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ABSTRACT

We present a new approach for efficient exploration which leverages a low-
dimensional encoding of the environment learned with a combination of model-
based and model-free objectives. Our approach uses intrinsic rewards that are
based on a weighted distance of nearest neighbors in the low dimensional repre-
sentational space to gauge novelty. We then leverage these intrinsic rewards for
sample-efficient exploration with planning routines in representational space. One
key element of our approach is that we perform more gradient steps in-between
every environment step in order to ensure the model accuracy. We test our ap-
proach on a number of maze tasks, as well as a control problem and show that our
exploration approach is more sample-efficient compared to strong baselines.

1 INTRODUCTION

In order to solve a task efficiently in Reinforcement Learning (RL), one of the main challenges is
to gather informative experiences thanks to an efficient exploration of the state space. A common
approach to exploration is intrinsic rewards correlated with some novelty heuristics (Schmidhuber,
2010; Stadie et al., 2015; Houthooft et al., 2016). With intrinsic rewards, an agent can be incentivized
to efficiently explore its state space. A direct approach to calculating these novelty heuristics is to
derive a reward based on the observations, such as a count-based reward (Bellemare et al., 2016;
Ostrovski et al., 2017) or a prediction-error based reward (Burda et al., 2018b). However, an issue
occurs when measuring novelty directly from the raw observations, as some information in the pixel
space (such as randomness) might be irrelevant. In this case, if an agent wants to efficiently explore
its state space it should only focus on meaningful and novel information.

In this work, we propose a method of sample-efficient exploration by leveraging novelty heuris-
tics in a meaningful abstract state space. We leverage a low-dimensional abstract representation
of states, which is learned by fitting both model-based and model-free components through a joint
representation. This provides a meaningful abstract representation where states that are close tempo-
rally in dynamics are brought close together in low-dimensional representation space. We also add
additional constraints to ensure that a measure of distance between states is meaningful. With this
distance in representational space, we form a novelty heuristic inspired by the Novelty Search algo-
rithm (Lehman and Stanley, 2011) to generate intrinsic rewards that we use for efficient exploration.
We show that with a good low-dimensional representation of states, a policy based on planning with
our novelty heuristic is able to explore with high sample-efficiency.

In our experiments, we measure the effectiveness of our exploration methods by the number of
samples required to explore the state space. One key element of our approach is that we perform
more gradient steps in-between every environment step in order to ensure the model accuracy is
high (and hence ensure an accurate novelty heuristic). Through this training scheme, our agent is
also able to learn a meaningful representation of its state space in an extremely sample-efficient
manner.

2 PROBLEM FORMULATION

Our agent interacts with its environment over discrete time steps, modeled as a Markov Decision
Process (MDP), defined by the 6-tuple (S,S0,A, τ,R,G) (Puterman, 1994). In this setting, S is
the state space, S0 is the initial state distribution, A is the discrete action space, τ : S × A → S is
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the transition function that is assumed deterministic (with the possibility of extension to stochastic
environments with generative methods), R : S × A → R is the reward function (R = [−1, 1]),
G : S × A → [0, 1) is the per time-step discount factor. At time step t in state st ∈ S , the
agent chooses an action at ∈ A based on policy π : S × A → [0, 1], such that at ∼ π(st, ·).
After taking at, the agent is in state st+1 = τ(st, at) and receives reward rt ∼ R(st, at) and a
discount factor γt ∼ G(st, at). Over n environment steps, we define the history of visited states as
Hs = (s1, . . . , sn), where si ∈ S ∀i ∈ N. In RL, the usual objective is to maximize the sum of
expected future rewards V π(s) = E

[
rt +

∑∞
i=1

(∏i−1
j=0 γt+j

)
rt+i|s = st, π

]
.

To learn a policy π that maximizes the expected return, an RL agent has to efficiently explore its
environment. In this paper, we consider exploration tasks with sparse rewards, and are interested in
exploration strategies that require as few steps as possible to explore the state space.

