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ABSTRACT

Recently `4-norm maximization has been proposed to solve the sparse dictionary
learning (SDL) problem. The simple MSP (matching, stretching, and projection)
algorithm proposed by Zhai et al. (2019a) has shown to be surprisingly efficient
and effective. This paper aims to better understand this algorithm from its strong
geometric and statistical connections with the classic PCA and ICA, as well as
their associated fixed-point style algorithms. Such connections provide a unified
way of viewing problems that pursue principal, independent, or sparse compo-
nents of high-dimensional data. Our studies reveal additional good properties of
the `4-maximization: not only is the MSP algorithm for sparse coding insensi-
tive to small noise, but also robust to outliers, and resilient to sparse corruptions.
We provide preliminary statistical justification for such inherently nice properties.
To corroborate the theoretical analysis, we also provide extensive and compelling
experimental evidence with both synthetic data and real images.

1 INTRODUCTION

The explosion of massive amounts of high-dimensional data has become the modern-day norm for
a large number of scientific and engineering disciplines and hence presents a daunting challenge for
both computation and learning. Rising to this challenge, sparse dictionary learning (SDL) provides
a potent framework in representation learning that exploits the blessing of dimensionality: real data
tends to lie in or near some low-dimensional subspaces or manifolds, even though the ambient
dimension is often extremely large (e.g. the number of raw pixels in an image). More specifically,
SDL (Olshausen & Field (1997); Mairal et al. (2008; 2012; 2014); Spielman et al. (2012); Sun
et al. (2015); Bai et al. (2018)) concerns the problem of learning a compact, sparse representation
from raw, unlabelled data: given a data matrix Y = [y1,y2, . . . ,yp] ∈ Rn×p that contains p n-
dimensional samples, one aims to find a linear transformation (i.e. a dictionary) D ∈ Rn×m and an
associated maximally sparse representation X = [x1,x2, . . . ,xp] ∈ Rm×p that satisfies

Y = DX. (1)

As the data matrix Y can represent a variety of signals (e.g. images, audios, languages, and genetics
etc) in practical applications, SDL provides a versatile structure-seeking formulation that has found
widespread applications in computational neuroscience, image processing and computer vision, and
machine learning at large (Olshausen & Field (1996; 1997); Argyriou et al. (2008); Ranzato et al.
(2007); Elad & Aharon (2006); Wright et al. (2008); Yang et al. (2010); Mairal et al. (2014)).

Related Work. Motivated by this practical significance, there has been a growing surge of interest
recently (e.g. Rambhatla et al. (2019); Bai et al. (2018); Gilboa et al. (2018); Nguyen et al. (2018);
Chatterji & Bartlett (2017); Mensch et al. (2016)) that aims to tackle SDL. In attempts to recover the
sparse signals X , these existing work adopt an `0- or `1-penalty function to promote the underlying
sparsity and give various optimization algorithms for the resulting objectives (some of those are
heuristics while a few others have theoretical convergence guarantees). Although these penalty
functions are indeed sparsity-promoting, the resulting optimization problems must be solved one row
at a time, hence resulting as many optimization problems as the ambient dimension n. Consequently,
`0- or `1-based objectives result only in local methods (i.e. cannot yield the entire solution at once)
and hence entail prohibitive computational burden. Another prominent approach in SDL is Sum-
of-Squares (SOS), proposed by and articulated in a series of recent work Barak et al. (2015); Ma
et al. (2016); Schramm & Steurer (2017). The key idea there is to utilize the properties of higher
order SOS polynomials to correctly recover one column of the dictionary at a time, for which there
are m columns in total. However, the computational complexity of these recovery methods are
quasi-polynomial, hence again resulting in large computational expense.
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Very recently, in the complete dictionary learning1 setting, a novel global approach has been sug-
gested in Zhai et al. (2019a;b) that presents a formulation that can efficiently recover the sparse
signal matrix X once for all. In particular, Zhai et al. (2019b) has shown that if the generative
model for Y = DoXo ∈ Rn×p satisfies that Do ∈ O(n;R) is orthonormal and Xo ∈ Rn×p is
Bernoulli-Gaussian sparse,2 then maximizing the `4-norm3 of AY over O(n;R):

max
A

1

4
‖AY ‖44 subject to A ∈ O(n;R) (or AA∗ = I), (2)

is able to find the ground truth dictionary Do up to an arbitrary signed permutation. Moreover, Zhai
et al. (2019b) has proposed the simple “Matching, Stretching, and Projection” (MSP) algorithm,
which is shown to be experimentally efficient and effective, for solving the program in equation 2:

MSP: At+1 = PO(n;R)

[
(AtY )◦3Y ∗

]
= UtV

∗
t , (3)

where UtV
∗
t are from the singular value decomposition: UtΣtV

∗
t = SVD[(AtY )◦3Y ∗].

