
correlation clustering on general graphs (Bansal et al. (2004)), and metric learning (Bellet et al. (2013); Davis et al.
(2007)). Briefly, the metric nearness problem seeks the closest metric to a given set of distances, the goal of correlation
clustering is to partition nodes in a graph according to their similarity, and metric learning finds a metric on a dataset
that is consistent with (dis)similarity information about the data points.

All of these problems can be modeled as constrained convex optimization problems with a large number of constraints.
Unfortunately, because of the large number of constraints, using standard optimization techniques, researchers have
been forced to restrict either the kinds of metrics learned or the size of the problem that can be solved.

Many of the existing methods for metric constrained problems suffer from some sort of significant drawback that
hampers performance or restricts the instance size. Gradient based algorithms such as projected gradient descent (e.g.,
Beck & Teboulle (2009); Nesterov (1983)) or Riemannian gradient descent require a projection onto the space of all
metrics, which in general, is an intractable problem. One modification of this approach is to subsample the constraints
and then project onto the sampled set (see Nedić (2011); Polyak (2001); Wang & Bertsekas (2013); Wang et al. (2015)).
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For metric constrained problems, however, we have many more constraints than data points, so the condition numbers
of the problems are quite high and these algorithms tend to require a large number of iterations.

Another standard approach is to consider the Lagrangian and maintain a KKT type optimality condition. These methods
run into two different kinds of problems. First, computing the gradient becomes an intractable problem for methods
that maintain the KKT condition by using Newton’s method. Examples of such methods include the interior point
method and the barrier method. One fix could be to subsample the constraints and only compute those gradients, but this
approach runs into the same drawbacks as before. The other option is to incrementally update the Lagrangian, looking
at one constraint at a time. These methods, such as Bauschke & Lewis (2000); Iusem (1991); Iusem & De Pierro (1990),
traditionally require us to cycle through all the constraints which is not feasible with metric constraints.

In this paper, we provide an algorithm, PROJECT AND FORGET, that uses Bregman projections with cutting planes, to
solve metric constrained problems with many (possibly exponentially) inequality constraints. In fact, the algorithm is a
general purpose one that can solve large constrained convex optimization problems, not only those arising from metric
constraints. We also develop a stochastic version of our algorithm. This version is a similar adaptation of the Bregman
method, as Nedić (2011); Polyak (2001); Wang & Bertsekas (2013); Wang et al. (2015) are adaptations of the projected
gradient method. This version of our algorithm can be used to solve problems where each data point (or pair, triple of
data points) form a constraint. The major contributions of our paper is as follows:

1. Using a specific instantiation of the PROJECT AND FORGET algorithm, we solve the weighted correlation
clustering problem on a graph with over 130, 000 nodes. To solve this problem with previous methods, we
would need to solve a linear program with over 1015 constraints. Furthermore, we demonstrate our algorithms
superiority by outperforming the current state of the art in terms of CPU times.

2. We use our algorithm to develop a new algorithm that solves the metric nearness problem. We show that
our algorithm outperforms the current state of the art with respect to CPU time and can be used to solve the
problem for non-complete graphs.

3. We use the the stochastic version of our algorithm to develop a new algorithm to solve the information theoretic
machine learning problem. We compare this against the standard method and show that in general we require
fewer projections to solve the problem. Using our algorithm we can also solve the full version of the convex
program presented in Davis et al. (2007) instead of a heuristic approximation. Thus, demonstrating that we
can solve larger instances of the problem.

4. Finally, we prove that our algorithm converges to the global optimal solution. Additionally, we show that the
optimality error (L2 distance of the current iterate to the optimal) asymptotically decays at an exponential
rate. We also show that because of the FORGET step, when the algorithm terminates, the set of constraints
that remain remembered are exactly the active constraints. Thus, our algorithm also finds the set of active
constraints.

We present the necessary background material and problem formulations in Section 2. In Section 3, we provide a
general form of the PROJECT AND FORGET algorithm and detail its theoretical analysis. We instantiate our algorithm
to solve three types of metric constrained problems in Section 4 and highlight the empirical performance. Complete
proofs and discussion may be found in the sections in the Appendix.

2 PRELIMINARIES

2.1 METRIC CONSTRAINED PROBLEMS, GENERAL FORMULATION

Metric polytope. To set the stage for our optimization problems, we define the set over which we optimize first. Let
METn ⊂ R(n2) be the space of all metrics on n points. Given a graph G the metric polytope MET(G) is the projection
of METn onto the coordinates given by the edges of G (i.e., we consider distances only between pairs of points that are
adjacent in G).

It can be easily seen that for any x ∈ R(n2), we have that x ∈ METn(G) if and only if ∀ e ∈ G, x(e) ≥ 0 and for
every cycle C in G and ∀ e ∈ C, we have that x(e) ≤

∑
ẽ∈C,ẽ 6=e x(ẽ). Therefore, METn(G) can be described as the

intersection of exponentially many half-spaces.
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Metric constrained problems. Now that we have the set over which we want to optimize, we give a general formulation
for metric constrained optimization problems: given a strictly convex function f , a graph G, and a finite family of
half-spaceH = {Hi} such that Hi = {x : 〈ai, x〉 ≤ bi}, we seek the unique point x∗ ∈

⋂
iHi ∩MET(G) =: C that

minimizes f . That is, if we set A to be the matrix whose rows are ai and b be the vector whose coordinates are bi we
seek

minimize f(x)
subject to Ax ≤ b

x ∈MET (G).
(2.1)

The constraints encoded in the matrix A let us impose additional constraints beyond that of a metric. In this paper, A is
used only for correlation clustering.

2.2 SPECIFIC METRIC CONSTRAINED PROBLEMS

Metric nearness. Following Brickell et al. (2008), the metric nearness problem is: given a point x ∈ R(n2), find the
closest (in some `p norm) point x∗ ∈METn to x. This problem is a form of metric learning; see Brickell et al. (2008)
for an application to clustering and see Gilbert & Sonthalia (2018) for an application to unsupervised metric learning. I

Weighted correlation clustering on graphs. Bansal et al. (2004) introduced correlation clustering. In this problem,
we are given a graph G = (V,E) (not necessarily complete) in which each edge e has two non-negative numbers
w+(e) and w−(e) that indicate the level of similarity and dissimilarity between its nodes. The goal of correlation
clustering is to partition the nodes into clusters so as to minimize some objective function. The most common objective
is
∑
e∈E

w+(e)xe +w−(e)(1− xe), where xe ∈ {0, 1} indicates whether the end points of the edge e belong to different

cluster. In general, this variant of the problem is NP-hard and many different algorithms have been developed to solve
the problem. The best approximation results (with approximation ratios O(log n) in general, and O(1) for specific
cases), however, are obtained by rounding the solution to the following relaxed linear problem

minimize
∑
e∈E w

+(e)xe + w−(e)(1− xe)
subject to xij ≤ xik + xkj i, j, k = 1, ..., n

xij ∈ [0, 1] i, j = 1, ..., n.
(2.2)

See Charikar et al. (2005); Emanuel & Fiat (2003) for details. Many special cases, such as when the weights are ±1
and G = Kn, can be solved with faster algorithms (e.g., Ailon et al. (2005)).

Metric learning. The final metric constrained problem we consider is metric learning. There are many different
versions of this problem (see Bellet et al. (2013); Suárez Díaz et al. (2018) for two different surveys on the topic) but all
of the instantiations have a similar formulation: given a data set X and possibly some additional information, learn an
appropriate metric on X . Many of the existing methods seek a linear map L such that the learned metric is given by

dC(x, y) =
√

(x− y)TC(x− y)

where C = LTL. Our general purpose algorithm can directly learn the appropriate metric without resorting to the
above specific form, however, this generalization requires more focus than we can give it in this paper. Instead, we focus
on a specific instantiation (that also differs from the above), specifically information theoretic metric learning (ITML),
as in Davis et al. (2007). In ITML, we consider LTL as the covariance matrix of a Gaussian distribution p(x;C) and
we are given two sets S,D which represent the set of similar and dissimilar points. The problem we solve is:

minimize KL
(
p(x;C)‖p(x; I)

)
subject to dA(xi, xj) ≤ u (i, j) ∈ S

dA(xi, xj) ≥ l. (i, j) ∈ D
(2.3)

2.3 BREGMAN PROJECTIONS

All of the above problems can be couched in general terms and, in the Appendix 6, we give such a general formulation.
We seek to optimize a rich class of convex functions f , known as Bregman functions, denoted B(S), with useful
properties for algorithmic and convergence analysis, subject to metric constraints. More details about Bregman functions
and the general setting in which our algorithm works can be found in the Appendix sec:generalProblem . We do,
however, detail Bregman projections, a key step in our specific algorithms in this section.
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Definition 1. Given a convex function f(x) : S → R whose gradient is defined on all of S, we define its generalized
Bregman distance Df : S × S → R as follows: Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉.
Definition 2. Given a strictly convex function f , a closed convex set C, and a point y, the projection of y onto C with
respect to Df is a point x∗ ∈ dom(f) such that

x∗ = arg min
x∈C∩dom(f)

Df (x, y).

3 ALGORITHMS AND ANALYSIS

In this section, we present our algorithm that we will use to solve metric constrained problems and state its convergence
behavior. The detailed proofs can all be found in the Appendix 8.