3 ABSTRACT STATE REPRESENTATIONS

In this work, we focus on learning a lower-dimensional representation of state when our state (or
observations in the partially observable (Kaelbling et al., 1998) case) is high-dimensional (Dayan,
1993; Tamar et al., 2016; Silver et al., 2016; Oh et al., 2017; de Bruin et al., 2018; Ha and Schmid-
huber, 2018; François-Lavet et al., 2018; Hafner et al., 2018; Gelada et al., 2019). We learn our
lower-dimensional abstract representation by encoding the high-dimensional state with an encoder
ê : S → X parameterized by θê, where X ∈ RnX . The dynamics are learned via the fol-
lowing functions: a transition function τ̂ : X × A → X parameterized by θτ̂ , a reward func-
tion r̂ : X × A → [0, Rmax] parameterized by θr̂, and a per timestep discount factor function
γ̂ : X ×A→ [0, 1) parameterized by θγ̂ .

In order to leverage all past experiences, we use an off-policy learning algorithm that sample transi-
tion tuples (s, a, r, γ, s′) from a replay buffer. We first encode our current and next states:

x← ê(s; θê), x
′ ← ê(s′; θê),

where x, x′ ∈ X and θê are our encoder parameters. The Q-function is learned using the DDQN
(van Hasselt et al., 2015) algorithm, which uses the target

Y = r + γQ(ê(s′; θê−), argmax
a′∈A

Q(x′, a′; θQ); θQ−), (1)

where θQ− and θê− are parameters of an earlier buffered Q-function and encoder respectively. The
agent then minimizes the following loss:

LQ(θQ) = (Q(x, a; θQ)− Y )2. (2)

We learn the dynamics of our environment through the following losses:

LR(θê, θr̂) = |r − r̂(x, a; θr̂)|2 , (3a)

LG(θê, θγ̂) = |γ − γ̂(x, a; θγ̂)|2, (3b)

Lτ (θê, θτ̂ ) = |[x+ τ̂(x, a; θτ̂ )]− x′|2, (3c)

By jointly learning the weights of the encoder and the different components, the abstract repre-
sentation is shaped in a meaningful way according to the dynamics of the environment. For in-
stance, states that are temporally close through the transition function are brought close in the lower-
dimensional space–a phenomenon reported in François-Lavet et al. (2018). To ensure that learning
the transition function between abstract states doesn’t tend to collapse the abstract representations
to a constant, we add the following soft constraints on the entropy:

Ld1(θê) = exp(−Cd||ê(s; θê)− ê(s′; θê)||2), (4)

where s, s′ are two randomly sampled states from the agent’s history and Cd is a hyperparameter.
We also use a soft constraint between consecutive states that tends to enforce that two consecutive
abstract representations are at a distance of at least ω:

Lconsec(θê) = max(‖ê(s1; θe)− ê(s2; θe)‖2 − ω, 0), (5)

where ω is a hyperparameter (a discussion of this loss is provided in Appendix A). The hyperparam-
eter ω can be used to estimate the accuracy of our transition loss, hence of our novelty estimates.
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In order to gauge when our representation is accurate enough to use our novelty heuristic, we use a
function of this hyperparameter and transition loss to set a cutoff point for accuracy to know when to
take the next environment step. If ω is the minimum distance between successive states, then when
Lτ ≤

(
ω
δ

)2
, the transitions are mostly accurate within a ball of radius ω

δ . Here δ > 1 is a hyperpa-
rameter that we call the slack ratio. Before taking a new step in the environment, we keep training all
the parameters with all these losses until this threshold is reached and our novelty heuristic becomes
useful. Details on the slack ratios used in the experiments are given in Appendix C.

We minimize the sum of all the aforementioned losses through gradient descent with learning rate
α:

L = α
(
LR(θê, θr̂) + LG(θê, θγ̂) + Lτ (θê, θτ̂ ) + LQ(θQ) + Ld1(θê) + Lconsec(θê)

)
. (6)

Through these losses, the agent learns a low-dimensional representation of the environment. These
losses are well-suited for our novelty metric because of the interpretability and meaningfulness the
losses ensure in terms of the L2 norm in our representation space. Planning techniques that combine
the knowledge of the model and the value function can then be used to select actions that will
maximize intrinsic rewards.

