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ABSTRACT

The field of deep learning is commonly concerned with optimizing predictive
models using large pre-acquired datasets of densely sampled datapoints or signals.
In this work, we demonstrate that the deep learning paradigm can be extended to
incorporate a subsampling scheme that is jointly optimized under a desired min-
imum sample rate. We present Deep Probabilistic Subsampling (DPS), a widely
applicable framework for task-adaptive compressed sensing that enables end-to-
end optimization of an optimal subset of signal samples with a subsequent model
that performs a required task. We demonstrate strong performance on reconstruc-
tion and classification tasks of a toy dataset, MNIST, and CIFAR10 under stringent
subsampling rates in both the pixel and the spatial frequency domain. Due to the
task-agnostic nature of the framework, DPS is directly applicable to all real-world
domains that benefit from sample rate reduction.

1 INTRODUCTION

In many real-world prediction problems, acquiring data is expensive and often bandwidth con-
strained. Such is the case in regimes as medical imaging (Lustig et al., 2007; Choi et al., 2010;
Chernyakova & Eldar, 2014), radar (Baraniuk, 2007), and seismic surveying Herrmann et al. (2012).
By carefully reducing the number of samples acquired over time, in pixel-coordinate-space or in k-
space, efficient subsampling schemes lead to meaningful reductions in acquisition time, radiation
exposure, battery drain, and data transfer.

Subsampling is traditionally approached by exploiting expert knowledge of the signal of interest.
Famously, the Nyquist theorem states that when the maximum frequency of a continuous signal is
known, perfect reconstruction is possible when sampled at twice this frequency. More recently, it
has been shown that if the signal is known to be sparse in some domain, sub-Nyquist rate sampling
can be achieved through compressive measurements and subsequent optimization of a linear system
under said sparsity prior; a framework known as compressed sensing (CS) (Donoho et al., 2006;
Eldar & Kutyniok, 2012; Baraniuk, 2007).

These methods, however, are lacking in the sense that they do not fully exploit both the underlying
data distribution and the information required to solve the downstream task of interest, such as
disease prediction or semantic segmentation. Formalizing such knowledge is challenging in its own
right and would require careful analysis for each modality and downstream task. In this work, we
propose to explore the deep learning hypothesis as a promising alternative: reducing the need for
expert knowledge in lieu of large data-sets and end-to-end optimization of neural networks.

As subsampling is non-differentiable, incorporating it into an end-to-end optimized deep learning
model is non-trivial. Here, we take a probabilistic approach: rather than learning a subsampling
scheme directly, we pose a probability distribution that expresses belief over effective subsampling
patterns and optimize the distribution’s parameters instead. To enable differentiable sampling from
this distribution, we leverage recent advancements in continuous relaxation of the categorical distri-
bution, known as the Gumbel-softmax or Concrete distribution (Jang et al., 2017; Maddison et al.,
2016). This enables end-to-end training of both the subsampling scheme and the downstream model.

Naively, the number of parameters of a distribution over an n-choose-k problem scales factorially,
which is intractable for all practical purposes. When it comes to subset sampling, recent work
(Kool et al., 2019; Xie & Ermon, 2019) has explored a more tractable yet limited fully-factorized
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parametrization with a single parameter per sample, for which the top-K samples are stochastically
selected. Although efficient, for the task of subsampling this aggressive factorization can not express
the scenario where multiple samples can be equally good, yet redundant in combination, and forces
a model to focus on a single mode right off the bat.

We propose a novel parameterization for the subsampling distribution by conditioning on the output
sample index. This leads to an expressive yet tractable distribution that prevents redundant sampling,
whilst allowing equal weight attribution to samples that are equally informative in isolation. This is
essential for the efficient exploration of potential subsampling schemes, as it enables the model to
maintain multiple hypotheses during optimization.

Our main contributions are as follows:

• DPS: A new regime for task-adaptive subsampling using a novel probabilistic deep learning
framework for jointly learning a sub-Nyquist sampling scheme with a predictive model for
downstream tasks.

• A novel parametrization of the subsampling distribution by conditioning on the output
sample index, balancing tractability and exploration and outperforming fully factorized
parametrizations.

• Improved performance over strong subsampling baselines in image classification and re-
construction in both Fourier and pixel space.