To serve purposes of this paper, we here give an alternative (arguably simpler and more revealing)
derivation of the MSP Algorithm 3. Consider the Lagrangian formulation of the constrained opti-
mization equation 2, the necessary condition of critical points ∇A

1
4 ‖AY ‖44 = ∇A 〈Λ,AA∗ − I〉

for some Lagrangian multiplers Λ implies:
(AY )◦3Y ∗ = (Λ + Λ∗)A. (4)

As the optimization is over the orthogonal group O(n;R), restricting the condition in equation 4
onto the orthogonal group yields a necessary condition for any critical point A:4

PO(n;R)

[
(AY )◦3Y ∗

]
= A. (5)

Hence the critical point A can be viewed as a “fixed point” of the map: PO(n;R)

[
((·)Y )◦3Y ∗

]
from

O(n;R) to itself. The MSP algorithm in equation 3 is to find the fixed point(s) of this map.

Notice that the orthonormal constraint A ∈ O(n;R) in equation 2 can be viewed as enforcing the
orthogonality of n unit vectors simultaneously. So, more flexibly and generally, one may choose to
compute any k, for 1 ≤ k ≤ n, leading orthonormal bases of Do by solving the program:

max
W

1

4
‖W ∗Y ‖44 subject to W ∈ St(k, n;R) ⊂ Rn×k, (6)

where St(k, n;R) is the Stiefel manifold.5 The orthogonal group O(n;R) and the unit sphere Sn−1

can be viewed as two special cases of the Stiefel manifold St(k, n;R), with k = n and k = 1,
respectively. In some specific tasks such as dictionary learning and blind deconvolution, optimiza-
tion over the unit sphere has been widely practiced, see Sun et al. (2015); Bai et al. (2018); Zhang
et al. (2018); Kuo et al. (2019). The more general setting of maximizing a convex function over any
compact set also has been studied by Journée et al. (2010) in the context of sparse PCA, which has
provided convergence guarantees for this class of programs.

Our Contributions. Our contributions are twofold. First, by taking a suitable analytical angle, we
reveal novel geometric and statistical connections between PCA, ICA and the `4-norm maximization
based SDL. We then show that algorithm-wise, the fixed-point type MSP algorithm for `4-norm
maximization has the same nature as the classic power-iteration method for PCA Jolliffe (2011) and
the FastICA algorithm for ICA Hyvärinen & Oja (1997). This interpretation gives a unified view for
problems that pursue principal, independent, or sparse components from high-dimensional data and
enriches our understanding of low-dimensional structure recovery frameworks, classical and new, at
both formulation and algorithmic fronts.

Second, and more importantly from a practical perspective, we examine how MSP performs under
a variety of more realistic conditions, when the measurements Y could be contaminated with noise,

1Complete dictionary learning requires the learned dictionary D in equation 1 to be square and invertible.
2 Each entry xi,j of X can be represented as the product of a Bernoulli variable and a normal Gaussian

variable: xi,j = Ωi,jVi,j , where Ωi,j ∼iid Ber(θ) and Vi,j ∼iid N (0, 1), similar for vectors or scalars. This
is the standard setting adopted in Spielman et al. (2012); Sun et al. (2015); Bai et al. (2018).

3We abuse the notation a bit, by denoting ‖·‖44 as the sum of element-wise 4th power of all entries of a vector
and matrix, that is, ∀a ∈ Rn, ‖a‖44 =

∑n
i=1 a

4
i and ∀A ∈ Rn×m, ‖A‖44 =

∑
i,j a

4
i,j .

4For any symmetric matrix S ∈ Rn×n and an orthogonal matrix A ∈ O(n;R), the projection of SA onto
the orthogonal group is A: PO(n;R) [SA] = A, one may see Absil & Malick (2012) for details .

5For any 1 ≤ k ≤ n, St(k, n;R)
.
= {W ∈ Rn×k : W ∗W = Ik}.

2



Under review as a conference paper at ICLR 2020

outliers, or sparse corruptions. We show that, similar to PCA, `4-norm maximization and the MSP
algorithm are inherently stable to small noise. Somewhat surprisingly though, unlike PCA, the MSP
algorithm is further robust to outliers and resilient to sparse gross errors! We provide character-
izations of these desirable properties of MSP. The claims are further corroborated with extensive
experiments on both synthetic data and real images. Taken as a whole, our results contribute to
the broad landscape of dictionary learning by affirming that `4-maximization based SDL and the
corresponding global algorithm MSP provide a valuable toolkit to the existing literature.

2 SDL VERSUS PCA AND ICA
2.1 PURSUIT OF PRINCIPAL, INDEPENDENT, OR SPARSE COMPONENTS

Relation with the Geometric Interpretation of PCA. For a data matrix Y ∈ Rn×p, Principal
Component Analysis (PCA) aims to find the top (top k) left singular vector (vectors) of Y :

max
W

1

2
‖W ∗Y ‖2F subject to W ∈ St(k, n;R), (7)

can be considered as finding a direction (a k-dimensional subspace) in row(Y ) in which Y has the
largest `2-norm (Frobenius norm). For instance, finding the direction with the largest `2-norm over
the unit sphere can be viewed as calculating the spectral norm (or the largest singular value), of
matrix Y . In comparison, we may view equation 6

max
W

1

4
‖W ∗Y ‖44 subject to W ∈ St(k, n;R)

as to find a direction, or a k-dimensional subspace, in row(Y ) where the projection of Y has
the largest `4-norm. For instance, finding the direction with the largest `4-norm over the unit
sphere equation 6 can be viewed as calculating the induced ‖·‖2,4 norm of matrix Y : ‖Y ‖2,4

.
=

maxa∈Sn−1 ‖a∗Y ‖4 .