4 COMBINING MODEL-FREE AND MODEL-BASED COMPONENTS FOR
EXPLORATION POLICIES

Similarly to previous works (e.g. Oh et al., 2017), we use a combination of model-based planning
with model-free Q-learning to obtain a good policy. We denote the rollout of our abstract state at
timestep t as x̂t. We calculate the depth-d estimated expected returns based on d step rollouts using
the learned transition function and our novelty metric above, with a discounted estimated value
function to approximate the rest of the steps:

Q̂d(x̂t, a) =

{
r̂(x̂t, a; θr̂) + γ̂(x, a; θγ̂)max

a′∈A
Q̂d−1(xt+1, a

′; θQ), if d > 0

Q(xt, a; θQ), if d = 0
(7)

Note that we simulate only b-best options at each expansion step based on Q(xt, a; θQ), where
b ≤ |A|.
We then use a simple sum of the Q-values obtained with planning up to a depth D:

QDplan(xt, a) =

D∑
d=0

Q̂d(xt, a).

The estimated optimal action is given by argmax
a∈A

QDplan(x̂t, a). The actual action chosen at each

step follows an ε-greedy strategy (ε ∈ [0, 1]), where the agent follows the estimated optimal action
with probability 1− ε and a random action with probability ε.

5 NOVELTY SEARCH IN ABSTRACT REPRESENTATIONAL SPACE

Our approach uses intrinsic motivation (Schmidhuber, 1990; Chentanez et al., 2005; Achiam and
Sastry, 2017) where an agent rewards itself based purely on the fact that it gathers interesting experi-
ences. The specific formulation of the rewards is inspired by the Novelty Search algorithm (Lehman
and Stanley, 2011). Since the concept of proximity loses meaning in high-dimensional spaces (Ag-
garwal et al., 2002), the nearest neighbor problem is ill-defined. So instead of calculating a measure
of novelty in pixel space, we leverage the low-dimensional abstract representations.

To get a novelty metric for our abstract representations, we can apply a weighted version of the
novelty measure in abstract representational space to our current state s with our encoder applied
x̂← ê(s; θê), and a history of encoded states. We define the following novelty measure over abstract
representational space:

ρX (ê(s; θê), a) =

k∑
i=1

1

i
dist (ê(s; θê), ê(si; θê)) , (8)
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where si is the ith closest state to s in the abstract representations and dist is a distance measure
in representational space. In this work, we use `2 norm as our measure of distance. In the heuristic
above, we weight the distances between the k nearest neighbors and s by their ranking based on dis-
tances from the corresponding abstract states. We do this in order to compensate for biases towards
state-action pairs that have fewer direct neighbors as opposed to purely novel states. To clarify this
point, we give an example in a simple grid-like environment in 2-dimensional representational space
(Appendix B) and we compare this formulation with an unweighted average in Appendix D.

Incorporating all of the above, our algorithm is described in Algorithm 1.

Algorithm 1: The Novelty Search algorithm in abstract representational space.
1 Initialization: transition buffer H , agent policy π;
2 Sample ninit initial random transitions, let t = ninit;
3 while t ≤ nmax do

// We update our dynamics model and Q-function every nfreq steps
4 if t mod nfreq == 0 then
5 while j ≤ niters or Lτ ≤

(
ω
δ

)2 do
6 Sample batch of transitions (s, a, rextr, rintr, γ, s′) ∈ H;
7 Train dynamics model with (s, a, rextr, γ, s

′);
8 Train Q-function with (s, a, rextr + rintr, γ, s

′);
9 end

10 ∀(s, a, rextr, rintr, γ, s′) ∈ H , set rintr ← ρX (ê(s; θê), ê(si; θê));
11 end
12 at ∼ π(st);
13 Take action in environment: st+1 ← τ(st, at), rt+1 ← R(st, at), γt+1 ← G(st, at);
14 H ← H ∪ {(st, at, rt, 0, γt, st+1)};
15 end

6 EXPERIMENTS

We conduct experiments on environments of varying difficulty. All experiments use a training
scheme where parameters converge on an accurate representation before taking an environment step.
We optimize the losses (over multiple training iterations) given in Section 3 before each environment
step to train the agent’s state representation. We discuss all environment-specific hyperparameters
in Appendix C.

6.1 LABYRINTH EXPLORATION

We consider two 21 × 21 versions of the grid-world environment, as per Figure 1. The first is
an empty grid-world, while the second is a grid-world split into four connected rooms. In these
environments the actions A are the four cardinal directions. These environments have no rewards
or terminal states and the goal is to explore, agnostic of the task. We use two metrics to gauge
exploration for this environment: the first is the ratio of states visited only once, the second is the
proportion of total states visited.