2 RELATED WORK

Some recent works have proposed deep-learning-based subsampling methods for fast MRI, histori-
cally being one of the most prominent applications of CS. Weiss et al. (2019) exploit gradient back-
propagation to a fixed set of real-valued coordinates, enabled by their subsequent (limited-support)
interpolation on the discrete k-space grid, and Bahadir et al. (2019) formulate the sampling problem
by learning pixel-based thresholding of i.i.d. samples drawn from a uniform distribution. Where the
former suffers from limited exploratory capabilities (likely due to its compact support), with learned
sampling schemes typically not deviating far from their initialization, the latter controls the sample
rate only indirectly, through the addition of a sparsity-promoting `1 penalty on the mask.

Closely related to our methodology, Xie & Ermon (2019); Kool et al. (2019); Plötz & Roth (2018)
leverage an extension to the Gumbel-max trick (Gumbel, 1954) for subset selection using a categor-
ical distribution with N − 1 free parameters. They rely on relaxed top-K sampling, as first proposed
by Vieira (2014). These methods build upon the continuous relaxation of the categorical distribution
known in the deep learning community as the Gumbel-softmax trick or the concrete distribution
(Jang et al., 2017; Maddison et al., 2016). Our method builds upon the same foundation, but pro-
poses to parameterize the sub-sampling scheme conditioned on the output sample index, leading to
N − 1×K free parameters for N input samples and K selected samples.

We differentiate our contribution from deep encoder-decoder methods for data compression (Baldi
& Hornik, 1989; Hinton & Zemel, 1993; Blier & Ollivier, 2018; Habibian et al., 2019), which
do not aim at reducing data rates already at the sensing and digitization stage. Related work by
Mousavi et al. (2019) and Wu et al. (2019), focusses on the problem of learning compressive linear
encoders/filters, rather than discrete subsampling as addressed here.

Through the lens of contemporary deep learning, subsampling can be interpreted as a form of at-
tention (Bahdanau et al., 2014; Kim et al., 2017; Parikh et al., 2016; Vaswani et al., 2017). Rather
than attending on intermediate representations, our model “attends” directly on the input signal. For
sub-sampling to be effective, sparse weights are essential. In the space of attention, this is known as
hard attention (Xu et al., 2015), and is typically optimized using the REINFORCE gradient estima-
tor (Williams, 1992). In contrast to the method of attention as applied in these works, our method
aims for a a fixed, reduced subsampling rate.
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Figure 1: (a) System-level overview of the proposed framework, in which a probabilistic generative
sampling model and a subsequent task model are jointly trained to fulfil a desired system task. (b,c)
Two illustrative task-based sampling paradigms: image classification from a partial set of pixels (b),
and image reconstruction from partial Fourier measurements (c), respectively.

3 METHOD

3.1 TASK-ADAPTIVE SYSTEM MODEL

We consider the problem of performing some downstream task s through a learned subsampling
scheme A, resulting in measurements y ∈ RM of an underlying fully-sampled signal x ∈ RN , with
M << N :

y = Ax, (1)

where A ∈ {0, 1}M×N is the subsampling measurement matrix. We here concern ourselves
specifically with scenarios in which the rows of A are constrained to having cardinality one, i.e.
||am||0 = 1,∀m ∈ {0, ...,M − 1}. In such cases, A serves as a subset selector, sampling M out of
N elements in x. From the resulting low-rate measurements y we aim at performing task s through:

ŝ = fθ(y), (2)

with fθ(y) being a function that is differentiable with respect to its input and parameters θ, e.g. a
neural network.

Given a downstream task and dataset, we are interested in learning both the optimal processing pa-
rameters θ, and the sampling scheme as described in eq. (1). To circumvent the non-differential
nature of discrete sampling, we will introduce a novel fully probabilistic sampling strategy that al-
lows for gradient-based learning through error backpropagation, on which we detail in the following
section.

3.2 TRAINABLE PROBABILISTIC SAMPLING

Figure 1 shows a schematic overview of the proposed framework. Since direct optimization of the
elements in A is intractable due to its combinatorial nature, we here instead propose to leverage a
tractable generative sampling model that is governed by a learned subsampling distribution, param-
eterized by Φ:

A ∼ P (A|Φ). (3)

Thus, rather than optimizing A, we optimize the distribution parameters Φ. To warrant sufficient
expressiveness while maintaining tractability, we learn the parameters φm ∈ RN of M independent
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categorical distributions (rather than the joint distribution, which scales factorialy), being the rows
of Φ ∈ RM×N .