3.1 THE ALGORITHM

Our method is an iterative one and is presented in Algorithm 1. Each iteration consists of three phases. In the first
phase, we obtain1 a list of violated metric constraints L. If we have additional constraints represented in A, A is a list
corresponding to these hyperplanes. In the second phase, we merge L(ν), the list of constraints we have been keeping
tracking of up to the νth iteration, with L and project onto each of the constraints in the list L(ν) ∪ L ∪ A iteratively.
Finally, in the third phase, we forget some constraints.

Algorithm 1 General Algorithm.

1: function F(f )
2: L(0) = ∅, z(0) = 0. Initialize x(0) so that∇f(x(0)) = 0.
3: while Not Converged do
4: L = METRIC VIOLATIONS(xν)

5: L̃(ν+1) = L(ν) ∪ L ∪ A
6: x(ν+1) = Project(x(ν), L̃(ν+1))
7: L(ν+1) = Forget(L̃(ν+1))

return x
8:
9: function METRIC VIOLATIONS(d)

10: L = ∅
11: Let d(i, j) be the weight of shortest path between nodes i and j or∞ if none exists.
12: for Edge e = i(, j) ∈ E do
13: if w(i, j) > d(i, j) then
14: Let P be the shortest path between i and j
15: Add C = P ∪ {(i, j)} to L

return L

The project and forget steps for algorithm are presented in Algorithm 2. Let us step through the code to understand
intuitively its behavior. Let Hi = {x : 〈ai, x〉 ≤ bi be a constraint and x the current iterate. The first step is to calculate
x∗ and θ. Here x∗ is the projection of x onto the boundary of Hi and θ is a “measure” of how far x is from x∗. However,
θ can be any real number and so we examine two cases: θ positive or negative.

It can be easily seen that θ is negative if and only if the constraint is violated. In this case, we have c = θ because (as
we will see in proof) the algorithm always maintains zi ≥ 0. Then on line 5, we compute the projection of x onto Hi.
Finally, since we corrected x for this constraint, we add |θ| to zi. Since each time we correct for Hi, we add to zi, we
see that zi stores the total corrections made for Hi.

On the other hand, if θ is positive, this constraint is satisfied. In this case, if we also have that zi is positive; i.e., we
have corrected for Hi before, then we have over compensated for this constraint and, thus, we must undo some of the
corrections. If c = zi, then we undo all of the corrections and zi is set to 0. Otherwise, if c = θ we only undo part of
the correction.

1In the general formulation of the algorithm in the Appendix 6, this list is obtained by querying a separation oracle with one of
two properties. See the Appendix for a detailed discussion.
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The forget step is relatively easy: given a constraint Hi, we check if zi = 0. If zi = 0, then this means we have not
done any net corrections for this constraint and we can forget about it; i.e., delete it from L(ν).

Algorithm 2 Project and Forget algorithms.

1: function PROJECT(x, z, L)
2: for Hi = {y : 〈ai, y〉 = bi} ∈ L do
3: Find x∗, θ by solving ∇f(x∗)−∇f(x) = θai and x∗ ∈ Hi

4: ci = min (zi, θ)
5: x← such that ∇f(xn+1)−∇f(x) = ciai
6: zi ← zi − cireturn x, z
7: function FORGET(x, z, L)
8: for Hi = {x : 〈ai, x〉 = bi} ∈ L do
9: if zi == 0 then Forget Hi

return L

In general, calculating the Bregman projection (line 3) cannot be done exactly. See Dhillon & Tropp (2007) for a
general method to perform the calculation on line 3 and for an analytic formula for when f is a quadratic function.

3.2 CONVERGENCE ANALYSIS

Now that we have specified the algorithm, we establish a few crucial theoretical properties. The first is that our algorithm
is guaranteed to converge to the global optimum solution. In fact, we also show that asymptotically, our error decreases
at an exponential rate. These main theoretical results can be summarized by the following theorem.
Theorem 1. If f ∈ B(S), Hi are strongly zone consistent with respect to f 2, and ∃x0 ∈ S such that∇f(x0) = 0, then

1. Then any sequence xn produced by Algorithm 1 converges (with probability 1) to the optimal solution of
problem 2.1.

2. If x∗ is the optimal solution, f is twice differentiable at x∗, and the Hessian H := Hf(x∗) is positive
semidefinite, then there exists ρ ∈ (0, 1) such that

lim
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ (3.1)

where ‖y‖2H = yTHy.

Proof. The proof of this theorem has been moved to the supplementary material section.

The proof of Theorem 1 also establishes another important theoretical property.
Proposition 1. If ai is an inactive constraint, then (with probability 1) zνi = 0 for the tail of the sequence.

Corollary 1. Under the assumptions for part (2) of Theorem 1, we have that the sequence zn → z∗ also converges.

These properties are important as they permit the following interpretation of our algorithm. The algorithm spends the
initial few iterations identifying the active constraints from amongst a large number of constraints. The algorithm then
spends the remainder of the iterations finding the optimal solution with respect to these constraints. This ability to find
the set of active constraints is of the main advantages of our algorithm.

3.3 STOCHASTIC VARIANT

In some problems, we do not optimize over the whole of MET(G) but a subset, as is the case in ITML. In such
problems, we have constraints defined using subsets of the data points and as we may have many data points, we
may have considerably more constraints than we want to examine. For this reason, we present a stochastic version of

2This is a technical condition and is discussed in the appendix refsec:genealProblem. In the case of our problems this is true
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our algorithm that can be used in these cases. Instead of calling METRIC VIOLATION to get a list of metric violated
constraints, we randomly sample from our constraints. In this version, at each iteration, we choose a random set of
constraint and project onto these constraints and the ones we remember from before, and then forget some constraints.
The advantage this has over similar stochastic methods such Wang et al. (2015) is that as we sample constraints, the list
L(ν) keeps track of the important constraints that we have seen so far. In this case, we have the following convergence
result.
Theorem 2. If f ∈ B(S), Hi are strongly zone consistent with respect to f , and ∃x0 ∈ S such that ∇f(x0) = 0, then
with probability 1 any sequence xn produced by the stochastic algorithm converges to the optimal solution of problem
2.1. Furthermore, if x∗ is the optimal solution, f is twice differentiable at x∗, and the Hessian H := Hf(x∗) is positive
semidefinite, then there exists ρ ∈ (0, 1) such that with probability 1,

lim
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ.

4 EXPERIMENTS

To demonstrate the effectiveness of our method in solving metric constrained problems, we solve large instances of
each of the problem. More details3 about each of the experiments can be found in the Appendix 9.

4.1 WEIGHTED CORRELATION CLUSTERING ON GENERAL GRAPHS

4.1.1 DENSE GRAPHS

As the LP formulation for correlation clustering in Equation 2.2 has O(n3) constraints, solving the LP for large n
becomes infeasible quickly, in terms of both memory and time. Veldt et al. (2019) showed that for instances with
n ≈ 4000, standard solvers such as Gurobi ran out of memory on a 100 GB machine. On the other hand, Veldt et al.
(2019) develop a method using which they can feasibly solve the problem for n ≈ 11000. To solve the problem, they
transformation problem 2.2 into problem 4.1 for some an appropriately defined d, w̃,W . For general γ, the solution
to problem 4.1 approximates the optimal solution to 2.2. However, for large enough γ it has been shown that the two
problems are equivalent.

minimize w̃T |x− d|+ 1
γ |x− d|

TW |x− d|
subject to x ∈ MET(Kn)

(4.1)

This is the version of the LP that we solve with our algorithm. We solve this for four graphs from the Stanford sparse
network repository Leskovec & Krevl (2014). Following Veldt et al. (2019), we use the method from Wang et al. (2013)
to convert these graphs into instances of weighted correlation clustering on a complete graph. We compare our method
against Ruggles et al. (2019), a parallel version of Veldt et al. (2019), in terms of running time, quality of the solutions,
and memory usage.

We see from Table 1 that our algorithm takes less time to get a better approximation ratio, but requires more memory
per iteration. Our algorithm requires more memory because the initial few iterations find a large number of constraints.
Later, in the forget step, the algorithm forgets these constraints until the number of constraints stabilizes at a reasonable
level. Hence, our initial memory usage is much larger than our later memory usage.

To see how the number of constraints found by the oracle evolves, we plot the number of constraints found by the oracle
and the number of constraints after the forget step for the CA-HepTh graph. This plot can be seen in Figure 1. Figure 1
also shows us, as expected, the exponential decay of the maximum violation of a metric constraint.

4.1.2 SPARSE GRAPHS

For much real-world data, the graphG is larger than our previous experiments but it is also sparse. As stated, the problem
(2.2) requires O(n3) constraints and O(n2) variables. However, in practice, there are very few active constraints, as
seen in Table 2. Proposition 2 tells us that if we optimize over MET(G) instead of METn, then the quality of the
solution is not degraded. With this generalization to MET(G), the number of variables is greatly reduced but the number

3All implementations and experiments can be found at https://www.dropbox.com/sh/lq5nnhi4je2lh89/
AABUUW7k5z3lXTSm8x1hhN1Da?dl=0.
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Table 1: Comparison with Ruggles et al. (2019). We set γ = 1 and ran until the maximum violation of a metric
constraint was smaller than 0.01. We used a parallel version of the algorithm METRIC VIOLATION as our oracle. All of
the computations were done on a machine with 16 physical cores and 13 GB of RAM per core. More details about the
experiment can be found in the supplementary material section.