Relation with the Statistical Interpretation of PCA. If we view each column yj , j ∈ [p] of data
matrix Y ∈ Rn×p as an n dimensional random vector that is i.i.d. drawn from a distribution of
random variable y and let Yc denote the centered Y : Yc

.
= Y [I − 1

p11∗], where 1 ∈ Rp is a vector

of all 1’s. Then finding the top k principal components of Yc: maxW∈St(k,n;R)
1
2 ‖W

∗Yc‖22 is to
find k uncorrelated projections of y ∈ Rn that has the top k sample variance, i.e. 2nd order moment,
Jolliffe (2011); Helwig (2017). Similar to PCA, the `4-norm maximization of centered data matrix
Yc: maxW∈St(k,n;R)

1
4 ‖W

∗Yc‖44 can be viewed as finding k uncorrelated projections of y that
have the top k sample 4th order moment, whose statistical meaning is better revealed below.

Relation with ICA and Nonnormality. The `4-norm maximization over the Stiefel manifold is
strongly related to finding the maximal or minimal kurtosis in Independent Component Analysis
(ICA) Hyvärinen & Oja (1997; 2000): In order to identify one component of a given random vector
y ∈ Rn, ICA aims at finding a unit vector (a direction) w ∈ Sn−1 that maximizes or minimizes the
kurtosis of w∗y, defined as:

kurt(w∗y) = E (w∗y)
4 − 3 ‖w‖42 .

Kurtosis is widely used for evaluating the nonnormality of a random variable, see DeCarlo (1997);
Hyvärinen & Oja (1997; 2000). According to Huber (1985), the nonnormality of data carries “ab-
normal” hence interesting information in real data for many applications, e.g. Lee et al. (2003); Cain
et al. (2017). Hence, extractin the 4th order moment helps understand such statistics of real datasets
Hyvärinen et al. (2009) and even their topology Carlsson (2009).

2.2 FIXED-POINT STYLE ALGORITHMS

In optimization, the `4-norm maximization in equation 6 over the Stiefel manifold St(k, n;R) is a
special type of nonconvex optimization problem – convex maximization over a compact set. Al-
though the work of Journée et al. (2010); Zhai et al. (2019b) have shown that the MSP algorithm
is guaranteed to find critical points, the experiments in Zhai et al. (2019b) suggest that the MSP
algorithm finds global maxima of the `4-norm efficiently and effectively. To understand this phe-
nomenon better, in this section we illustrate some striking similarities between the MSP algorithm
and the “power-iteration” type algorithms for solving PCA as well as ICA.

Fixed-point Perspective of Power Iteration. For a general data matrix Y ∈ Rn×p, finding the
top singular value of Y is equivalent to solving the following optimization problem:

max
w

ϕ(w)
.
=

1

2
‖w∗Y ‖22 subject to w ∈ Sn−1. (8)
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Objectives Constraint Sets Algorithms

Power Iteration ϕ(w)
.
= 1

2
‖w∗Y ‖22 w ∈ Sn−1 wt+1 = PSn−1 [∇wϕ(wt)]

FastICA ψ(w)
.
= 1

4
kurt[w∗y] w ∈ Sn−1 wt+1 = PSn−1 [∇wψ(wt)]

MSP φ(W )
.
= 1

4
‖W ∗Y ‖44 W ∈ St(k, n;R) Wt+1 = PSt(k,n;R) [∇Wφ(Wt)]

Table 1: Similarities among fixed-point algorithms for Power Iteration, FastICA, and MSP.

For this constrained optimization, the Lagrangian multiplier method gives the necessary condition:
∇wϕ(w) = Y Y ∗w = λw, similar to equation 4. If we restrict this condition onto the sphere, we
obtain the fixed point condition w = PSn−1 [∇wϕ(w)]. The classic power-iteration method

wt+1 = PSn−1 [∇wϕ(wt)] =
Y Y ∗wt

‖Y Y ∗wt‖2
, (9)

is precisely to compute this fixed point, which is arguably the most efficient and widely used algo-
rithm to solve equation 8, for PCA (or computing SVD of Y ).

Fixed-point Perspective of FastICA. In order to maximize (or minimize) the kurtosis over Sn−1,

max
w

ψ(w)
.
=

1

4
kurt[w∗y] =

1

4
E [w∗y]

4 − 3

4
‖w‖42 subject to w ∈ Sn−1, (10)

Hyvärinen & Oja (1997) has proposed the following fixed-point type iteration:

wt+1 = PSn−1 [∇wψ(wt)] =
E
[
y (y∗wt)

3]− 3 ‖wt‖22 wt∥∥E [y (y∗wt)
3]− 3 ‖wt‖22 wt

∥∥
2

, (11)

that enjoys cubic (at least quadratic) rate of convergence, under the ICA model assumption.