Formally, we define each mth measurement row am ∈ {0, 1}N in A as a one-hot encoding
of an independent categorical random variable rm ∼ Cat(N,πm). We define πm ∈ RN =
{πm,1, . . . , πm,N}, being a vector containing N class probabilities, and parameterize it in terms
of its unnormalized logits φm,n such that:

πm,n =
exp φm,n∑N
i=1 exp φm,i

. (4)

We sample from Cat(N,πm) by leveraging the Gumbel-max trick (Gumbel, 1954), a reparameteri-
zation of the sampling procedure that is a function of the distribution parameters and a Gumbel noise
vector em ∈ RN with i.i.d. Gumbel noise samples em,n ∼ Gumbel(0, 1). A realization r̃m is then
defined as:

r̃m = argmax
n

{
WR(φm,n + em,n)

}
, m ∈ {0, . . . ,M − 1}. (5)

Operator WR indicates sampling Without Replacement, which we implement by evaluating eq. (5)
sequentially, masking previous realizations r̃1, · · · , r̃m−1. Introducing the function one hotN (·) as
the operator that returns a one-hot vector of length N , we finally obtain:

am = one hotN
{

r̃m
}
=

= one hotN

{
argmax

n

{
WR(φm,n + em,n)

}}
. (6)

To permit error backpropagation for efficient optimization of Φ, we require ∇φm
am to exist

∀m ∈ {1, . . . ,M}. Since argmax(·) is a non-differentiable operator, we adopt the Straight-Through
Gumbel Estimator (Jang et al., 2017; Maddison et al., 2016) as a surrogate for∇φm

am:

∇φm
am := ∇φm

Eem

[
softmaxτ (WR (φm + em))

]
=

∇φmEem

[
exp{(φm + em)/τ}∑N

i=1 exp{(φm,i + em,i)/τ}

]
, (7)

with (row operator) softmaxτ (·) as a continuous differentiable approximation of the one-hot en-
coded argmax(·) operation. See appendix A for the full derivation of∇φm

am.

We refer to sampling using the softmaxτ (·) function as soft sampling. Its temperature parameter
τ serves as a gradient distributor over multiple entries (i.e. logits) in φm. Using a relatively high
value enables updating of multiple logits during training, even though a hard sample was taken in
the forward pass. In the limit of τ → 0, soft sampling approaches the one-hot encoded argmax(·)
operator in eq. (6) (Jang et al., 2017; Maddison et al., 2016). As such, we define:

am := lim
τ→0

softmaxτ (WR (φm + em)), and (8)

∇φmam := ∇φmEem

[
softmaxτ (WR (φm + em))

]
, τ > 0, (9)

with m ∈ {1, . . . ,M}.

4 EXPERIMENTS

We test the applicability of the proposed task-adaptive DPS framework for three datasets and two
distinct tasks: image classification and image reconstruction. We explore subsampling in pixel
coordinate space as well as in k-space. The latter is relevant for scenarios in which data is acquired
in the frequency domain, such as (but not limited to) magnetic resonance imaging (MRI).

4.1 MNIST CLASSIFICATION

Experiment setup Classification performance was tested on the MNIST database (LeCun et al.,
1998), comprising 70,000 28 × 28 grayscale images of handwritten digits 0 to 9. We split the
dataset into 50,000 training images, 5,000 validation, and 5,000 test images. We train our sampling
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Figure 2: MNIST classification for (a) image-domain, and (b) Fourier-domain subsampling. (top)
Several example images in the respective sampling domains, (middle) learned task-adaptive sub-
sampling patterns, with their relative sample incidence across a 1000 such realizations (inset), and
(bottom) classification results of the proposed task-adaptive scheme compared to Gumbel top-K
subset learning and two non-learned baseline sampling approaches.

model to take partial measurements in either the image or Fourier domain image, and process them
through the task model to yield a classification outcome. We compare our results to those obtained
using uniformly distributed pixel/Fourier samples, a sampled disk/low-pass filter, and Gumbel top-K
sampling (Kool et al., 2019).