6.1.1 OPEN LABYRINTH

In the open labyrinth experiments (Figure 4a), we compare a number of variations of the above
policy with a random baseline and a count-based baseline (Bellemare et al., 2016) (as we can count
states in this tabular setting). Variations of the policy include an argmax over state values (d = 0)
and planning depths of d = {1, 5}.

Our method is able to leverage a good learnt representation in order to explore in a sample-efficient
way. All variations of our method outperform the two baselines in this task, with a slight increase
in performance as planning depth d increases. In the open labyrinth, our agent is able to reach
100% of possible states (a total of 19 × 19 = 361 unique states) in approximately 700 steps, and
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(a) (b)

Figure 1: Left: Open labyrinth - A 21× 21 empty labyrinth environment. Right: 4-room labyrinth -
A 21× 21 4-room labyrinth environment.

80% of possible states (≈ 290 states) in less than 400 steps. These counts also include the ninit
number of random steps taken preceding training. Our agent is also able to learn highly interpretable
abstract representations in very few environment steps (as shown in Figure 2a) as it explores its state
space.

(a) (b)

Figure 2: (a): A learned abstract representation of the open labyrinth environment from Figure 1a
after 500 environment steps. Colors denote which side of the maze the agent was in, grid coordinates
and transitions are shown. (b): Two views of the same learned abstract 3-dimensional representation
of our multi-step maze after 300 steps. Orange and blue points denote states with and without keys
respectively. Our agent is able to disentangle states where the agent has a key (z = 1) and when
it doesn’t (z = 0) as seen in the distance between orange and blue states. Meaningful information
about the agent position is also maintained in the relative positions of states in representational space.

6.1.2 4-ROOM LABYRINTH

While the learned dynamics model and abstract representation are able to create an interpretable
representation of the open labyrinth environment (Figure 2a), the 4-room labyrinth environment is
more challenging. Indeed, our encoder ê takes a high-dimensional input and compresses it to a low-
dimensional representation. In the case of the labyrinth environment, the representation incorporates
knowledge related to the position of the agent in 2-dimensions that we call primary features. It also
learns other information such as agent surroundings (walls, open space) etc., but it does so only via
the transition function learned through experience. We call this extraneous but necessary information
secondary features. As most of these secondary features are encoded only in the dynamics model τ̂ ,
our agent has to experience a transition in order to accurately represent both primary and secondary
features.

In this environment specifically, our dynamics model tends to over-generalize for walls between
rooms and can thus also fail to try out transitions in the passageways between rooms. Our agent then
tends to visit uniformly all the states that are reachable within the known rooms. With an ε-greedy
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Figure 3: An example of the state counts of our agent in the open labyrinth with d = 5 step plan-
ning. Titles of each subplot denotes the number of steps taken. The brightness of the points are
proportional to the state visitation count.

(a) Results for open labyrinth and different variations on policies
compared to baselines.

(b) Results for the 4-room labyrinth and different variations on
policies compared to baselines.

Figure 4: Labyrinth results for both open labyrinth and 4-room labyrinth over 3 trials.

policy, our approach still ensures that the agent explores passageways even if it has over-generalized
to the surrounding walls.

We run the same experiments as we do on the open labyrinth and report results in Figure 4b. Our
approach still outperforms the random and count-based baselines. After visiting most unseen states
in its environment, our agent tends to uniformly explore its state space due to the nature of our
novelty heuristic. We can see an example of this for the open labyrinth in Figure 3. The bright spot
that begins after 200 counts is the agent learning the dynamics of labyrinth walls.

6.2 CONTROL AND SUB-GOAL EXPLORATION

In order to test the efficacy of our method on environments with harder dynamics, we conduct
experiments on the control-based environment Acrobot (Brockman et al., 2016) and a multi-step
maze environment. Our method (with planning depth d = 5) is compared to strong exploration
baselines with different archetypes:

1. Prediction error incentivized exploration (Stadie et al., 2015)

2. Hash count-based exploration (Tang et al., 2016)
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3. Bootstrap DQN (Osband et al., 2016)

In order to maintain consistency in our results, we use the same model architectures and model-free
methods throughout. Since we experiment in the deterministic domain, we exclude baselines that re-
quire some form of stochasticity or density estimation as baselines (for example, Shyam et al. (2018)
and Osband et al. (2017)). Normally, for most approaches that include a model-free component, a
step in the environment is taken with every update step. In our experiments, we use orders of mag-
nitude less samples as compared to most model-free RL algorithms (all within the same episode).
To ensure a fair comparison between our approach and baselines, we run multiple training iterations
in between each environment step for all experiments.