Fixed-point Perspective of MSP. For the `4-norm maximization program:

max
W

φ(W )
.
=

1

4
‖W ∗Y ‖44 subject to W ∈ St(k, n;R),

through a similar derivation to that in Section 1 one can show that the MSP iteration in equation 5
for the orthogonal group generalizes to the Stiefel manifold case as:

Wt+1 = PSt(k,n;R) [∇Wφ(Wt)] = UtV
∗
t , (12)

where UtΣtV
∗
t = SVD[Y (Y ∗Wt)

◦3]. The above iteration has the same nature as the power
iteration in equation 9 and equation 11, since they all solve a fixed-point type problem, by project-
ing gradient of the objective function ∇ϕ(·),∇φ(·),∇ψ(·) onto the constraint manifold Sn−1 and
St(k, n;R), respectively. Table 1 summarizes such striking similarities.

3 STABILITY AND ROBUSTNESS OF `4-NORM MAXIMIZATION

Even though the MSP algorithm for `4-norm maximization is similar to power-iteration for PCA, in
real applications, PCA often requires modification to improve its robustness Candès et al. (2011);
Xu et al. (2010; 2012). In this section, we want to examine the stability and robustness of the `4-
maximization for different types of imperfect measurement models: small noise, outliers, and sparse
corruptions of large magnitude.

3.1 DIFFERENT MODELS FOR IMPERFECT MEASUREMENTS

We adopt the same Bernoulli-Gaussian model as in prior works Spielman et al. (2012); Sun
et al. (2015); Bai et al. (2018); Zhai et al. (2019b) to test the stability and robustness of the `4-
maximization framework. Assume our clean observation matrix Y ∈ Rn×p is produced by the
product of a ground truth orthogonal dictionary Do and a Bernoulli-Gaussian matrix Xo ∈ Rn×p:

Y = DoXo, Do ∈ O(n;R), {Xo}i,j ∼iid BG(θ). (13)
Now let us assume we only observe different types of imperfect measurements of Y :

Noisy Measurements: YN := Y + G, where G ∈ Rn×p is matrix that satisfies gi,j ∼iid
N (0, η2), where η > 0 controls the variance of the noise.

Measurements with Outliers: YO := [Y ,G′], where YO contains extra columns (G′ ∈ Rn×τp)6

that is generated from an independent Gaussian process g′i,j ∼iid N (0, 1), and τ controls the portion
of the outliers, w.r.t. the clean data size p.

6In case τp is not an integer, we round τp to its closest integer in our implementation.
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Measurements with Sparse Corruptions: YC := Y + σB ◦ S, where σ > 0 controls the scale
of corrupting entries,7 B ∈ Rn×p is a Bernoulli matrix with bi,j ∼iid Ber(β), where β ∈ (0, 1)
controls the ratio of the sparse corruptions, and entries si,j of S ∈ Rn×p are i.i.d. drawn from a
Rademacher distribution:

si,j =

{
1 with probability 1/2

−1 with probability 1/2
. (14)

3.2 STATISTICAL ANALYSIS AND JUSTIFICATION

The analysis for the stability and robustness of the `4-norm maximization follows similar statistical
analysis techniques in Zhai et al. (2019b) that establish the global maximum of

W? ∈ arg max
W

E ‖W ∗Y�‖44 , subject to W ∈ O(n;R) (15)

satisfying W ∗
?Do ∈ SP(n).8 We use Y� here to denote different imperfect measurements (noisy

YN , with outliers YO, and with sparse corruptions YC , respectively). Below we calculate the expec-
tation of ‖W ∗Y�‖44 over the data distribution, since in general the objective function concentrates on
its expectation.9 We show that E ‖W ∗Y�‖44 is largely determined by ‖WDo‖44, a quantity that indi-
cates a “distance” between W ∗Do to SP(n). As shown in Lemma 2.3 and Lemma 2.4 in Zhai et al.
(2019b), the only global maximizers of ‖W ∗Do‖44 are signed permutation matrices, and W ∗Do

converges to a signed permutation matrix as ‖W ∗Do‖44 reaches its global maximum.

Proposition 3.1 (Expectation of Objective with Small Noise) ∀θ ∈ (0, 1), let Xo ∈ Rn×p,
xi,j ∼iid BG(θ), Do ∈ O(n;R) is any orthogonal matrix, and Y = DoXo. For any orthogonal
matrix W ∈ O(n;R) and any random Gaussian matrix G ∈ Rn×p, gi,j ∼iid N (0, η2) independent
of Xo, let YN = Y + G denote the data with noise. Then the expectation of ‖W ∗YN‖44 is:

1

np
EXo,G ‖W ∗YN‖44 = 3θ(1− θ)

‖W ∗Do‖44
n

+ Cθ,η, (16)

where Cθ,η is a constant depending on θ and η.
Proof See Appendix A.1.