Task model After sampling M elements, all N zero-masked samples (or 2N in the case of
complex Fourier samples) are passed through a series of 5 fully-connected layers, having N , 256,
128, 128 and 10 output nodes, respectively. The activations for all but the last layer were leaky
ReLUs, and 40% dropout was applied after the third layer. The 10 outputs were normalized by
a Softmax function to yield the respective classification probabilities. Zero-filling and connecting
all possible samples (rather than only connecting the M selected samples) facilitated faster co-
adaptation of the network to different sampling patterns during training.

Training details We train the network to maximize the log-likelihood of the observations
D = {(xi, si) | i ∈ 0, . . . , L} through minimization of the categorical cross-entropy between the
predictions and the labels, denoted by Ls. We moreover promote training towards one-hot sampling
distributions πm by penalizing high entropy:

Le = −
M∑
m=1

N∑
n=1

πm,n log πm,n, (10)

with πm,n defined as in eq. (4). The total optimization problem is thus:

Φ̂, θ̂ = argmin
Φ,θ

{
E(x,s)∼pDLs + µLe

}
, (11)

where pD is the data generating distribution and µ = 1e−6. The temperature parameter τ in eq. (7)
was set to 10, and the sampling distribution parameters Φ were initialized randomly, following a
zero-mean Gaussian distribution with standard deviation 0.25. Equation 11 was optimized using
stochastic gradient descent on batches of 32 examples, approximating the expectation by a mean
across the train dataset. To that end, we used the ADAM solver (β1 = 0.9, β2 = 0.999, and
ε = 1e−7 ) (Kingma & Ba, 2014), training for 150 epochs. We adopted different learning rates
for the sampling parameters Φ and the parameters of the task model θ, being 1e − 3 and 1e − 4,
respectively.
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Results The results presented in Figure 2a show that task-adaptive image-domain sampling
significantly outperforms the fixed sampling baselines, as well as the alternative Gumbel top-K-
based subset selector (Kool et al., 2019). The resulting patterns qualitatively demonstrate how, for
this task, a sensible selection of pixels that are most informative was made (slightly slanted, and
capturing discriminative areas). Notably, partial Fourier measurements (Figure 2b) allowed for a
much greater reduction of the number samples, with task-adaptive sampling again outperforming
the fixed sampling approaches. Interestingly, the DC and very-low frequency components were
consistently not selected.

4.2 ’LINES AND CIRCLES’ IMAGE RECONSTRUCTION

Experiment setup To evaluate reconstruction of structured images from highly undersampled
partial Fourier (k-space) measurements (keeping 3.1% of the coefficients), we generated synthetic
toy data comprising images that each contain up to 5 horizontal lines and randomly-sized circles.
Lines and circles were placed at random positions and their pixel intensity was drawn from a uniform
distribution between 1 and 10. Examples were generated in an on-line fashion during training. Two
illustrative test examples, along with their Fourier-domain measurement representations, are given
in Figure 3 (a,b). We compare the results to those obtained using three fixed partial Fourier mea-
surement baselines, following uniform, random, and low-pass subsampling patterns, respectively.

Task model Image reconstruction from partial Fourier measurements was performed by follow-
ing the methodology in Zhu et al. (2018). We use a deep neural network consisting of two subse-
quent fully-connected layers with tanh activations that map the 2N (zero-filled) Fourier coefficients
(stacked real and imaginary values) to a vector of N pixel values. This vector was subsequently re-
shaped into a

√
N×
√
N image, and processed by two convolutional layers (ReLU activations, 5×5

kernels, 64 channels, followed by a final convolutional layer (linear activation, 7 × 7 kernel) that
maps these channels to a single

√
N ×

√
N image.

Training details The optimization problem was the same as in Equation 11, however with the
negative log-likelihood cost Ls defined as:

Ls = E(x,s)∼pD ‖fθ(A(Φ)x)− s‖22, (12)
where we make the parameterization of A by Φ explicit. The learning rates for Φ and θ were 1e−3
and 1e−4, respectively. Training was performed for 200,000 iterations across batches of 128 newly
generated samples. All other hyperparameters were the same as in Sec. 4.1

Results An overview of the results is given in fig. 3. As expected, uniform subsampling leads to
strong spatial aliasing that can not be recovered by the task-model, violating the Nyquist criterion.
In turn, random subsampling introduces an incoherent aliasing pattern, that can only in part be re-
covered. Although not suffering from aliasing, low-pass sampling deteriorates resolution, of which
the effect is particularly evident for the broadband/sharp horizontal lines. In contrast, task-adaptive
sampling yields high-resolution accurate reconstructions with an improved PSNR (30.4 dB com-
pared to 16.7 dB, 27.4 dB, and 28.7 dB for uniform, random and low-pass sampling, respectively).
Note how the sampling pattern (top row) has evolved from a random initialization, similar to that of
(d), to the ultimate task-adaptive scheme (f).