Graph Time Opt Ratio Avg. mem. / iteration

n Ours Ruggles et al. Speed up Ours Ruggles et al. Ours Ruggles et al.
CA-GrQc 4158 2098 s 5577 s 2.66 1.33 1.38 4.4 Gib 1.3 Gib

Power 4941 1393 s 6082 s 4.37 1.33 1.37 5.9 Gib 2 Gib
CA-HepTh 8638 9660 s 35021 s 3.62 1.33 1.36 24 Gib 8 Gib
CA-HepPh 11204 71071 s 135568 s 1.71 1.33 1.46 27.5 Gib 15 GIb

Figure 1: Left: The number of constraints is on the y axis (log scale) and the number of iterations on the x axis. Right:
Plot for the maximum violation of a metric constraint (log scale) versus iterations.

of constraints is increased. Our algorithmic approach, however, can handle this increase in the number of constraints.
Thus, we can solve the weighted correlation clustering problem for general graphs G.

Proposition 2. Let π be the projection from METn to MET(G). Then for any optimal solution x∗ to the following
problem

minimize
∑
e∈E w

+(e)xe + w−(e)(1− xe)
subject to x ∈ MET(G)

xij ∈ [0, 1], i, j = 1, ..., n
(4.2)

we have that for all x̂ ∈ π−1(x∗), x̂ is an optimal solution to 2.2.

Table 2: Results for our algorithm on larger graphs. We ran our experiment on a machine with 48 physical cores and 13
GB of RAM per core, but we only used 32 threads for the computations.

Graph n # Constraints Time Opt Ratio # Active Constraints Iters.

Slashdot 82140 5.54× 1014 46.7 hours 1.78 384227 145
Epinions 131,828 2.29× 1015 121.2 hours 1.77 579926 193

Since the weighting of the edges does not affect the size of the linear program that needs to be solved, we tested our
algorithm on signed graphs to get an estimate of the running time for the algorithm. We took two graphs from Leskovec
& Krevl (2014). These graphs are much bigger instances than our previous experiments and have 82140 nodes and
131,828 nodes, respectively. Even if we use the parallel version of Veldt et al. (2019), based on the average time it took
for a single iteration for the CA-HepPh graph, it would take an estimated two days for a single iteration for a graph with
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n ≈ 80, 000. Since most graphs require at least 100 iterations, Veldt et al. (2019); Ruggles et al. (2019) cannot be used
to solve problems of this magnitude. Other methods of solving the LP are also not feasible as they run out of memory
on much smaller instances.

As we can see from Table 2 these instances have over 500 trillion constraints, but the number of active constraints is
only a tiny fraction of the number of active constraints. Thus, using our approach we can solve the weighted correlation
clustering problem on much larger graphs than ever before and this is possible because the graphs are sparse. That is,
our oracle finds violated cycle inequalities relatively quickly and, since we forget inactive constraints, we project onto
only a relatively small number of constraints. Thus, each iteration is done relatively quickly. In this experiment, each
iteration took 500 to 3000 seconds.

4.2 METRIC NEARNESS

To do a head to head comparison against the algorithm presented in Brickell et al. (2008), we generated two types of
random weighted complete graphs. For type one graphs, for each edge e we set w(e) = 1 with probability 0.8 and
and w(e) = 0 with probability 0.2. For type two graphs, we let w(e) ∼ N (0, 1). For both types of graphs, we ran
both algorithms until the distance between the current iterate and its optimal decrease only solution (see Brickell et al.
(2008)) was smaller than one. The computations were done on a machine with four physical cores with 13 GB of
memory per core.

Figure 2: The red line is the mean running time over 5 samples for the algorithm from Brickell et al. (2008). The blue
line is the running mean time for our algorithm. On the left we have the running times for type one graphs and on the
right we have the running times for type two graphs.

We can see from Figure 2 that as n grows, our algorithm outperforms the algorithm from Brickell et al. (2008). We also
see that our algorithm has less variability in its running time. Additionally, since we forget constraints, we are interested
in the number of active constraints for these problems. From our experiments, we see that for type one graphs, our
algorithm consistently returns n2/2 constraints, and for type two graphs, consistently returns n2 constraints.

In general, Brickell et al. (2008)’s algorithm works for G = Kn only. For real-world data, we may not have full
information about the interactions between data points; such relations may be sparse. Therefore, we do not restrict
ourselves to finding the closest point in METn when seeking a metric. Instead, we want to find the closest point in
MET(G) where G is the graph representing the interactions for which we have information. As seen in Section 4.1.2
we can solve the problem when G is sparse.

4.3 METRIC LEARNING

For the final problem, we solve a variant of the metric learning problem, ITML. To do a head to head comparison
against Davis et al. (2007), we implemented their algorithm in Julia. As the algorithm from Davis et al. (2007) doesn’t
solve the complete linear program, only an approximation, we compare our algorithms on the quality of the solution.

For each data set, we uniformly at random choose 80% of the data points to be the training set and the remaining to be
the test set. We then let the similar pairs S be pairs that had the same label and the dissimilar pairs D be all of the other
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pairs. For the algorithm from Davis et al. (2007), as suggested in the paper, we randomly sampled 20c2 constraints,
where c is the number of different classes and ran the algorithm so that it performed about 106 projections.

Because the algorithm from Davis et al. (2007) is also based on Bregman projections, to do a fair head to head
comparison, we limit our selves to the same number of projections and, on each iteration, randomly sampled 2× 105

constraints, 105 from S and 105 from D. We then ran the algorithm for 10 iterations. Note when sampling constraints
we allowed repetition. That is, if a constraint was sampled k times during an iteration, we projected onto it k times.

Table 3: Table comparing the testing accuracy of PROJECT AND FORGET and ITML. Here the accuracy for ITML is
the average over 100 trials.

Algorithm Banana Ionsphere Coil2000 Letter Penbased Spambase Texture

Project and Forget 0.88679 0.90000 0.93842 0.90250 0.97408 0.93587 0.99909
ITML 0.88816 0.86985 0.93842 0.92852 0.99039 0.90713 0.98390

The accuracy reported in Table 3 is based on one run of our algorithm since we have a theoretical guarantee that we
converge to the optimal solution. However, since there is a great amount of variability in the constraints selected for the
algorithm from Davis et al. (2007), we ran their algorithm 100 times and report the mean accuracy. As it can be seen
from the table, in half cases our algorithm has better test accuracy as we solve the complete linear program.

These results are interesting as both methods are guaranteed theoretically to converge to their optimal solution; the
difference in accuracy is due to the difference in the set of constraints being considered. We conclude that in the cases
ITML does better on average, it indicates that subsampling the set of constraints, rather than using all of constraints,
leads to lower generalization error. To verify that this difference in performance highlighted a difference in problems
and not in convergence of the different algorithms, we ran PROJECT AND FORGET for 105 iterations, where we sample
2× 103 constraints per iteration and did not see any significant improvement in the accuracy.

5 FUTURE WORK

In conclusion we see that our algorithm PROJECT AND FORGET can be used to solve not only large scale versions of
three metric constrained problems but also opens many avenues for future work.

The first direction is motivated by ITML. As we see in Table 3, sometimes it is better to select only a small subset of the
constraints rather than computing with all of them. It is an interesting question whether we can determine what inherent
properties of the data set result in this phenomenon. If we can answer this, we can reduce the number of constraints by
several orders of magnitude.

Another avenue of work that this algorithm opens is in learning better, more general metrics. Many existing metric
learning algorithms learn a linear transform of Euclidean space and then use this transformed space to obtain a more
relevant metric. Using our technique, however, we can directly learn a Euclidean metric that optimizes the objective
function which we could then embed into Euclidean space using multidimensional scaling or some other embedding
technique. We are also no longer restricted to Euclidean metrics, but can learn hyperbolic and tree metrics as well,
getting better metric representations of our data. With these techniques, we would gain a better understanding the space
a data set lies in and a better, usable metric representation.
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6 CONVEX PROGRAMMING

As we mentioned in main body of the paper, there is a much more general formulation of the metric constrained
optimization problems and a correspondingly general variant of the algorithm. We present that setting below and detail
the convergence results in the following section.

Given a strictly convex function f , and a finite family of half-spaceH = {Hi} such that Hi = {x : 〈ai, x〉 ≤ bi}, we
want to find the unique point x∗ ∈

⋂
iHi =: C that minimizes f . That is, if we set A to be the matrix whose rows are

ai and b be the vector whose coordinates are bi we seek
minimize f(x)
subject to Ax ≤ b (6.1)

We refer to each Hi as a constraint set and C as the feasible region. We shall assume that C is not empty, i.e., there is
at least one feasible point. In general, we can represent any half-space by a linear inequality.

In general, since A is an extremely large matrix, computing A or writing A down is not computationally feasible for
many large instances of the problem. Therefore, we access the constraint sets only through an oracle that has one of the
two following separation properties.
Property 1. Q is a deterministic separation oracle for a family of half-spaces H, if there exists a positive, non-
decreasing, continuous function φ, with φ(0) = 0, such that on input x ∈ Rd, Q either certifies x ∈ C or returns a list
L ⊂ H such that

max
C̃∈L

dist(x, C̃) ≥ φ(dist(x,C)).