Proposition 3.2 (Expectation of Objective with Outliers) ∀θ ∈ (0, 1), let Xo ∈ Rn×p, xi,j ∼iid
BG(θ), Do ∈ O(n;R) is any orthogonal matrix and Y = DoXo. For any orthogonal matrix
W ∈ O(n;R) and any random Gaussian matrix G′ ∈ Rn×τp, g′i,j ∼iid N (0, 1) independent of
Xo, let YO = [Y ,G′] denote the data with outliers G′. Then the expectation of ‖W ∗YO‖44 is:

1

np
EXo,G′ ‖W ∗YO‖44 = 3θ(1− θ)

‖W ∗Do‖44
n

+ Cθ, (17)

where Cθ is a constant depending on θ.
Proof See Appendix A.2

In the above results, Proposition 3.1, Proposition 3.2 reveal that both normalized 1
npE ‖W

∗YN‖44,
1
npE ‖W

∗YO‖44 are only determined by ‖W ∗Do‖44, therefore, the `4-norm maximization formu-

lation is stable to ‖W ∗Y�‖44 with dense Gaussian noise and Gaussian outliers – maximizing the
`4-norm of E ‖W ∗Y�‖44 will recover the ground truth orthogonal matrix Do.
Proposition 3.3 (Expectation of Objective with Sparse Corruptions) ∀θ ∈ (0, 1), let Xo ∈
Rn×p, xi,j ∼iid BG(θ), Do ∈ O(n;R) is any orthogonal matrix and Y = DoXo. For any
orthogonal matrix W ∈ O(n;R) and any random Bernoulli matrix B ∈ Rn×p, bi,j ∼iid Ber(β)
independent of Xo, let YC = Y + σB ◦S denote the data with sparse corruptions, and S ∈ Rn×p
is defined as equation 14. Then the expectation of ‖W ∗YC‖44 is:

1

np
EXo,B,S ‖W ∗YC‖44 = 3θ(1− θ)

‖W ∗Do‖44
n

+ σ4β(1− 3β)
‖W ‖44
n

+ Cθ,σ,β , (18)

where Cθ,σ,β is a constant depending on θ, σ and β.
Proof See Appendix A.3.

7In our context, σ = 1 is already corruption of large magnitude, since the variance of the sparse signal is 1.
8SP(n) is the signed permutation group, a group of orthogonal matrices that only contain 0,±1.
9One can prove concentration bounds similar to that of Lemma 2.2 in Zhai et al. (2019b).
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Figure 1: Comparison between
y = 3x(1 − x) and y =
σ4 |x(1− 3x)| when x ∈ [0, 1]
with different σ.

Unlike the cases with noise and outlier, Proposition 3.3 indicates
1
npE ‖W

∗YC‖44 depends on not only ‖W ∗Do‖44 but also ‖W ‖44.
Nevertheless, when the magnitude of σ4β(1−3β) is significantly
smaller than 3θ(1− θ), the landscape of the objective ‖W ∗YC‖44
would largely be determined by ‖W ∗Do‖44 only. As shown in
Figure 1, this is indeed the case whenever: a) the sparsity level
θ of ground truth signal Xo, is “reasonably” small (neither di-
minishing to 0 nor larger than 0.5); b) β, the sparsity level of the
corruption, is small (smaller than 0.5); c) σ, the magnitude of the
sparse errors, is not significantly larger than the intrinsic variance
of the sparse signal (the intrinsic variance of the sparse signal
Bernoulli-Gaussian model is 1).

Hence, the above analysis shows that the dictionary estimated from `4-maximization should be
insensitive to small noise, robust to fraction of outliers, and resilient to sparse corruptions.

4 SIMULATIONS AND EXPERIMENTS

4.1 QUANTITATIVE EVALUATION: SIMULATIONS ON SYNTHETIC DATA

Single Trial of MSP. In this simulation, we run the MSP Algorithm from equation 3, using the
imperfect measurements Y� of different types (YN ,YO,YC). As shown in Figure 2, the normalized
value of ‖W ∗Do‖44 /n reaches global maximum with all types of inputs when varying the level of
noise, outliers, and sparse corruptions. Moreover, as the level of noise increases, Figure 2 shows
that a) the iterations for convergence increases and b) the final objective value ‖W ∗Do‖44 decreases
almost negligibly. This numerical experiment suggests that the MSP Algorithm is able to identify
the ground truth orthogonal transformation Do despite different types of imperfect measurement.

(a) n = 50, p = 20, 000, θ = 0.3,
varying η2 from 0.1 to 0.4

(b) n = 50, p = 20, 000, θ = 0.3,
varying τ from 0.1 to 0.4

(c) n = 50, p = 20, 000, θ = 0.3,
σ = 1, varying β from 0.1 to 0.4

Figure 2: Normalized ‖W ∗Do‖44 /n of the MSP algorithm for dictionary learning, using imperfect
measurements YN ,YO,YC , respectively.

Phase Transition. Next, we conduct extensive simulations to study the relation between recovery
accuracy and sample size p. We run the experiments by increasing the sample size p w.r.t. the
levels of noises and corruptions η, τ, β, respectively. As shown in Figure 3, the MSP Algorithm 3
demonstrates a clear phase transition behavior w.r.t. noise, outliers, and sparse corruptions. Such
phenomena suggest that the algorithm is inherently stable and robust to certain amounts of noise,
outliers, and sparse corruptions. The results also indicate that a larger sample size p increases the
accuracy and robustness of the MSP Algorithm 3 for all types of nuisances.