4.3 CIFAR10 IMAGE RECONSTRUCTION

Experiment setup The CIFAR10 database (Krizhevsky et al., 2009) contains 60,000 images of
32× 32 pixels in 10 different classes. We converted all images to grayscale, and subsequently split
them into 50,000 training images, 5,000 validation and 5,000 test images. We again learn partial
Fourier sampling and image reconstruction, keeping only 12.5% of the Fourier coefficients, and
compare ourselves to the three fixed partial Fourier measurement baselines described in Sec. 4.2.

Task model The challenging reconstruction task for CIFAR10 motivates the adoption of a struc-
tured model to enable strong reconstruction. We draw inspiration from iterative proximal-gradient
schemes (Parikh et al., 2014) which are dedicated to solving the ill-posed linear measurement prob-
lem in equation 1. To that end, we unfoldK = 5 such iterations, learning an adequate image-domain
proximal mapping P(k)

θ and stepsize α(k) at each fold:

ŝ(k+1) = P(k)
θ

(
ŝ(k) − α(k)F∗AT

(Φ)

(
A(Φ)Fŝ(k) −A(Φ)x

))
(13)
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Figure 3: Image reconstruction performance from partial k-space (Fourier) measurements on a cus-
tom toy dataset consisting of lines and circles with random locations and sizes. Illustrative examples
of the k-space and target images are given in (a,b). The sampling patterns, images and statistical
quality metrics for uniform, random, low-pass, and learned task-adaptive sampling are displayed in
(c), (d), (e), (f), respectively. In all cases, only 3.1% of the Fourier coefficients have been selected.

where F ∈ RN×N is a discrete Fourier transform (DFT) matrix, and (·)H denotes the Hermitian
(conjugate transpose). In the above formulation, at each fold a step is taken towards the sampling-
consistent subspace that adequately represents the physical measurement of s by A(Φ)F. The trained
proximal operator P(k)

θ , a 3-layer convolutional network (3 × 3 kernels, 64 output channels) with
ReLU activations followed by a single-output-channel linear 3×3 convolutional layer, then projects
this onto the manifold of visually plausible images (Mardani et al., 2018), removing noise, aliasing,
or blurring artifacts.

Training details Optimization settings were similar to those in Sec. 4.2, leveraging a mean-
squared-error (negative log-likelihood) reconstruction cost and a distribution entropy penalty on
πm. To promote visually plausible reconstructions, we added an adversarial (Ledig et al., 2017)
cost by adopting a discriminator network Dψ(s) that aims to discriminate between images recon-
structed from partial Fourier measurements ŝ and actual images s . The discriminator comprised 3
convolutional layers (3 × 3 kernels, stride 2, 128 channels) with leaky ReLU activations, followed
by global average pooling, 40% dropout, and a logistic binary classification model. The sampling-
and task-model parameters were then trained to both minimize the negative log-likelihood cost and
maximize the discriminator binary cross-entropy cost LD, in addition to the entropy penalty:

Φ̂, θ̂ = argmin
Φ,θ

{
E(x,s)∼pD ‖fθ(A(Φ)x)− s‖22 + µLe − λLD

}
, (14)

where λ was set to 0.004. The parameters of the discriminator network, ψ, were jointly optimized
with eq. (14) to minimize LD. The learning rates for Φ and θ were 1e− 3 and 1e− 4, respectively.
Training was performed for 100 epochs. All other hyperparameters were set as in Sec. 4.1.