6.2.1 ACROBOT

We now test our approach on Acrobot (Brockman et al., 2016), which has a continuous state space
unlike the labyrinth environment. We specifically choose this control task because the nature of this
environment makes exploration inherently difficult. The agent only has control of the actuator for
the inner joint and has to transfer enough energy into the second joint in order to swing it to its
goal state. We modify this environment so that each episode is at most 3000 environment steps. We
use the default reward setup in Acrobot, where the agent is rewarded with −1 at every environment
step until it reaches its goal state where it receives a reward of 0. To measure the performance of
our exploration approach, we measure the average number of steps that the agent takes to move its
second joint above a given line as per Figure 5a in a single episode.

To demonstrate the ability of our method to learn a low dimensional abstract representation from
pixel inputs, we use 4 consecutive pixel frames as input instead of the 6-dimensional full state
vector. We use a 4-dimensional abstract representation of our state and results from experiments are
shown in Table 6.2.1. Our method reaches the goal state more efficiently than our baselines.

(a) Left: Acrobot start state. right: Acrobot end state (b) Left: Start of our multi-step maze. right: After the
agent has collected the key.

Figure 5: Illustrations of the Acrobot and multi-step goal maze environments. b) Left: The passage-
way to the west portion of the environment are blocked before the key (black) is collected. b) Right:
The passageway is traversable after collecting the key, and the reward (red) is then available. The
environment terminates after collecting the reward.

Acrobot Multi-step Maze

Avg Stdev Avg Stdev

Random Policy 2043.00 911.18 2416.80 1199.16
Prediction error incentivized exploration 575.25 196.89 529.50 120.59

Hash count-based exploration 674.25 363.59 685.50 603.24
Bootstrap DQN 478.00 224.48 1395.25 888.22

Novelty Search with abstract representations 356.25 87.47 320.00 69.24

Table 1: Number of steps necessary to reach the goal state in the Acrobot and the multi-step maze
environments (lower is better). Results are averaged over 4 trials. Best results are in bold.
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6.2.2 MULTI-STEP GOAL MAZE

We also test our method on an environment with a temporal aspect - a maze with the sub-goal of
picking up a key to open doors before the main goal of reaching the reward is available. We build
our environment with the Pycolab game engine (Stepleton, 2017). The environment can be seen in
Figure 5b. Each episode is at most 4000 environment steps. While this environment does admit an
extrinsic reward (1 for picking up the key, 10 for reaching the final state), we ignore these rewards
and only focus on intrinsic rewards.

Similarly to the labyrinth environment, the input to our agent is a top-down view of the environment.
We also employ an ε-greedy policy. From our experiments, we show that our agent is able to learn
an interpretable representation of the environment in a sample-efficient manner. It is able to encode
this temporal aspect of the environment (whether the key was collected) as shown in Figure 2b. With
our intrinsic reward generated with this representation, our agent is able to more efficiently explore
its state space and reach the end goal in fewer steps as compared to our baselines.

7 RELATED WORK

The proposed exploration strategy falls under the category of directed exploration (Thrun, 1992)
that makes use of the past interactions with the environment to guide the discovery of new states.
This work is inspired by the Novelty Search algorithm (Lehman and Stanley, 2011) that leverages
a nearest-neighbor scoring function, but does so in behavior space. Exploration strategies have
been investigated with both model-free and model-based approaches. In Bellemare et al. (2016) and
Ostrovski et al. (2017), a model-free algorithm provides the notion of novelty through a pseudo-
count from an arbitrary density model that provides an estimate of how many times an action has
been taken in similar states.