Property 2. Q is a random separation oracle for a family of half-spacesH, if there exists some distribution D and a
lower bound τ > 0, such that on input x ∈ Rd, Q returns a list L ⊂ H such that

∀H̃ ∈ H, P rD[H̃ ∈ L] ≥ τ.

For the random oracle, we do not need it to decide whether x ∈ C, so this oralce can be used to solve optimization
problems over polytopes for which deciding membership is NP-hard.

In addition our method works for a rich class of functions known as Bregman functions.
Definition 3. A function f : Λ→ R is called a Bregman function if there exists a non-empty convex set S such that
S ⊂ Λ and the following hold:

(i) f(x) is continuous, strictly convex on S, and has continuous partial derivatives in S.
(ii) For every α ∈ R, the partial level sets Lf1 (y, α) := {x ∈ S : Df (x, y) ≤ α} and Lf2 (x, α) := {y ∈ S :

Df (x, y) ≤ α} are bounded for all x ∈ S, y ∈ S.
(iii) If yn ∈ S and lim

n→∞
yn = y∗, then lim

n→∞
Df (y∗, yn) = 0.

(iv) If yn ∈ S, xn ∈ S, lim
n→∞

Df (xn, yn) = 0, yn → y∗, and xn is bounded, then xn → y∗.

We denote the family of Bregman functions by B(S). We refer to S as the zone of the function and we take the closure of
the S to be the domain of f .
Definition 4. We say that a hyperplane Hi is strongly zone consistent with a respect to a Bregman function f and its
zone S, if for all y ∈ S and for all hyperplanes H , parallel to Hi that lie in between y and Hi, the Bregman projection
of y onto H lies in S instead of in S.

Next, we briefly discuss under what assumptions can we solve solve our optimization problem and what these
assumptions mean.
Assumption 1. f(x) is a Bregman function.

This class of function includes many natural objective functions, including f(x) = −
∑n
i=1 xi log(xi) with zone

S = Rn+ (here f is defined on the boundary of S by taking the limit) and f(x) = 1
p‖x‖

p
p for p ∈ (1,∞). The `p norms

for p = 1,∞ are not Bregman functions but can be made Bregman functions by adding a quadratic term. That is,
f(x) = cTx is a not Bregman function, but cTx+ xTQx for any positive definite Q is a Bregman function.

Additionally, strongly convex functions and Legendre functions are related to Bregman functions, but neither class
implies the other. See Bauschke & Lewis (2000) for an example and a more in-depth discussion.
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Assumption 2. All hyperplanes inH are strongly zone consistent with respect to f(x).

This assumption is used to guarantee that when we do a projection the point we project onto lies within our domain.
This is not too restrictive. For example, all hyperplanes are strongly zone consistent with respect to the objective
functions f(x) = 0.5‖x‖2 and f(x) = −

∑
i xi log(xi).

Assumption 3. C is non-empty.

This is needed to make sure that the algorithm converges.

7 THE GENERAL ALGORITHMS

To set the stage for subsequent discussions, we present the general structure of all of our algorithms. They are all
iterative and, in general, are run until some convergence criterion has been met. The convergence criterion depends
largely on the specific application for which the algorithm is tailored. For this reason, we postpone the discussion of the
convergence criterion until the applications section.

Each iteration consists of three phases, as shown in algorithm 3. In the first phase, we query our oracleQ to obtain a list
of constraints L. In the second phase, we merge L(ν), the list of constraints we have been keeping tracking of up to the
νth iteration, with L and project onto each of the constraints in the list L(ν) ∪ L iteratively. Finally, in the third phase,
we forget some constraints.

Algorithm 3 General Algorithm.

1: function F(Q, f )
2: L(0) = ∅, z(0) = 0. Initialize x(0) so that∇f(x(0)) = 0.
3: while Not Converged do
4: L = Q(xν)

5: L̃(ν+1) = L(ν) ∪ L
6: x(ν+1) = Project(x(ν), L̃(ν+1))
7: L(ν+1) = Forget(L̃(ν+1))

return x

7.1 PROJECT AND FORGET ALGORITHMS

The project and forget steps for algorithm are presented in Algorithm 4. Let us step through the code to understand the
behavior of the algorithm. Let Hi = {x : 〈ai, x〉 ≤ bi be our constraint and x our current iterate. The first thing we do
is calculate x∗ and θ. Here x∗ is the projection of x onto the boundary of Hi and θ is a “measure” of how far x is from
x∗. However, θ can be any real number. Let us discuss separately the cases θ positive and negative below.

It can be easily seen Censor & Zenios (1997) that θ is negative if and only if the constraint is violated. In this case,
c = θ. This is because (as we will see in proof) we will always maintain that zi ≥ 0. Then on line 5, we just compute
the projection of x onto Hi. Finally, since we corrected x for this constraint, we add |θ| to zi. Since each time we
correct for Hi, we add to zi, we see that zi stores how the total corrections made for Hi.

On the other hand, if θ is positive, this means that this constraint is satisfied. In this case, if we also have that zi is
positive, i.e., we have corrected for Hi before, then we have over compensated for this constraint. Hence we must do
undo some of the corrections. Thus, if c = zi then we undo all of the corrections and zi is now 0. Otherwise if c = θ
we only undo part of the correction.

The FORGET step is relatively easy, given a constraint Hi we just need to check if zi = 0. If zi = 0, then this means we
have not done any net corrections for this constraint. Thus, we can forget about it; i.e., delete it from L(ν).

In general, calculating the Bregman projection (line 3) cannot be done exactly. See Dhillon & Tropp (2007) for a
general method to perform the calculation on line 3 and for an analytic formula for when f is a quadratic function.

14



Algorithm 4 Project and Forget algorithms.

1: function PROJECT(x, z, L)
2: for Hi = {y : 〈ai, y〉 = bi} ∈ L do
3: Find x∗, θ by solving ∇f(x∗)−∇f(x) = θai and x∗ ∈ Hi

4: ci = min (zi, θ)
5: x← such that ∇f(xn+1)−∇f(x) = ciai
6: zi ← zi − cireturn x, z
7: function FORGET(x, z, L)
8: for Hi = {x : 〈ai, x〉 = bi} ∈ L do
9: if zi == 0 then Forget Hi

return L

7.2 CONVERGENCE ANALYSIS

Now that we have specified our algorithm, we need to establish a few crucial theoretical properties. The first is that
under assumptions 1,2,3 our algorithm is guaranteed to converge to the global optimum solution. In fact, we also show
that asymptotically, our error decreases at an exponential rate. These main theoretical results can be summarized by the
following theorem.
Theorem 3. If f ∈ B(S), Hi are strongly zone consistent with respect to f , and ∃x0 ∈ S such that∇f(x0) = 0, then

1. If the oracle Q satisfies property 1 (property 2), then any sequence xn produced by the above algorithm
converges (with probability 1) to the optimal solution of problem 6.1.

2. If x∗ is the optimal solution, f is twice differentiable at x∗, and the Hessian H := Hf(x∗) is positive
semidefinite, then there exists ρ ∈ (0, 1) such that

lim
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ (7.1)

where ‖y‖2H = yTHy. In the case when we have an oracle that satisfies property 2, the limit in 7.1 holds with
probability 1.

Proof. The proof of this theorem has been moved to the supplementary material section.

The proof of Theorem 3 also establishes another important theoretical property.
Proposition 3. If ai is an inactive constraint, then (with probability 1) zνi = 0 for the tail of the sequence.

Corollary 2. Under the assumptions for part (2) of Theorem 3, we have that the sequence zn → z∗ also converges.

These properties are important as they permit the following interpretation of our algorithm. The algorithm spends the
initial few iterations identifying the active constraints from amongst a large number of constraints. The algorithm then
spends the remainder of the iterations finding the optimal solution with respect to these constraints. This ability to find
the set of active constraints is one of the main advantages of our algorithm.

7.3 THE METRIC CONSTRAINED VERSIONS

First we can easily see that function METRIC VIOLATION in Algorithm 1 is an oracle that satisfies Property 1
Proposition 4. Function METRIC VIOLATION in Algorithm 1 is an Θ(n2 log(n) + n|E|) oracle that has Property 1

Proof. The first step in METRIC VIOLATION is to calculate the shortest distance between all pairs of nodes. This can
be done using Dijkstra’s algorithm in Θ(n2 log(n) + n|E|) time. Then if the shortest path between any adjacent pair of
vertices is not the edge connecting them, then the algorithm has found a violated cycle inequality. Note that if no such
path exists, then all cycle inequalities have been satisfied. Hence our point is within the metric polytope. Thus, we have
an oracle that separates the polytope. However, we want an oracle that satisfies property 1.
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Given a point x and a hyperplane HC,e, defined by some cycle C and an edge e, the deficit of this constraint is given by
the following formula.

d(C, e) = x(e)−
∑

ẽ∈C,ẽ 6=e

x(ẽ)

If this quantity is positive, then x violates this constraint. In this case, the distance from x to this constraint is d(C,e)
|C| .

While the above oracle does not find the cycle C and edge e that maximize this distance, it does find the cycle C and
edge e that maximize d(C, e). Since |C| ∈ [1, n], if we let φ(x) = x/n, we see that oracle satisfies property 1.

