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ABSTRACT

We study reinforcement learning in settings where sampling an action from the
policy must be done concurrently with the time evolution of the controlled system,
such as when a robot must decide on the next action while still performing the pre-
vious action. Much like a person or an animal, the robot must think and move at
the same time, deciding on its next action before the previous one has completed.
In order to develop an algorithmic framework for such concurrent control prob-
lems, we start with a continuous-time formulation of the Bellman equations, and
then discretize them in a way that is aware of system delays. We instantiate this
new class of approximate dynamic programming methods via a simple architec-
tural extension to existing value-based deep reinforcement learning algorithms.
We evaluate our methods on simulated benchmark tasks and a large-scale robotic
grasping task where the robot must “think while moving.”

1 INTRODUCTION

In recent years, Deep Reinforcement Learning (DRL) methods have achieved tremendous success on
a variety of diverse environments, including video games (Mnih et al., 2015), zero-sum games (Sil-
ver et al., 2016), robotic grasping (Kalashnikov et al., 2018), and in-hand manipulation tasks (Ope-
nAI et al., 2018). While impressive, all of these examples use a blocking observe-think-act paradigm:
the agent assumes that the environment will remain static while it thinks, so that its actions will be
executed on the same states from which they were computed. This assumption breaks in the con-
current real world, where the environment state evolves substantially as the agent processes obser-
vations and plans its next actions. As an example consider a dynamic task such as catching a ball;
it is not possible to pause the ball mid-air to wait for the agent to decide on the next control to com-
mand. In addition to solving dynamic tasks where blocking models would fail, thinking and acting
concurrently can provide practical qualitative benefits such as smoother, more human-like motions
and the ability to seamlessly plan for next actions while executing the current one.

Despite these potential benefits, most DRL approaches are mainly evaluated in blocking simulation
environments. Blocking environments make the assumption that the environment state will not
change between when the environment state is observed and when the action is executed. This
assumption holds true in most simulated environments, which encompass popular domains such as
Atari (Mnih et al., 2013) and Gym control benchmarks (Brockman et al., 2016). The system is
treated in a sequential manner: the agent observes a state, freezes time while computing an action,
and finally applies the action and unfreezes time. However, in dynamic real-time environments such
as real-world robotics, the synchronous environment assumption is no longer valid. After observing
the state of the environment and computing an action, the agent often finds that when it executes
an action, the environment state has evolved from what it had initially observed; we consider this
environment a concurrent environment.

In this paper, we introduce an algorithmic framework that can handle concurrent environments in
the context of DRL. In particular, we derive a modified Bellman operator for concurrent MDPs and
present the minimal set of information that we must augment state observations with in order to
recover blocking performance with Q-learning. We introduce experiments on different simulated
environments that incorporate concurrent actions, ranging from common simple control domains to
vision-based robotic grasping tasks. Finally, we show an agent that acts concurrently in a real-world
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robotic grasping task is able to achieve comparable task success to a blocking baseline while acting
49% faster.

2 RELATED WORK

Minimizing Concurrent Effects Although real-world robotics systems are inherently concurrent,
it is sometimes possible to engineer them into approximately blocking systems. Different examples
include choosing low-latency hardware (Abbeel et al., 2006), optimizing software infrastructure,
or designing lightweight model architectures (Cruz et al., 2017), all of which minimize the time
spent during state capture and policy inference. Another option is to design actions to be executed
to completion via closed-loop feedback controllers and the system velocity is decelerated to zero
before a state is recorded (Kalashnikov et al., 2018). In contrast to these works, we tackle the
concurrent action execution directly in the learning algorithm. Our approach allows us to reduce the
engineering effort required to design a blocking environment and can be applied to tasks where it is
not possible to wait for the system to come to rest between deciding new actions.