4.2 QUALITATIVE EVALUATION: EXPERIMENTS ON REAL IMAGES AND PATCHES

Besides simulations, we also conduct extensive experiments to verify stability and robustness of
the MSP Algorithm with real imagery data, at both image level and patch level. Throughout these
experiments, rather than visualize all bases, we routinely show the top bases learned – heuristically,
top bases are those with the largest coefficients (here, in terms of `1-norm).

Image Level. At image level, we first vectorize all 60,000 images in the MNIST dataset (LeCun
et al., 1998) into a single matrix Y ∈ R784×60,000, then create imperfect measurements based on
models specified in Section 3: YN (MNIST with noise), YO (MNIST with outliers), YC (MNIST
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(a) Noise: n = 50, θ = 0.3 (b) Outliers: n = 50, θ = 0.3 (c) Corruptions: n = 50, θ = 0.3

Figure 3: Average normalized error |1−‖W ∗Do‖44 /n| of 10 random trials for the MSP Algorithm:
(a) Varying sample size p and variance of noise η2; (b) Varying sample size p and Gaussian Outlier
ratio τ ; (c) Varying sample size p and sparse corruption ratio β, with fixed σ = 1.

(a) Normalized MNIST to mean 0 and 1 std (b) Top bases from MNIST

(c) MNIST with noise, SNR = 3.333 (d) Top bases from MNIST with noise

(e) MNIST with 50% outliers (f) Top bases from MNIST with outliers

(g) MNIST with 50% sparse corruptions (h) Top bases from MNIST with sparse corruptions

Figure 4: Left: Examples of MNIST and its different imperfect measurements. Right: Learned
bases from MNIST and its different imperfect measurements using the MSP Algorithm 3.

with sparse corruptions). We run the MSP Algorithm 3 with Y ,YN ,YC ,YO and compare the bases
learned. Figure 4(a), (c), (e), and (g) show examples of Y , YN , YO, and YC , and Figure 4(b), (d), (f),
and (h) show top 10 bases learned from Y ,YN ,YC ,YO, respectively. Despite that we use different
types of imperfect measurements of MNIST, the top bases learned from MSP Algorithm 3 are very
much the same.10 This result corroborates with our analysis: the `4-maximization and the MSP
algorithm is inherently insensitive to noise, robust to outliers, and resilient to sparse corruptions.

Patch Level. A classic application of dictionary learning involves learning sparse representations
of image patches (Elad & Aharon, 2006; Mairal et al., 2007). In this section, we extend the experi-
ments of Zhai et al. (2019b) to learn patches from grayscale and color images. First, we construct a
data matrix Y by vectorizing each 8× 8 patch from the 512× 512 grayscale image, “Barbara” (see
Figure 5). We then run the MSP algorithm with 100 iterations on both Y and a noisy version YN ,
and the learned top bases are visualized in Figure 5.

(a) Clean Image and Bases (b) Noisy Image and Bases(SNR = 5.87)

Figure 5: The top 12 bases learned from all 16× 16 patches of Barbara, both with (b) and without
(a) noise. The noisy image is produced by adding Gaussian noise to the clean image, resulting in a
signal-to-noise (SNR) ratio of 5.87. We observed a similar effect when using an 8× 8 patch size.

10Bases with opposite intensity are considered as the same base, since they only differ by a sign.
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(a) Clean Image and Bases (b) Noisy Image and Bases (SNR = 6.56)

Figure 6: The top 12 bases learned from all 8 × 8 × 3 color patches of the clean and noisy image,
respectively. Here, the SNR of the noisy image is 6.56.

(a) Bases from Clean Patches (b) Bases from Noisy Patches (SNR = 6.23)

Figure 7: Top half (96) bases learned from 100, 000 random 8 × 8 × 3 patches sampled from
CIFAR-10, before and after adding Gaussian noise, with SNR 6.23.

Analogously, we apply the same scheme to a 256 × 256 color image, “Duck” (see Figure 6), con-
verting each 8 × 8 × 3 patch into a column vector (in R192) of Y . Notice this forces the algorithm
to learn bases for all three channels, rather than one at a time. After running the MSP algorithm for
100 iterations, we visualize the top bases learned from both Y and corresponding YN in Figure 6.
We next consider the problem of learning a “global dictionary” (Mairal et al., 2007) for patches from
many different images. To construct our data matrix, Y , we randomly sample 100,000 8 × 8 × 3
patches from the CIFAR-10 data-set (Krizhevsky et al., 2009). A noisy, YN , is then generated by
adding Gaussian noise. Again, we apply the MSP algorithm with 200 iterations to learn 192 bases
and visualize the results in Figure 7. We leave the experiments of CIFAR-10 with outliers and sparse
corruptions in the Appendix due to limited space.

In each of these experiments, the top bases in the learned dictionary remain relatively unchanged
with the addition of noise. To quantify this similarity, we take the top bases from the noisy dictionary
and find the closest top clean base for each. If the bases are nearly identical, then the inner product
of each of these pairs should be close to 1. Table 2 reports the statistics.