Similarly we can see that uniformly randomly sampling constraints is an oracle that satisfies Property 2. Thus we can
see that both algorithms presented in the main text are special cases of the above algorithm.

7.4 TRULY STOCHASTIC VARIANT

Now Algorithm 4 can be used with an oracle that satisfies property 2. However, this is not a completely stochastic
algorithm. We still have to keep track of the constraints that we have seen and carefully pick which constraints to
forget. Nevertheless, we can modify our forget step to forget all constraints and obtain a truly stochastic version of the
algorithm. In this version, at each iteration, we choose a random set of constraint and project onto these constraints
only, independently of what constraints were used in previous iterations. We cannot, however, forget the values of the
dual variables. In this case, we have the following convergence result.
Theorem 4. If f ∈ B(S), Hi are strongly zone consistent with respect to f , and ∃x0 ∈ S such that ∇f(x0) = 0,
then with probability 1 any sequence xn produced by the above truly stochastic algorithm converges to the optimal
solution of problem 6.1. Furthermore, if x∗ is the optimal solution, f is twice differentiable at x∗, and the Hessian
H := Hf(x∗) is positive semidefinite, then there exists ρ ∈ (0, 1) such that with probability 1,

lim inf
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ.

This version of our algorithm is very similar to the algorithms presented Nedić (2011); Wang et al. (2015). The major
difference being that we do not need to a gradient descent step. Instead we maintain the KKT conditions, by keeping
track of the dual variables and doing dual corrections.

However, in practice using 4 with the random oracle tends to produce better results. This is because by not forgetting
the active constraints that we have seen, instead of hoping that we sample them, we speed up convergence significantly.

8 CONVERGENCE RESULTS

In this section, we present the proofs of Theorems 3 and 4. Because the proof of Theorem 3 is quite technical and
involves two different types of separation oracles, we split it into several parts. In Subsections 8.1 and 8.2, we prove the
first part of Theorem 3 for separation oracles with property 1 and 2, respectively. In Subsection 8.3, we prove the second
part of Theorem 3 (also subdividing this proof into several cases). Finally, in Subsection 8.4 we prove Theorem 4,
noting only the changes necessary from the proof of Theorem 3.

8.1 PROOF OF PART 1 OF THEOREM 3 FOR ORACLES THAT SATISFY PROPERTY 1

We remind the reader of the notation established in Section 2. The vector of variables over which we optimize is x,
f is the objective function, Hi = {y : 〈y, ai〉 = bi} are the hyperplanes that lie on the boundaries of the half-space
constraints, L is the Lagrangian, z is the dual variable, A is the matrix with rows given by ai, and b is the vector with
rows bi.

Next, we clarify the indexing of the variables. Algorithm 3 has three steps per iteration and during the PROJECT step
there are multiple projections. When we want to refer to a variable after the νth iteration, it will have a superscript with
a ν. When we refer to a variable after the n(i, k)th projection, we use the superscript n(i, k). Finally, before the nth
projection, i(n) will represent the index of the hyperplane onto which we project.

Finally, let R be the maximum number of constraints that our oracle Q returns. This is clearly upper bounded by the
total number of constraints, which we have assumed is finite. We are now ready to prove the first part of Theorem 3.
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Theorem 3. (Part 1) If f ∈ B(S), Hi are strongly zone consistent with respect to f , ∃x0 ∈ S, such that∇f(x0) = 0,
and the oracle Q satisfies property 1, then any sequence xn produced by Algorithm 3 converges to optimal solution of
problem 6.1.

Proof. The proof of this theorem is an adaptation of the proof of convergence for the traditional Bregman method that
is presented in Censor & Zenios (1997) whose proof entails the following four steps. The main difference between
Censor and Zenios’ proof and ours is that of the last two steps. We present the entire proof, however, for completeness.
To that end, we show that

Step 1. the KKT condition, ∇f(x) = ∇f(x0)−AT z, is always maintained,

Step 2. the sequence xn is bounded and it has at least one accumulation point,

Step 3. any accumulation point of xn is feasible (i.e., is in C), and

Step 4. any accumulation point is the optimal solution.

Step 1. The KKT condition,∇f(x) = ∇f(x0)−AT z, is always maintained.

We show by induction that for all n, ∇f(xn) = −AT zn. In the base case, z = 0, thus, ∇f(x0) = 0 = −AT z0.
Assume the result holds for iteration n, then

∇f(xn+1) = ∇f(xn) + cnai(n) = −AT zn +AT cnei(n) = −AT (zn − cnei(n)) = −AT zn+1

We know that cn ≤ zni(n); therefore, we maintain zn+1 ≥ 0 as well.

Step 2. The sequence xn is bounded and has an accumulation point.

To show that xn is a bounded, we first show that
(
L(xn, zn)

)
n

is a monotonically increasing sequence bounded from
above. This observation results from the following string of equalities:

L(xn+1, zn+1)− L(xn, zn) = f(xn+1)− f(xn) + 〈zn+1, Axn+1 − b〉 − 〈zn, Axn − b〉
= f(xn+1)− f(xn) + 〈AT zn+1, xn+1〉 − 〈AT zn, xn〉 − 〈zn+1 − zn, b〉
= f(xn+1)− f(xn)− 〈∇f(xn+1), xn+1〉+ 〈∇f(xn), xn〉+ 〈cnei(n), b〉
= f(xn+1)− f(xn)− 〈∇f(xn) + cnai(n), x

n+1〉+ 〈∇f(xn), xn〉+ cnbi(n)

= f(xn+1)− f(xn)− 〈∇f(xn), xn+1 − xn〉 − 〈cnai(n), x
n+1〉+ cnbi(n)

= Df (xn+1, xn)︸ ︷︷ ︸
(1)

+ cn(bi(n) − 〈ai(n), x
n+1〉)︸ ︷︷ ︸

(2)

Next, we show that both terms (1) and (2) are non-negative. We know that Df is always non-negative so we only need
to consider term (2). There are two cases: (i) if cn = θn, then xn+1 ∈ Hi(n) and bi(n) − 〈ai(n), x

n+1〉 = 0. On the
other hand, (ii) if cn = zni(n), then bi(n) − 〈ai(n), x

n+1〉 ≥ 0 and cn ≥ 0. We can conclude that the difference between
successive terms of L(xn, zn) is always non-negative and, hence, it is an increasing sequence.

To bound the sequence, let y be a feasible point (i.e., Ay ≤ b). (Note that this is the only place we use the assumption
that the feasible set is not empty.) Then

Df (y, xn) = f(y)− f(xn)− 〈∇f(xn), y − xn〉
= f(y)− f(xn) + 〈zn, Ay −Axn〉
≤ f(y)− f(xn) + 〈zn, b−Axn〉.

Rearranging terms in the inequality, we obtain a bound on the sequence L(xnzn) from above:

L(xn, zn) = f(xn) + 〈zn, Axn − b〉 ≤ f(y)−Df (y, xn) ≤ f(y).
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Since the sequence (L(xn, zn))n∈N is increasing and bounded, it is a convergent sequence and the difference between
successive terms of the sequence goes to 0. Therefore,

lim
n→∞

Df (xn+1, xn) = 0.

From the previous inequality we also have that

Df (y, xn) ≤ f(y)− L(xn, zn) ≤ f(y)− L(x0, z0) =: α.

Using part (ii) of the definition of a Bregman function, we see that Lf2 (y, α) is bounded and since (xn)n∈N ∈ Lf2 (y, α),
xn is a bounded sequence with an accumulation point.

Step 3. Any accumulation point x∗ of xn is feasible (i.e., is in C).

This is the only step in which we use the fact that our oracle satisfies property 1. Let x∗ be some accumulation point
for xn and assume for the sake of contradiction that Ax∗ 6≤ b. Let Ã, b̃ be the maximal set of constraints that x∗ does
satisfy; i.e.,

Ãx∗ ≤ b̃.
Let (xnk) be a subsequence such that xnk → x∗ and H be a constraint that x∗ violates. Define ε as

ε := φ(d(x∗, H)) > 0. (8.1)

Because xn is bounded, xnk is a convergent subsequence xnk → x∗, and Df (xn+1, xn)→ 0, by equation 6.48 from
Censor & Zenios (1997) we see that for any t,

xnk+t → x∗.

In particular, the proposition holds for all t ≤ 2|Ã|+ 2 =: T .

Let us consider an augmented subsequence xnk , xnk+1, . . . , xnk+T , i.e., add in extra terms. Note that if nk+1 − nk →
∞, then this augmented sequence is not the entire sequence. We want to show that infinitely many of the terms in our
augmented sequence satisfy a constraint not in Ã. Should this hold, then because we have only finitely many constraints,
there exists at least one single constraint ã that is not in Ã, such that infinitely many terms of the augmented sequence
all satisfy the single constraint ã. Finally, because our augmented sequence converges to x∗ and we are only looking at
closed constraints, we must have that x∗ also satisfies the constraint ã. Thus, we would arrive at a contradiction of the
maximality of Ã and x∗ would have to be in the feasible region.