Algorithmic Approaches Other works utilize algorithmic modifications to directly overcome the
challenges of concurrent control. Previous work in this area can be grouped into four approaches: (1)
learning policies that are robust to variable latencies (Tan et al., 2018), (2) including past history such
as frame-stacking (Haarnoja et al., 2018), (3) learning dynamics models to predict the future state
at which the action will be executed (Firoiu et al., 2018; Amiranashvili et al., 2018), and (4) using
a time-delayed MDP framework(Walsh et al., 2007; Firoiu et al., 2018; Schuitema et al., 2010). In
contrast to these works, our approach is able to (1) optimize for a specific latency regime as opposed
to being robust to all of them, (2) directly consider the properties of the source of latency as opposed
to force the network to learn them from high-dimensional inputs, (3) avoid learning explicit forward
dynamics models in high-dimensional spaces, which can be costly and challenging, and (4) consider
environments where actions are interrupted as opposed to discrete-time time-delayed environments
where multiple actions are queued and each action is executed until completion.

Continuous-time Reinforcement Learning While previously mentioned related works largely
operate in discrete-time environments, framing concurrent environments as continuous-time sys-
tems is a natural framework to apply. In the realm of continuous-time optimal control, path integral
solutions (Kappen, 2005; Theodorou et al., 2010) are linked to different noise levels in system dy-
namics, which could potentially include latency that results in concurrent properties. Finite differ-
ences can approximate the Bellman update in continuous-time stochastic control problems (Munos
& Bourgine, 1998) and continuous-time temporal difference learning methods (Doya, 2000) can
utilize neural networks as function approximators (Coulom, 2002). The effect of time-discretization
(converting continuous-time environments to discrete-time environments) is studied in Tallec et al.
(2019), where the advantage update is scaled by the time discretization parameter. We build on top
of many of the theoretical formulations and findings in these works, and show their applications to
deep reinforcement learning methods on more complex, vision-based robotics tasks.

3 VALUE-BASED REINFORCEMENT LEARNING IN CONCURRENT
ENVIRONMENTS

In this section, we first introduce the preliminaries necessary for the discrete- and continuous-time
RL formulations. We then describe the MDP modifications necessary to represent concurrent actions
and finally, present value-based RL algorithms that can cope with concurrent environments.

While concurrent environments affect DRL methods beyond value-based RL, we focus our scope
on value-based methods due to their attractive sample-efficiency and off-policy properties for real-
world robotic tasks.

3.1 DISCRETE-TIME REINFORCEMENT LEARNING PRELIMINARIES

We use standard reinforcement learning formulations in both discrete-time and continuous-time
settings (Sutton & Barto, 1998). In the discrete-time case, at each time step i, the agent receives
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Figure 1: In both diagrams, shaded nodes represent observable random variables and unshaded
nodes represent unobserved random variables. (a): in “blocking” MDPs, the environment state
does not change while the agent records the current state and selects an action. This can be imple-
mented by stopping time (in simulation), or ensuring that the entire system completely comes to
rest before the state capture and action selection occur. (b): in “concurrent” MDPs, we formulate
state and action dynamics as continuous-time stochastic processes s(t) and ai(t). The specific in-
tervals tAS′′ , tAS , tAS′ are unobservable random variables. At time t, the agent observes the state
of the world s(t), but by the time it selects an action ai(t + tAS), the last chosen action process
ai−1(t−H+ tAS′′) has “rolled over” to an unobserved state s(t+ tAS). An agent that concurrently
selects actions from old states while in motion may need to interrupt a previous action before it has
finished executing its current trajectory.

state si from a set of possible states S and selects an action ai from some set of possible actions A
according to its policy π, where π is a mapping from S toA. The environment returns the next state
si+1 sampled from a transition distribution p(si+1|si,ai) and a reward r(si,ai). The return for a
given trajectory of states and actions is the total discounted return from time step i with discount
factor γ ∈ (0, 1]: Ri =

∑∞
k=0 γ

kr(si+k,ai+k). The goal of the agent is to maximize the expected
return from each state si. The Q-function for a given policy π gives the expected return when
selecting action a at state s: Q(s,a) = E[Ri|si = s,ai = a]. Similarly, the value function gives
expected return from state s: V (s) = E[Ri|si = s].