Minimum Lower Quartile Median Upper Quartile Maximum

Barbara 0.3048 0.8471 0.9941 0.9993 1.0000
Duck 0.2510 0.9782 0.9891 0.9971 1.0000

CIFAR-10 0.5147 0.7203 0.9892 0.9998 1.0000

Table 2: Statistics about the inner products between the top 20 noisy bases and their corresponding
closest top-20 clean bases.

5 CONCLUSION AND DISCUSSIONS
In this paper, we find the `4-norm maximization based dictionary learning and the MSP algorithm
introduced by Zhai et al. (2019b) have strong geometric and statistical connections to classic data
analysis methods PCA and ICA. Such connections seem to be the reasons why they all admit simi-
larly simple and efficient algorithms.

Empirically, we have observed that `4-norm maximization is surprisingly insensitive to noise, robust
to outliers, and resilient to sparse corruptions. Our preliminary analysis supports such phenomena
but also suggests that the formulation could still be improved in the case of sparse corruptions.

From experiments on real images, we observed that top bases learned are rather stable but tail bases
can be less stable (see Figure 10 in Appendix B). This is largely due to the fact that real images do
not follow the uniformly sparse Bernoulli Gaussian model (of equation 13). Generalizing dictionary
learning to non-uniformly sparsely generated data would be a good topic for future study.
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Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre. Generalized power
method for sparse principal component analysis. Journal of Machine Learning Research, 11
(Feb):517–553, 2010.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

Han-Wen Kuo, Yenson Lau, Yuqian Zhang, and John Wright. Geometry and symmetry in short-
and-sparse deconvolution. arXiv preprint arXiv:1901.00256, 2019.
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A PROOF OF SECTION 3

A.1 PROOF OF PROPOSITION 3.1

Claim A.1 (Expectation of Objective with Small Noise) ∀θ ∈ (0, 1), let Xo ∈ Rn×p, xi,j ∼iid
BG(θ), Do ∈ O(n;R) is any orthogonal matrix and Y = DoXo. For any orthogonal matrix
W ∈ O(n;R) and any random Gaussian matrix G ∈ Rn×p, gi,j ∼iid N (0, η2) independent of
Xo, let YN = Y + G denote the input with noise. The expectation of ‖W ∗YN‖44 satisfies the
following property:

1

np
EXo,G ‖W ∗YN‖44 = 3θ(1− θ)

‖W ∗Do‖44
n

+ 3θ2 + 6θη2 + 3η4. (19)

Proof Let W ∗Do = M ∈ O(n;R), notice that the orthogonal transformation (W ∗G) of a Gaus-
sian matrix (G) is still a Gaussian matrix and satisfies {W ∗G}i,j ∼ N (0, 1), and it is independent
of Y (Xo). We abuse the notation a bit let G = W ∗G in the following calculation, since they are
independent in calculation.

EXo,G ‖W ∗YN‖44 = EXo,G ‖MXo + G‖44

=

p∑
j=1

n∑
i=1

EXo,G

(
n∑
k=1

mi,kxk,j + gi,j

)4

=

p∑
j=1

n∑
i=1

EXo,G

(
n∑
k=1

mi,kxk,j

)4

+ 6EXo,G

n2
i,j

(
n∑
k=1

mi,kxk,j

)2
+ EGg

4
i,j


=

p∑
j=1

n∑
i=1

EXo,G

(
n∑
k=1

mi,kxk,j

)4

+ 6η2EXo

(
n∑
k=1

mi,kxk,j

)2
+ 3npη4

=

p∑
j=1

n∑
i=1

EXo,G

(
n∑
k=1

mi,kxk,j

)4
+ 6npθη2+3npη4

=EXo ‖MXo‖44 + 6npθη2 + 3npη4

=3pθ(1− θ) ‖M‖44 + 3npθ2 + 6npθη2 + 3npη4,

(20)

therefore,
1

np
EXo,G ‖W ∗YN‖44 = 3θ(1− θ)

‖W ∗Do‖44
n

+ 3θ2 + 6θη2 + 3η4, (21)

which completes the proof.

A.2 PROOF OF PROPOSITION 3.2

Claim A.2 (Expectation of Objective with Outliers) ∀θ ∈ (0, 1), let Xo ∈ Rn×p, xi,j ∼iid
BG(θ), Do ∈ O(n;R) is any orthogonal matrix and Y = DoXo. For any orthogonal matrix
W ∈ O(n;R) and any random Gaussian matrix G′ ∈ Rn×τp, g′i,j ∼iid N (0, 1) independent of
Xo, let YO = [Y ,G′] denote the input with outlier G′. The expectation of ‖W ∗YO‖44 satisfies the
following property:

1

np
EXo,G′ ‖W ∗YO‖44 = 3θ(1− θ)

‖W ∗Do‖44
n

+ 3θ2 + 3. (22)

Proof Notice that

EXo,G′ ‖W ∗YO‖44 = EXo
‖W ∗Y ‖44 + EG′ ‖W ∗G′‖44 , (23)

and
EXo ‖W ∗Y ‖44 = EXo ‖W ∗DoXo‖44 = 3pθ(1− θ) ‖W ∗Do‖44 + 3npθ2. (24)
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Moreover, the orthogonal rotation (W ∗G′) of a standard Gaussian matrix G′ is also a standard
Gaussian matrix, therefore,

EG′ ‖W ∗G′‖44 = 3np. (25)
Hence,

1

np
EXo,G′ ‖W ∗YO‖44 = 3θ(1− θ)

‖W ∗Do‖44
n

+ 3θ2 + 3, (26)

which completes the proof.