To see that infinitely many of the terms in our augmented sequence satisfy a constraint not in Ã, let νk be the iteration
in which the nkth projection takes place. Note that we can assume without loss of generality that in any iteration, we
project onto any constraint at most once. If this were not the case and we projected onto constraints more often, we
would simply change the value of T to reflect this larger number of projections. Therefore, we have two possibilities for
which iteration the nk + |Ã|+ 1st projection takes place and we consider each case below.

Case 1: The nk + |Ã| + 1st projection, infinitely often, takes places in νkth iteration. Since we project onto each
constraint at most once, one of the projections between the nk and nk + |Ã|+ 1st projection must be onto a hyperplane
defined by a constraint not represented in Ã and amongst the terms xnk , xnk+1, . . . , xnk+|Ã|+1, we must have a term
that satisfies a constraint not in Ã infinitely often.

Case 2: The nk + |Ã|+ 1st projection, infinitely often, takes place in νk + 1st iteration or later.

If this projection happens in νk + 1st iteration, consider the iteration in which we do the nk + T th projection. If this
projection also takes place in the νk + 1st iteration, then we have done at least |Ã| + 1 projections in the νk + 1st
iteration. Hence, amongst xnk+|Ã|+1, . . . , xnk+T , we must have a term that satisfies a constraint not in Ã.

If the nk + |Ã|+ 1st or the nk +T th projection happens in the νk + 2nd iteration or later, then between the nkth and the
nk + T th projection, we must have projected onto all constraints returned by oracle in the νk + 1st iteration. Therefore,
we must have projected onto some hyperplane defined by â (for some constraint Ĉ) such that

d̂nk := d(xνk+1, Ĉ) ≥ φ(d(xνk+1, C)).

Then there exists a sufficiently small δ > 0, depending on Ã, b̃, x∗, such that if ‖y − x∗‖ ≤ δ, then

Ãy ≤ b̃+
ε

2
1,
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where 1 is vector of all ones.

Since our augmented sequence converges to x∗, we know that there exists a K, such that for all k ≥ K and t ≤ T ,
‖xnk+t − x∗‖ < δ. That is, for all k ≥ K and t ≤ T ,

Ãxnk+t ≤ b̃+
ε

2
1. (8.2)

Note xνk+1 is within our augmented sequence so if â is infinitely often in Ã, by equation 8.2, we have that infinitely
often

ε

2
≥ d̂nk .

Finally, because the augmented sequence converges to x∗,

ε = φ(d(x∗, H)) ≤ φ(d(x∗, C)) = lim
k→∞

φ(d(xνk+1, C)) ≤ lim
k→∞

d̂nk ≤ ε

2
.

The first inequality follows from the fact that φ is non-decreasing. Therefore, â is not in Ã infinitely often and amongst
xnk , xnk+1, . . . , xnk+T , we must have a term that satisfies a constraint not in Ã infinitely often. Thus, there is a
constraint ã not in Ã that is satisfied by infinitely terms of our augmented sequence and we have a contradiction.

Step 4. Optimality of accumulation point.

Because we have established the feasibility of all accumulation points, we show next that any accumulation point
xnk → x∗ is optimal.

First, we show that there exists an N , such that for any k ≥ N , and for any ai such that

〈ai, x∗〉 < bi,

we have znki = 0. To do so, we assume for the sake of contradiction that for some ai, our sequence znki is infinitely
often not 0. The algorithm then projects onto this constraint infinitely often. Therefore, the point xnk lies on the
hyperplane defined by ai, bi infinitely often. Thus, the limit point x∗ must lie on this hyperplane as well and we have a
contradiction.

Now we know that for any constraint ai, we either have that 〈ai, x∗〉 = bi or we have that znki = 0 for the tail of the
sequence. Thus, for sufficiently large k,

〈znk , Axnk − b〉 = 〈AT znk , xnk − x∗〉 = 〈−∇f(xnk), xnk − x∗〉 = Df (x∗, xnk)− f(x∗) + f(xnk).

Next, by part (iii) of the definition of a Bregman function,

lim
k→∞

Df (x∗, xnk) = 0.

Finally,
lim
k→∞

L(xk, zk) = lim
k→∞

f(xnk) + 〈znk , Axnk − b〉 = f(x∗).

We also know that L(xk, zk) ≤ f(y) for any feasible y. Thus, f(x∗) ≤ f(y). Hence x∗ is an optimal solution. Now
since f is strictly convex, this optimal point is unique. Therefore, we have that (xn)n∈N has only one accumulation
point and xn → x∗.

An important fact consequence of this proof is the following proposition:

Proposition 3. If ai is an inactive constraint, then there exists a N , such that for all n ≥ N , we have that zni = 0. That
is, after some finite time, we never project onto inactive constraints ever again.

8.2 PROOF OF PART 1 OF THEOREM 3 FOR ORACLES THAT SATISFY PROPERTY 2

In this subsection, we prove part 1 of Theorem 3 for oracles that satisfy property 2. We make note of the key ideas in
this proof as they are useful in the proof of the truly stochastic variant. To be precise, we prove:

Theorem 1. (Part 1) If f ∈ B(S), Hi are strongly zone consistent with respect to f , ∃x0 ∈ S, such that∇f(x0) = 0,
and the oracle Q satisfies property 2, then with probability 1, any sequence xn produced by Algorithm 3 converges to
optimal solution of problem 6.1.
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Proof. Assume that we have an oracle that satisfies property 2. A careful reading of the previous proof shows that if we
switch out an oracle with property 1 for an oracle with property 2, then we only need to adjust step 3 of our proof. The
crucial part of that step was showing that for our augmented sequence, we had infinitely many terms that satisfied a
constraint not in Ã. We make the following adjustments to our analysis.

Let νk be the iteration in which the nkth projection takes place. In the previous proof, we used the property of the oracle
only when the nk + T th projection took place in the νk + 2nd iteration or a later iteration. In this case, the augmented
sequence encompasses all of the νk + 1st iteration infinitely often.

Let us choose a constraint â that is not satisfied by x∗. Because the oracle satisfies property 2, for each iteration
νk + 1, our oracle returns â with probability at least τ > 0. By the Borel Cantelli Lemma, we know that during the
selected iterations, the constraint â is, with probability one, returned infinitely often by our oracle. Thus, our augmented
sequence satisfies this constraint with probability 1 and x∗ lies in the feasible region with probability 1.

A direct consequence of this proof is the proof of the probabilistic version of Proposition 3.

Proposition 3. With probability 1, we project onto inactive constraints a finite number of times.

8.3 PROOF OF PART 2 OF THEOREM 3

The discussions in Iusem & De Pierro (1990); Iusem (1991) almost directly apply to that for our algorithm. For
completeness, we present it along with the necessary modifications. As with the traditional Bregman algorithm, we first
present the case when f(x) is quadratic. That is,

f(x) = r + sT · x+
1

2
xTHx

where H is a positive definite matrix. In this case, it is easy to see that

Df (x, y) = ‖x− y‖2H := (x− y)TH(x− y).

8.3.1 PROOF OF PART 2 OF THEOREM 3—QUADRATIC CASE

In this section, we will prove the following variation of Theorem 3.

Theorem 3. If f is a strictly convex quadratic function, Hi are strongly zone consistent with respect to f , x0 = H−1s ∈
S, and the oracle Q satisfies either property 1 or 2, then there exists ρ ∈ (0, 1) such that

lim
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ (8.3)

where ‖y‖2H = yTHy. In the case when we have an oracle that satisfies property 2, the limit in 8.3 holds with
probability 1.

We establish some notation ahead of our lemmas. Let I be the set of all active constraints. That is, if x∗ is the optimal
solution then

I = {i : 〈ai, x∗〉 = bi}.
Let S be the set of all x that satisfy these constraints (namely S = {x : ∀i ∈ I, 〈ai, x〉 = bi}). Let Hx be the
hyperplane, such that Hx represents the constraint in I that is furthest from x. Define

µ = inf
x 6∈S

d(x,Hx)

d(x, S)
.

By Iusem & De Pierro (1990), we know that µ > 0. Let U be the set of all optimal dual variables z; i.e., U = {z :
∇f(x∗) = −AT z} and let Iν = {i : zν+1

i 6= 0}.
Next, we present a few preliminary lemmas. These lemmas exist in some form or another in Iusem (1991); Iusem &
De Pierro (1990) and we present them suitably modified for our purpose. These lemmas require the following set of
assumptions about an iteration ν:
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1. ∀i 6∈ I , zνi = 0;
2. for all i 6∈ I , we do not project onto this constraint in the νth iteration; and,
3. there exists z ∈ U , such that for all i 6∈ Iν , zi = 0.

Lemma 1. Let x∗ be the optimal solution for an instance of problem 6.1. For any sequence xn → x∗ such that xn, zn
maintain the KKT conditions, there exists an M , such that for all ν ≥M , there exists a z ∈ U , such that for all i 6∈ Iν ,
we have that zi = 0.

Proof. Let Vν = {z : ∀i 6∈ Iν , zi = 0}. Then assume, for the sake of contradiction, that the result is false. That is,
there is a sequence νk such that Vνk ∩ U = ∅. Then since there finitely many different Iν (hence finitely many Vν), we
have that one of these must occur infinitely often. Thus, by taking an appropriate subsequence, we assume, without loss
of generality, that Iνk are all equal. Let V = Vνk and obtain V ∩ U = ∅.
Since V is a closed subspace, U is a closed set, and V ∩U = ∅, we must have that d(V,U) > 0. But zνk+1 ∈ V and so

d(zνk+C , U) ≥ d(V,U) > 0.