Several exploration strategies have also used a model of the environment along with planning. Hes-
ter and Stone (2012) employ a two-part strategy to calculate intrinsic rewards, combining model
uncertainty (from a random-forest based model) and a novelty reward based on L1 distance in fea-
ture space. A strategy investigated in Salge et al. (2014); Mohamed and Rezende (2015); Gregor
et al. (2016); Chiappa et al. (2017) is to have the agent choose a sequence of actions by planning
that leads to a representation of state as different as possible to the current state. In Pathak et al.
(2017); Haber et al. (2018), the agent optimizes both a model of its environment and a separate
model that predicts the error/uncertainty of its own model. Burda et al. (2018a) similarly uses an
intrinsic reward based on the uncertainty of its dynamics model. The agent can thus seek actions
that adversarially challenge its knowledge of the environment (Savinov et al., 2018). In Shyam et al.
(2018), multiple model forward models of the environment are also employed to plan to observe
novel states by using a measure of novelty derived from disagreement between future states.

8 DISCUSSION

In this paper, we show that with an interpretable abstract representation of states, our novelty metric
is able to serve as an intrinsic reward that enables efficient exploration. By using this novelty metric
with a combination of model-based and model-free approaches for planning, we demonstrate the
efficiency of our method in multiple environments.

As with most methods, our approach also has limitations. While the problem of distance metrics in
high-dimensional space is partially solved in our method with the dimensionality reduction of ob-
servations by our encoder, the `2-norm still requires a low dimension to be useful (Aggarwal et al.,
2002), and it might loose its effectiveness as we increase the dimension of our abstract representa-
tion.

In addition, our exploration strategy benefits greatly from the meaningful abstractions and internal
model. In some cases, the model can over-generalize with the consequence that the low-dimensional
representation loses information that is crucial for the exploration of the entire state space. An
interesting direction for future work would be find ways of incorporating the secondary features
mentioned in Section 6.1.2.
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A DISCUSSION ON THE ENTROPY CONSTRAINT

As for our soft constraints on representation magnitude, we use a local constraint instead of a global
constraint on magnitude such that it is more suited for our novelty metric. If we are to calculate
some form of intrinsic reward based on distance between neighboring states, then this distance
needs to be non-zero and ideally consistent as the number of states in our history increases. In the
global constraint case, if the intrinsic rewards decreases with an increase in number of states in the
agent’s history, then the agent will fail to be motivated to explore further. Even though the entropy
maximization losses ensures the maximization of distances between random states, if we have |Hs|
number of states in the history of the agent, then a global constraint on representation magnitude
might lead to

lim
|Hs|→∞

E(s,s′)∼(Hs,Hs)[‖s− s
′‖2] = 0. (9)

B MOTIVATION FOR RANKED WEIGHTING OF K-NN SCORES

Figure 6: Illustration of a simplistic 3 × 3 grid-like environment, with A = {up, down, left, right}
and distance 1 between neighboring states. All actions which lead out of the grid are no-ops.

HereHs is a list of all possible states in S in any order, with each possible state appearing only once.
If we let k = 4, we have that:

ρX (x
′, ê(Hs)) =

0 + 1 + 1 +
√
2

4
=

2 +
√
2

4
(10)

ρX (x, ê(Hs)) =
0 + 1 + 1 + 1

4
=

3

4
(11)

(12)

While it may seem redundant to include the 1st nearest neighbor distance in this metric (which
would be itself if we’ve visited the state), the 1st nearest neighbor is non-zero when we calculate the
novelty of a predicted state using our learned transition function τ̂ . From this example, we can see
that there is a bias towards states with fewer direct neighbors due to the nature of our novelty metric.
This poses an issue - if our goal is for sample-efficient exploration of our state space, then there is
no reason to favor states with less direct neighbors.

C EXPERIMENTAL SETUP AND HYPERPARAMETERS

For all of our experiments, we use a batch size of 64 and take 64 random steps transitions before
beginning training. We also use the same discount factor for all experiments (γ = 0.8) and the
same freeze interval for target parameters 1000. The reason behind our low discount factor is due
to the high density of non-stationary intrinsic rewards in our state. For all model-based abstract
representation training, the following hyperparameters were all kept constant: minimum distance
between consecutive states ω = 0.5, slack ratio δ = 6 and transition model dropout of 0.1. For all
experiments run with our novelty metric, we use k = 5 for our k-NN calculations.
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C.1 NEURAL NETWORK ARCHITECTURES

For reference, ’Dense’ implies a full-connected layer. ’Conv2D’ refers to a 2D convolutional layer
with stride 1. ’MaxPooling2D’ refers to a max pooling operation. All networks were trained with
the RMSProp optimizer. Throughout all experiments, we use the following neural network architec-
tures:

C.1.1 ENCODER

For all our non-control task inputs, we flatten our input and use the following feed-forward neural
network architecture for ê:

• Dense(200, activation=’tanh’)

• Dense(100, activation=’tanh’)

• Dense(50, activation=’tanh’)

• Dense(10, activation=’tanh’)

• Dense(abstract representation dimension).