The default blocking environment formulation is detailed in Figure 1a.

3.2 VALUE FUNCTIONS AND POLICIES IN CONTINUOUS TIME

For the continuous-time case, we start by formalizing a continuous-time MDP with the differential
equation:

ds(t) = F (s(t),a(t))dt+G(s(t),a(t))dβ (1)
where S = Rd is a set of states, A is a set of actions and F : S × A → S describes the stochastic
dynamics of the environment, and β is a Wiener process (Ross et al., 1996). Continuous-time
functions s(t) and ai(t) specify the state and i-th action taken by the agent. We refer to the values
taken by these functions at time t as s(t) and a(t) respectively. Note that we use bolded font to
indicate state/action function values (si(t),a(t)) and unbolded font to indicate the function itself
(s(t), ai(t)). The agent interacts with the environment through a state-dependent, deterministic
policy function π and the return R of a trajectory τ is given by (Doya, 2000):

R(τ) =

∫ ∞
t=0

γtr(s(t),a(t))dt, (2)

which leads to a continuous-time value function (Tallec et al., 2019):

V (s(t)) = Eτ∼π[R(τ)|s(t)]

= Eτ∼π
[∫ ∞

t=0

γtr(s(t),a(t))dt

]
,

(3)

and similarly, a continuous Q-function:

Q(s(t), a, t,H) = Es

[∫ t′=t+H

t′=t

γt
′−tr(s(t′),a(t′))dt′ + γHV (s(t+H))

]
, (4)

where H is the constant sampling period between state captures (i.e. the duration of an action
trajectory). The expectations are computed with respect to stochastic process defined in Eq. 1.
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3.3 CONCURRENT ACTIONS IN CONTINUOUS AND DISCRETE-TIME

We consider Markov Decision Processes (MDPs) with concurrent actions, where actions are not
executed to full completion. More specifically, by concurrent actions we mean that the state is
captured while the previous action is still being executed. After state capture, the policy selects an
action that is executed in the environment regardless of whether the previous action has completed.

In the continuous-time MDP case, concurrent actions can be considered as horizontally translating
the action along the time dimension (Walsh et al., 2007), and the effect of concurrent actions is
illustrated in Figure 1b.

3.4 VALUE-BASED CONCURRENT REINFORCEMENT LEARNING ALGORITHMS IN
CONTINUOUS AND DISCRETE-TIME

We start our derivation from this continuous-time reinforcement learning standpoint, as it allows us
to easily characterize the concurrent nature of the system. We then demonstrate that the conclusions
drawn for the continuous case also apply to the more commonly-used discrete setting.

Continuous Formulation In order to further analyze the concurrent setting, we introduce the fol-
lowing notation. As shown in Figure 1b, an agent selects N action trajectories during an episode,
a1, ..., aN , where each ai(t) is a continuous stochastic process generating controls as a function
of time t. Let tAS be the time duration of state capture, policy inference and any additional com-
munication latencies. At time t, an agent begins computing the i-th trajectory ai(t) from state
s(t), while concurrently executing the previous selected trajectory ai−1(t) over the time interval
(t − H + tAS , t + tAS). At time t + tAS , where t ≤ t + tAS ≤ t + H , the agent switches to
executing actions from ai(t). The continuous-time Q-function for the concurrent case from Eq. 4
can be expressed as following:

Q(s(t), a, t,H) = Es

[∫ t′=t+tAS

t′=t

γt
′−tr(s(t′),ai−1(t

′))dt′

]
︸ ︷︷ ︸

Executing action trajectory ai−1(t) until t+ tAS

+ Es

[∫ t′=t+H

t′=t+tAS

γt
′−tr(s(t′),ai(t

′))dt′

]
︸ ︷︷ ︸

Executing action trajectory ai(t) until t+H

+Es
[
γHV (s(t+H))