Since xν → x∗ and we maintain the KKT conditions, we have that for any z ∈ U ,

AT zν = −∇f(xν)→ −∇f(x∗) = AT z.

Thus d(zν , U)→ 0 which is a contradiction.

Lemma 2. For any sequence xn → x∗, if for a given ν, we have that the sequence satisfies assumptions (1) and (2),
then

‖xν+1 − x∗‖2Q ≤ ‖xν − x∗‖2Q −
K∑
n=k

‖xn+1 − xn‖2Q

where k and K are the indices of the first and last projection that take place in the νth iteration.

Proof. This Lemma is simply a statement about Bregman projections and so its proof requires no modification.

Before we proceed, we introduce additional notation. Let AIν , biν be the submatrix of A, b with rows from Iν and

Sν = {x : AIνkx = bIνk }.
Lemma 3. For any sequence such that xn → x∗, if for a given ν, we have that it satisfies assumptions (1), (2), and (3),
then we have that ‖xν+1 − x∗‖Q = d(xν+1, Sν).

Proof. Consider the constrained problem
min
x∈Sν

‖xν+1 − x‖2Q (8.4)

Then sufficient conditions for a pair (x, zIν ) to be optimal for this problem are

AIνx = bIν and x = xν+1 −Q−1ATIνzIν

By Proposition 3, we see that since x∗ is solution to problem 6.1, we have that AIνx
∗ = bIν . Then by assumptions and

the manner in which we do projections, we have that there exists z ∈ U , such that for all i 6∈ Iν , zi = 0 and

x∗ = xν+1 −Q−1AT (zν+1 − z)

Then since zν+1
i = 0 for all i 6∈ Iν , we have that

x∗ = xν+1 −Q−1ATIν (zν+1
Iν
− zIν )

Thus, x∗ is the optimal solution to 8.4.

Next for x 6∈ Sν , let Hν
x be the hyperplane of that is furthest from x and define

µν = inf
x 6∈Sν

d(x,Hν
x )

d(x, Sν)

Now we are ready to prove the following theorem.
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Theorem 5. Let x∗ is the optimal solution to problem 6.1. Then given ν that satisfies assumptions (1), (2), and (3), we
have that

‖xν+1 − x∗‖2Q ≤
L

L+ µ2
‖xν − x∗‖2Q

where L is the number of projections that happened in νth iteration.

Proof. By Lemma 3, for any such ν we have that xν+1 6∈ Sν (or we have converged already). Suppose constraint
j ∈ Iν defines the hyperplane Hν

xν+1 . Then by Lemma 3 and definitions of µν , µ we have the following inequality.

‖xν+1 − x∗‖ = d(xν+1, Sν)

≤ 1

µν
d(xν+1, Hν

xν+1)

≤ 1

µ
d(xν+1, Hν

xν+1)

Now since Iν = {i : zν+1
i 6= 0}, we know that during the νth iteration we must have projected onto Hν

xν+1 . Note that
this is the only place in the proof where we need the fact that we remember old constraints. Let us say that this happens
during the rth projection of the νth iteration.

Note by assumption, we satisfy the assumptions of Lemma 2. Let yr, yν+1 be the projections of xr, xν+1 onto Hν
xν+1 .

Then we see that

d(xν+1, Hν
xν+1)2 = ‖yν+1 − xν+1‖2Q

≤ ‖yr − xν+1‖2Q [yν+1 by def is the closest point]

≤

(
‖yr − xr+1‖Q +

L∑
i=r+1

‖xi − xi+1‖Q

)2

[Triangle inequality]

=

(
L∑

i=r+1

‖xi − xi+1‖Q

)2

≤

(
L∑
i=0

‖xi − xi+1‖Q

)2

≤ L
L∑
i=0

‖xi − xi+1‖2Q [ Cauchy Schwarz]

≤ L
(
‖xν − x∗‖2Q − ‖xν+1 − x∗‖2Q

)
[Lemma 2]

Thus, we get that
µ2‖xν+1x∗‖2 ≤ d(xν+1, Hν

xν+1)2 ≤ L
(
‖xν − x∗‖2 − ‖xν+1 − x∗‖2Q

)
Rearranging, we get that

‖xν+1 − x∗‖2Q ≤
L

L+ µ2
‖xν − x∗‖2Q.

As a corollary to the above theorem, we have that algorithm 1 converges linearly.

Theorem 3. If f is a strictly convex quadratic function, Hi are strongly zone consistent with respect to f , x0 = H−1s ∈
S, and the oracle Q satisfies either property 1 or 2, then there exists ρ ∈ (0, 1) such that

lim
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ (8.3)
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where ‖y‖2H = yTHy. In the case when we have an oracle that satisfies property 2, the limit in 8.3 holds with
probability 1.

Proof. Using Proposition 3, Lemma 1, and that we have finitely many constraints, we see that if ν is large enough, the
assumptions for Theorem 5 are satisfied. Taking the limit gives us the needed result.

In the case when we have an oracle that satisfies property 2, consider the product space of all possible sequences of
hyperplanes returned by our oracle. In this product space, we see that with probability 1, we generate a sequence of
hyperplanes, such that algorithm 1 converges. For any such sequence of hyperplanes, we have that 8.3 holds. Thus, the
limit in 8.3 holds with probability 1 for random separation oracles.

8.3.2 PROOF OF PART 2 OF THEOREM 3—GENERAL

The rate of convergence for the general Bregman method was established in Iusem (1991). To show this, let f̃ be the
2nd degree Taylor polynomial of f centered at the optimal solution x∗.

f̃(x) = f(x∗) +∇f(x∗)T · x+
1

2
xT · ∇2f(x∗) · x

For notational convenience, let H be the Hessian of f at x∗. Then we can see that if replace f with f̃ in 6.1 then the
optimal solution does not change. Thus, if had access to f̃ and could use this function to do our projections, then from
the quadratic case we have our result.

Thus, to get the general result, if xν is our standard iterate and x̃ν is the iterate produced by using f̃ instead of f , then
Iusem (1991) shows that ‖xν − x̃ν‖ is o(‖xν − x∗‖H). Specifically, we can extract the following theorem from Iusem
(1991).
Theorem 6. Iusem (1991) Let x∗ is the optimal solution for problem 6.1 and x̃n is the sequence produced by using the
same sequence of hyperplanes but with f̃ instead of f . Given a sequence xn produced by Bregman projections, such
that xn → x∗, and for large enough ν we satisfy assumptions (1), (2), and (3), then ‖xν − x̃ν‖ is o(‖xν − x∗‖H)

Using this we can get the general result as follows

‖xν+1 − x∗‖H ≤ ‖xν+1 − x̃ν+1‖H + ‖x̃ν+1 − x∗‖H
≤ ‖xν+1 − x̃ν+1‖H + ρ‖x̃ν − x∗‖H [Quadratic case convergence]

≤ ‖xν+1 − x̃ν+1‖H + ρ‖x̃ν − xν‖H + ρ‖xν − x∗‖H

Then diving by ‖xν+1 − x∗‖H , and using Theorem 6 to take the limit, we get that there exists ρ ∈ (0, 1) such that

lim
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ (8.3)

As with the quadratic case, we see that is an oracle satisfies property 2, then 8.3 holds with probability 1. Thus, we have
proved Theorem 3 in its complete generality.

8.4 PROOF OF THEOREM 4

In this section we prove Theorem 4 in essentially the same manner as we did for Theorem 3 and so we outline only
what changes are necessary.

Theorem 4. If f ∈ B(S), the hyperplanes Hi are strongly zone consistent with respect to f , and ∃x0 ∈ S such that
∇f(x0) = 0, then with probability 1 any sequence xn produced by the algorithm converges to the optimal solution of
problem 6.1. Furthermore, if x∗ is the optimal solution, f is twice differentiable at x∗, and the Hessian H := Hf(x∗)
is positive semidefinite, then there exists ρ ∈ (0, 1) such that with probability 1,

lim inf
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ.
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To prove Theorem 4, we need to analyze only what goes wrong if the algorithm “forgets” all of the old constraints.
First, consider the proof in the case that we converge to the optimal solution. Then, steps 1,2, and 3 are completely
unaffected by forgetting old constraints. The only step that is affected is step 4. In a previous proof, we argued that if
for some inactive constraint ai, zi is non-zero infinitely often, then we projected onto this constraint infinitely often. In
our present setting, we cannot conclude this directly as zνi > 0 does not imply that we remember ai on the νth iteration.
However, due to property 2, we know that Q returns ai with probability at least τ . Thus, again using the Borel Cantelli
Lemmas, we see that we have ai infinitely often and this iteration converges to the optimal.

To prove the second part of the theorem, we recall from Theorem 6 that we only need to analyze the case when f is a
quadratic function. Indeed, the only place where we used the fact that we remembered old constraints was in the proof
of Theorem 5 in which we needed to remember old constraints to guarantee that during the νth iteration we project onto
the constraint ai that is furthest from xν among those constraints for which zν+1

i > 0. We cannot guarantee that this
happens always but we can guarantee that it happens infinitely often.