For our control task, we use a convolution-based encoder:

• Conv2D(channels=8, kernel=(3,3), activation=’tanh’)

• Conv2D(channels=16, kernel=(3,3), activation=’tanh’)

• MaxPool2D(pool size=(4,4))

• Conv2D(channels=32, kernel=(3,3), activation=’tanh’)

• MaxPool2D(pool size=(3,3))

• Dense(abstract state representation dimension).

C.1.2 TRANSITION MODEL

The input to our transition model is a concatenation of an abstract representation and an action. We
use the following architecture

• Dense(10, activation=’tanh’, dropout=0.1)

• Dense(30, activation=’tanh’, dropout=0.1)

• Dense(30, activation=’tanh’, dropout=0.1)

• Dense(10, activation=’tanh’, dropout=0.1)

• Dense(abstract representation dimension)

and add the output of this to the input abstract representation.

C.1.3 REWARD AND DISCOUNT FACTOR MODELS

For both reward and discount factor estimators, we use the following architecture:

• Dense(10, activation=’tanh’)

• Dense(50, activation=’tanh’)

• Dense(20, activation=’tanh’)

• Dense(1).
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C.1.4 Q FUNCTION APPROXIMATOR

We use two different architecture based on the type of input. If we use the concatenation of abstract
representation and action, we use the following architecture:

• Dense(20, activation=’relu’)

• Dense(50, activation=’relu’)

• Dense(20, activation=’tanh’)

• Dense(nactions)

Otherwise for a flattened vector

And finally, for the pixel frame inputs for our control environments, we use:

• Conv2D(channels=8, kernel=(3,3), activation=’tanh’)

• Conv2D(channels=16, kernel=(3,3), activation=’tanh’)

• MaxPool2D(pool size=(4,4))

• Conv2D(channels=32, kernel=(3,3), activation=’tanh’)

• MaxPool2D(pool size=(3,3))

• Dense(nactions).

C.2 LABYRINTH ENVIRONMENTS

Both environments used the same hyperparameters except for two: we add an ε-greedy (ε = 0.2)
policy for the 4-room maze, and increased nfreq from 1 to 3 in the 4-room case due to unnecessary
over-training. We have the following hyperparameters for our two labyrinth environments:

• niters = 30000

• α = 0.00025

C.3 CONTROL ENVIRONMENT

In our Acrobot environment, the input to our agent is 4 stacked consecutive pixel frames, where we
reduce each frame down to a 32×32 pixel frame. Our abstract representation dimension is 4. We use
a learning rate of α = 0.00025 for all experiments. We train for niters = 30000 for both model-free
experiments and niters = 50000 for both experiments incorporating model-based components - this
discrepancy is due to the need for more iterations for the model-based portion to converge.

C.4 MULTI-STEP MAZE ENVIRONMENT

In our multistep maze environment, the input to our agent is a single 15× 15 frame of an overview
of the environment. Our abstract representation dimension is 3. We use an ε-greedy (ε = 0.1) policy
for this environment. We use α = 0.00025, niters = 30000 for our model-free algorithms and
α = 0.000025, niters = 50000 for experiments that include a model-base component. This is again
due to the need for our model-based component to converge.
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D ABLATION STUDY

(a) Results for open labyrinth between unweighted and
weighted k-NN averages. (b) Results for the 4-room labyrinth between un-

weighted and weighted k-NN averages.

Figure 7: Ablation results for unweighted versus weighted nearest neighbor heuristics (over 3 trials).

We perform an ablation study between unweighted (orange) and weighted (red) nearest neighbor
heuristics on the open labyrinth (left) and 4-room labyrinth (right) environments. While the weighted
nearest neighbor approach does improve the bias towards visiting more fewer-neighbor states, the
improvements are relatively marginal.
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