]︸ ︷︷ ︸
Value function at t+H

(5)

The first two terms correspond to expected discounted returns for executing the action trajectory
ai−1(t) from time (t, t + tAS) and the trajectory ai(t) from time (t + tAS , t + tAS + H). We
can obtain a single-sample Monte Carlo estimator Q̂ by sampling random functions values s, which
simply correspond to policy rollouts:

Q̂(s(t), a, t,H) =

∫ t′=t+tAS

t′=t

γt
′−tr(s(t′),ai−1(t

′))dt′+

γtAS

[∫ t′=t+H

t′=t+tAS

γt
′−t−tASr(s(t′),ai(t

′))dt′ + γH−tASV (s(t+H))

]
(6)

Next, for the continuous-time case, let us define a new concurrent Bellman backup operator:

T πnbQ̂(s(t), ai−1, t, tAS) =

∫ t′=t+tAS

t′=t

γt
′−tr(s(t′),ai−1(t

′))dt′+

γtASEsQ̂(s(t+ tAS), ai, t+ tAS , H − tAS). (7)

In addition to expanding the Bellman operator to take into account concurrent actions, we demon-
strate that this modified operator maintain its contraction properties that are crucial for Q-learning
convergence.
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Lemma 3.1. The concurrent continuous-time Bellman operator is a contraction.

Proof. See Appendix A.2.

Discrete Formulation In order to simplify the notation for the discrete-time case where the dis-
tinction between the action function ai(t) and the value of that function at time step t, ai(t), is not
necessary, we refer to the current state, current action, and previous action as st, at, at−1 respec-
tively, replacing subindex i with t. Following this notation, we define the concurrent Q-function for
the discrete-time case:

Q(st,at−1, t, tAS , H) = r(st,at−1) + γ
tAS
H Ep(st+tAS

|st,at−1)Q(st+tAS
,at, t+ tAS , tAS′ , H − tAS)

(8)

Where tAS′ is the “spillover duration” for action at beginning execution at time t + tAS (see Fig-
ure 1b). The concurrent Bellman operator is as follows:

T πnbQ(st,at,at−1, t, tAS , H) = r(st,at−1) + γ
tAS
H Ep(st+tAS

|st,at−1)Q(st+tAS
,at, t+ tAS , tAS′ , H − tAS).

(9)

Similarly to the continuous-time case, we demonstrate that this Bellman operator is a contraction.

Lemma 3.2. The concurrent discrete-time Bellman operator is a contraction.

Proof. See Appendix A.2.

We refer the reader to Appendix A.1 for more detailed derivations of the Q-functions and Bellman
operators. Crucially, Equation 9 implies that we can extend a conventional discrete-time Q-learning
framework to handle MDPs with concurrent actions by providing the Q function with values of tAS
and at−1, in addition to the standard inputs st,at, t.

3.5 DEEP Q-LEARNING WITH CONCURRENT KNOWLEDGE

While we have shown that knowledge of the concurrent system properties (tAS and at−1, as defined
previously for the discrete-time case) is theoretically sufficient, it is often hard to accurately predict
tAS during inference on a complex robotics system. In order to allow practical implementation of
our algorithm on a wide range of RL agents, we consider three additional features encapsulating
concurrent knowledge used to condition the Q-function: (1) Previous action (at−1), (2) Action
selection time (tAS), and (3) Vector-to-go (V TG), which we define as the remaining action to be
executed at the instant the state is measured.

We note that at−1 is available across the vast majority of environments and it is easy to obtain.
Using tAS , which encompasses state capture, communication latency, and policy inference, relies
on having some knowledge of the concurrent properties of the system. Calculating V TG requires
having access to some measure of action completion at the exact moment when state is observed.
When utilizing a first-order control action space, such as joint angle or desired pose, V TG is easily
computable if proprioceptive state is measured and synchronized with state observation. In these
cases, VTG is an alternate representation of the same information encapsulated by at−1 and the
current state. We limit our analysis to environments where at−1, tAS , and V TG are all obtainable
and H is held constant.