Therefore, the conclusion of Theorem 5 holds infinitely often instead of for the tail of the sequence and we replace the
limit with a limit infimum to obtain the desired result.

9 APPLICATION DETAILS

All code, data, and outputs from the experiments can be found at https://www.dropbox.com/sh/
lq5nnhi4je2lh89/AABUUW7k5z3lXTSm8x1hhN1Da?dl=0. All code was written in Julia 1.1.0 and run
on Google Cloud Compute instances.

9.1 METRIC NEARNESS

Convergence Criterion.

One variant of the metric nearness problem is the decrease only variant, in which we are not allowed to increase the
distances and must only decrease them. This problem can solved in O(n3) time by calculating the all pairs shortest path
metric Gilbert & Jain (2017). Given xn as input, let x̂n be the optimal decrease only metric. We ran these experiments
until ‖x̂n − xn‖2 ≤ 1.

Implementations.

We implemented the algorithm from Brickell et al. (2008). We made a small modification that improves the running
time. In Brickell et al. (2008), it is recommended that we store the dual variable z as a sparse vector. However, as we do
not want the overhead of handling sparse vectors, we store z as a dense vector.

Algorithm 1 was implemented with two modifications. As we can see from algorithm ??, when the oracle finds violated
constraints, it looks at each edge in G and then decides whether there is a violated inequality with that edge. It is cleaner
in theory to find all such violated constraints at once and then do the project and forget steps. It is, however, much more
efficient in practice to do the project and forget steps for a single constraint as we find it. This approach also helps cut
down on memory usage.

The second modification is that once our oracle returns a list of constraints (note we have already projected onto these
once), we project onto our whole list of constraints again. Thus, for the constraints returned by the oracle, we project
onto these constraints twice per iteration. Note this does not affect any of the convergence results for the algorithm. The
pseudocode for this modification can be seen in Algorithm 5.

Additional Test Case.

We also tested our algorithm on an additional type of random weighted complete graph. Let uij be sampled from the
uniform distribution on [0, 1] and vij from a standard normal, then the weight for an edge e = ij is given by

wij =
⌈
1000 · uij · v2

ij

⌉
In this case, we got the following running times.
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Algorithm 5 Pseudocode for the implementation for Metric Nearness.

1: L0 = ∅, z0 = 0. Initialize x0 so that∇f(x0) = 0.
2: while Not Converged do
3: Let d(i, j) be the weight of shortest path between nodes i and j or∞ if none exists.
4: L = ∅
5: for Edge e = i(, j) ∈ E do
6: if w(i, j) > d(i, j) then
7: Let P be the shortest path between i and j.
8: Let C = P ∪ {(i, j)}.
9: Project onto C and update x, z.

10: if zC ! = 0 then
11: Add C to L.
12: L̃ν+1 = Lν ∪ L
13: xν+1, zν+1 = Project(xν , zν , L̃ν+1)
14: Lν+1 = Forget(L̃ν+1)

return x

Figure 3: The red line is the mean running time for the algorithm from Brickell et al. (2008). The blue line is the
running mean time for our algorithm. All computations were done on a machine with 4 physical cores, each with 13
GB of RAM.

9.2 CORRELATION CLUSTERING

Transforming the LP. The formulation of the LP that we solve is as follows:

minimize w̃T f + 1
γ f

T ·W · f
subject to x ∈ MET(G)

fij = |xij − dij |, (i, j) ∈ E.
(9.1)

The transformation 2.2 into 9.1 has two parts. The first part is the transformation done in Veldt et al. (2019) to obtain
the formulation presented in 4.1. To do this transformation we define w̃(e) = |w+(e)− w−(e)|. Then W is a diagonal
matrix whose entries are given by w̃. Finally, we define d as follows

dij =

{
1 w−1(e) > w+(e)

0 otherwise

The second step of the transformation, is the relaxation from x ∈ METn to x ∈ MET(G). The proof for the second is
now presented.
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Proposition 2. Let f(x) be a function whose values only depends on the values xij for e = (i, j) ∈ G and consider the
following constrained optimization problem.

minimize f(x)
subject to x ∈ MET(Kn)

(9.2)

Let π be the projection from METn to MET(G) and let f̃(π(x)) = f(x). Then for any optimal solution x∗ to the
following problem

minimize f̃(x)
subject to x ∈ MET(G)

(4.2)

we have that for all x̂ ∈ π−1(x∗), x̂ is an optimal solution to 9.2.

Proof. Here, we see that if x̃ is the minimizer of 4.2 and x∗ the minimizer of 9.2 then

f(x∗) = f̃(π(x∗)) ≥ f̃(x̃) = f(π−1(x̃))

Calculating the Approximation Ratio.

Let x̂ be the optimal solution to 4.1, then if we let R =
x̂TWx̂

2γw̃T x̂
, by Veldt et al. (2019), we have that x̂ is an

1 + γ

1 +R
approximation to the optimal solution of 2.2. This is the formula we used to calculate the approximation ratios reported
in Tables 1 and 2. For our experiments we used γ = 1.

Convergence Criterion.

We ran the experiment until the maximum violation of a metric inequality was at most 0.01. However, the two
algorithms, Ruggles et al. (2019) and ours, have different metric constraints. Specifically Ruggles et al. (2019) only
uses all constraints that come from 3 cycles, whereas we use all cycle constraints. Theoretically both sets of constraints
define the same polytope, but practically there is a difference. Thus, in practice our algorithm was run to a slightly
greater level of convergence than the one from Ruggles et al. (2019).

Implementations.

For the case when G = Kn, in addition to the modifications that were done for metric nearness experiment, we made
two more modifications. First, we did the PROJECT and FORGET step one additional time per iteration. Second, we
parallelized the oracle by running Dykstra’s algorithm in parallel. The pseudocode for this version of algorithm 1 can
be seen in Algorithm 6.

For the sparse version, we made only two modifications: we used the parallel version of the oracle, and during each
iteration, we did the project and forget step 75 times.

Note that for both experiments, the additional constraints that were introduced due to the transformation were all
projected onto once per iteration and never forgotten. The pseudocode for this version can be seen in Algorithm 7.

We used the implementation provided by the authors of Veldt et al. (2019) to run the experiments for their algorithm.

9.3 INFORMATION THEORETIC METRIC LEARNING

The hyper-parameters were set as follows: γ = 1, u = 1, l = 10. The pseudocode for our algorithm can be seen in
Algorithm 8. The classification was done using the k nearest neighbor classifier.
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Algorithm 6 Pseudocode for the implementation for CC for the dense case.

1: L0 = ∅, z0 = 0. Initialize x0 so that∇f(x0) = 0.
2: La is the list of additional constraints. z0

a = 0 (dual for additional constraints)
3: while Not Converged do
4: Let d(i, j) be the weight of shortest path between nodes i and j or∞ if none exists. This is found using a

parallel algorithm.
5: L = ∅
6: for Edge e = i(, j) ∈ E do
7: if w(i, j) > d(i, j) then
8: Let C = P ∪ {(i, j)}. Where P be the shortest path between i and j.
9: Project onto C and update x, z.

10: if zC ! = 0 then Add C to L.
11: Lν ← Lν ∪ L
12: for i = 1, 2 do
13: xν , zν ← Project(xν , zν , Lν)
14: Lν ← Forget(Lν)
15: xν , zνa ← Project(xν , zνa , La)
16: xν+1 = xν , Lν+1 = Lν , zν+1 = zν , zν+1

a = zνa ,
return x

Algorithm 7 Pseudocode for the implementation for CC for the sparse case.

1: L0 = ∅, z0 = 0. Initialize x0 so that∇f(x0) = 0.
2: La is the list of additional constraints. z0

a = 0 (dual for additional constraints)
3: while Not Converged do
4: Let d(i, j) be the weight of shortest path between nodes i and j or∞ if none exists. This is found using a

parallel algorithm.
5: L = ∅
6: for Edge e = i(, j) ∈ E do
7: if w(i, j) > d(i, j) then
8: Let C = P ∪ {(i, j)}. Where P be the shortest path between i and j.
9: Add C to L.

10: Lν ← Lν ∪ L
11: for i = 1, . . . , 75 do
12: xν , zν ← Project(xν , zν , Lν)
13: Lν ← Forget(Lν)
14: xν , zνa ← Project(xν , zνa , La)
15: xν+1 = xν , Lν+1 = Lν , zν+1 = zν , zν+1

a = zνa ,
return x
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Algorithm 8 Pseudocode for the Project and Forget algorithm for ITML.

1: function PFITML(X,C, γ, u, l, S,D)
2: λ0 = 0, Ξij = u for (i, j) ∈ S and Ξij = l for (i, j) ∈ D. Initialize C = I .
3: while Not Converged do
4: Randomly sample (i, j) from S
5: Do projection for this constraint
6: Randomly sample (i, j) from D
7: Do projection for this constraint

return C
8: function PROJECTION(X, i, j, S,D, u, l,Ξ, λ, C)
9: p = distC(Xi, Xj)

10: δ = 1 if (i, j) ∈ S and δ = −1 if (i, j) ∈ D
11: α = min

(
λij ,

δ
2

(
1
p −

γ
Ξij

))
12: β = δα

1−δαp
13: Ξij = γ Ξij

γ+δαΞij

14: λij = λij − α
15: C = C + βC(xi − xj)(xi − xjj)TCT
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