A.3 PROOF OF PROPOSITION 3.3

Claim A.3 (Expectation of Objective with Sparse Corruptions) ∀θ ∈ (0, 1), let Xo ∈ Rn×p,
xi,j ∼iid BG(θ), Do ∈ O(n;R) is any orthogonal matrix and Y = DoXo. For any orthogonal
matrix W ∗ ∈ O(n;R) and any random Bernoulli matrix B ∈ Rn×p, bi,j ∼iid Ber(β) independent
of Xo, let YC = Y + σB ◦ S denote the input with sparse corruptions, and S ∈ Rn×p is defined
as equation 14. The expectation of ‖W ∗YC‖44 satisfies the following property:

1

np
EXo,B,S ‖W ∗YC‖44 = 3θ(1−θ)

‖W ∗Do‖44
n

+σ4β(1−3β)
‖W ‖44
n

+3θ2+6σ2θβ+3σ4β2 (27)

Proof Let W ∗Do = M ∈ O(n;R), notice that

‖W ∗YC‖44 = ‖MXo + σW ∗(B ◦ S)‖44 , (28)

hence

EXo,B,S ‖W ∗YC‖44 = EXo,B,S

p∑
j=1

n∑
i=1

(
n∑
k=1

mi,kxk,j + σ

n∑
k=1

wk,ibk,jsk,j

)4

=

p∑
j=1

n∑
i=1

EXo,B,S

[(
n∑
k=1

mi,kxk,j

)4

︸ ︷︷ ︸
Γ1

+6

(
n∑
k=1

mi,kxk,j

)2(
σ

n∑
k=1

wk,ibk,jsk,j

)2

︸ ︷︷ ︸
Γ2

+

(
σ

n∑
k=1

wk,ibk,jsk,j

)4

︸ ︷︷ ︸
Γ3

+4

(
n∑
k=1

mi,kxk,j

)3(
σ

n∑
k=1

wk,ibk,jsk,j

)
︸ ︷︷ ︸

Γ4

+ 4

(
n∑
k=1

mi,kxk,j

)(
σ

n∑
k=1

wk,ibk,jsk,j

)3

︸ ︷︷ ︸
Γ5

]
.

(29)

Moreover,

• Γ1 :

EXo,B,SΓ1 = EXoΓ1 = 3θ

n∑
k=1

m4
i,k + 6θ2

∑
1≤k1<k2≤n

m2
i,k1m

2
i,k2

= 3θ(1− θ)
n∑
k=1

m4
i,k + 3θ2,

(30)

• Γ2 :

EXo,B,SΓ2 =

[
EXo

(
n∑
k=1

mi,kxk,j

)2 ][
EB,S

(
σ

n∑
k=1

wk,ibk,jsk,j

)2 ]

= θ

(
n∑
k=1

m2
i,k

)
σ2β

(
n∑
k=1

w2
k,i

)
= σ2θβ,

(31)
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• Γ3 :

EXo,B,SΓ3 =EB,SΓ3 = σ4β

n∑
k=1

w4
k,i + 6σ4β2

∑
1≤k1<k2≤n

w2
k1,iw

2
k2,i

=σ4β(1− 3β)

n∑
k=1

w4
k,i + 3σ4β2,

(32)

• Γ4,Γ5 :

EXo,B,SΓ4 = 0, EXo,B,SΓ5 = 0. (33)

Substitute EΓ1,EΓ2,EΓ3,EΓ4,EΓ5 back to equation 29, yields

1

np
EXo,B,S ‖AYC‖44 = 3θ(1−θ)

‖W ∗Do‖44
n

+σ4β(1−3β)
‖W ‖44
n

+3θ2+6σ2θβ+3σ4β2. (34)

B ADDITIONAL EXPERIMENTAL RESULTS

(a)

(b)

(c)

Figure 8: Representations of three 16 × 16 textured patches in both the clean and noisy images.
Each selected patch is visualized, both with and without noise, and the 6 corresponding bases with
largest absolute coefficients are shown.

(a)

(b)

(c)

Figure 9: Representations of three 8×8×3 patches from the colored images. Once again, these the
patch is shown in the clean and noisy image, along with the corresponding top bases in the learned
sparse representations.
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(a) Clean Image (b) Noisy Image (SNR = 6.23)

(c) Corrupted Bases (d) Outlier Bases

Figure 10: All 8× 8× 3 = 192 bases learned from 100, 000 random 8× 8 colored patches sampled
from the CIFAR-10 data-set. (a) Learned Bases from clean CIFAR-10; (b) Learned Bases from
CIFAR-10 with Gaussian noise, SNR = 6.23; (c) Learned Bases from CIFAR-10 with 50% of
sparse corruptions; (d) Learned Bases from CIFAR-10 with 20% of Gaussian outliers. All learned
bases the resulting atoms are sorted according to the `1-norm of their coefficients in the sparse code.
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