Results Figure 4 shows how task-adaptive sampling significantly outperforms all baselines.
Both the uniform and random subsampling schemes suffer from severe aliasing which the task-
model is not able to adequately restore. While low-pass sampling does not lead to aliasing, the
absence of real high-frequency information causes the task-model to ‘hallucinate’ such (super-
resolution) content. This is particularly notable for the example displayed in the bottom row of
fig. 4, being less structured (or predictable) than that in the row above it. Instead, task-adaptive
sampling learns to select what appear to be pseudo-random samples with a variable spectral density,
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Figure 4: Image reconstruction performance from partial k-space (Fourier) measurements on the
CIFAR10 database. Illustrative examples of the k-space and target images are given in (a,b). The
sampling patterns, images and statistical quality metrics for uniform, random, low-pass, and learned
task-adaptive sampling are displayed in (c), (d), (e), (f), respectively. In all cases, 12.5% of the
Fourier coefficients have been selected. Task-adaptive sampling notably outperforms the other ap-
proaches, both qualitatively and quantitatively.

thereby acquiring both low and high-frequency information. This allows the task model to produce
high-quality, high-resolution reconstructions that go beyond those obtained with the other methods,
reaching a PSNR of 27.1 dB and a structural similarity index (SSIM) of 0.88 across the 5000 test
examples. For the most competitive fixed-sampling method, low pass, these statistics were 25.3 dB
and 0.82, respectively.

5 CONCLUSIONS

We have introduced DPS, a framework that enables jointly learning a data- and task-driven sampling
pattern, with a subsequent task-performing model. The framework is generic and can be combined
with any network architecture that performs the required task using the subsampled set of signal
elements. Empirically we find the method to perform strongly on toy datasets and canonical deep
learning problems. Moreover, the introduced index-conditional parametrization of the subsampling
distribution outperforms the fully-factorized Gumbel-top-K method.

Further work can explore the effectiveness of DPS in real-world problems such as MRI scanning.
Like all data-driven optimized methods, a learned sampling scheme is at risk of overfitting to a
small training dataset. Although we did not observe this issue in our experiments, careful regular-
ization might be required to ensure that this effect is minimal in such high-risk tasks. The fully-
differentiable DPS framework allows for flexibility, and interesting extensions can be explored in
future work. Rather than learning a fixed set of parameters for the subsampling distribution, a neural
network can be used to predict the parameters instead, conditioned on contextual data or the samples
acquired so far. Finally, our method currently requires the desired sampling rate to be predetermined
as a hyperparameter. Future work can explore if this rate can be jointly optimized to incorporate
optimization of the sub-sampling rate.
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A GRADIENT OF GUMBEL-SOFTMAX SAMPLING

For any mth pair of rows (am,φm), any nth element am,n in am can be differentiated towards all
elements in φm through:

∇φm
am,n

= ∇φm
Eem

[
softmaxτ (φm + em)

∣∣∣
n

]
= Eem

[
∇φmsoftmaxτ (φm + em)

∣∣∣
n

]
= Eem

[
∇φm

exp{(φm + em)/τ}∑N
i=1 exp{(φm,i + em,i)/τ}

∣∣∣
n

]
(15)

Gumbel noise vector em can be reparametrized as a function of uniform noise vector εm ∼ U(0, 1)
i.i.d., through:

em = − log(− log(εm)). (16)
This allows rewriting eq. (15) into:

∇φm
am,n = Eεm

[
∇φm

exp{(φm − log(− log(εm)))/τ}∑N
i=1 exp{(φm,i − log(− log(εm,i)))/τ}

∣∣∣
n

]

=

∫ ∞
−∞

. . .

∫ ∞
−∞

P
[
εm = [k1, · · · , kN ]

]
∇φm

exp{(φm − log(− log(k)))/τ}∑N
i=1 exp{(φm,i − log(− log(ki)))/τ}

∣∣∣
n
dkN · · · dk1

=

∫ 1

−0
. . .

∫ 1

0

P
[
εm,1 = k1

]
P
[
εm,2 = k2

]
· · ·P

[
εm,N = kN

]
·

∇φm

exp{(φm − log(− log(k)))/τ}∑N
i=1 exp{(φm,i − log(− log(ki)))/τ}

∣∣∣
n
dkN · · · dk1

=

∫ 1

−0
. . .

∫ 1

0

1 · ∇φm

exp{(φm − log(− log(k)))/τ}∑N
i=1 exp{(φm,i − log(− log(ki)))/τ}

∣∣∣
n
dkN · · · dk1.

(17)
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