4 EXPERIMENTS

In our experimental evaluation we aim to study the following questions: (1) Is concurrent knowledge
defined in Section 3.5, both necessary and sufficient for a Q-function to recover the performance
of a blocking unconditioned Q-function, when acting in a concurrent environment? (2) Which
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(a) Cartpole (b) Pendulum

Figure 2: In concurrent versions of both Cartpole and Pendulum, we observe that providing the critic
with VTG leads to more robust performance across all hyperparameters. (a) Environment rewards
achieved by DQN with different network architectures [either a feedforward network (FNN) or a
Long Short-Term Memory (LSTM) network] and different concurrent knowledge features [Uncon-
ditioned, Vector-to-go (VTG), or previous action and tAS] on the concurrent Cartpole task for every
hyperparameter in a sweep, sorted in decreasing order. (b) Environment rewards achieved by DQN
with a FNN and different frame-stacking and concurrent knowledge parameters on the concurrent
Pendulum task for every hyperparameter in a sweep, sorted in decreasing order. Larger versions of
these figures are provided in Appendix A.4.

representations of concurrent knowledge are most useful for a Q-function to act in a concurrent
environment? (3) Can concurrent models improve smoothness and execution speed of a real-robot
policy in a realistic, vision-based manipulation task?

4.1 TOY FIRST-ORDER CONTROL PROBLEMS

First, we illustrate the effects of a concurrent control paradigm on value-based DRL methods through
an ablation study on concurrent versions of the standard Cartpole and Pendulum environments. We
use 3D MuJoCo based implementations in DeepMind Control Suite (Tassa et al., 2018) for both
tasks. For the baseline learning algorithm implementations, we use the TF-Agents (Guadarrama
et al., 2018) implementations of a Deep Q-Network agent, which utilizes a Feed-forward Neural
Network (FNN), and a DeepQ-Recurrent Neutral Network agent, which utilizes a Long Short-Term
Memory (LSTM) network. To approximate different difficulty levels of latency in concurrent envi-
ronments, we utilize different parameter combinations for action execution steps and action selection
steps (tAS). The number of action execution steps is selected from {0ms, 5ms, 25ms, or 50ms} once
at environment initialization. tAS is selected from {0ms, 5ms, 10ms, 25ms, or 50ms} either once at
environment initialization or repeatedly at every episode reset. In addition to environment parame-
ters, we allow trials to vary across model parameters: number of previous actions to store, number
of previous states to store, whether to use VTG, whether to use tAS , Q-network architecture, and
number of discretized actions. Further details are described in Appendix A.3.1.

To estimate the relative importance of different concurrent knowledge representations, we conduct
an analysis of the sensitivity of each type of concurrent knowledge representations to combinations
of the other hyperparameter values, shown in Figure 2a. While all combinations of concurrent
knowledge representations increase learning performance over baselines that do not leverage this
information, the clearest difference stems from including VTG. In Figure 2b we conduct a similar
analysis but on a Pendulum environment where tAS is fixed every environment; thus, we do not focus
on tAS for this analysis but instead compare the importance of VTG with frame-stacking previous
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(a) Simulation (b) Real

Figure 3: An overview of the robotic grasping task. A static manipulator arm attempts to grasp
objects placed in bins front of it. In simulation, the objects are procedurally generated.

actions and observations. While frame-stacking helps nominally, the majority of the performance
increase results from utilizing information from VTG.

4.2 CONCURRENT QT-OPT ON LARGE-SCALE ROBOTIC GRASPING

Next, we evaluate scalability of our approach to a practical robotic grasping task. We simulate
a 7 DoF arm with an over-the-shoulder camera, where a bin in front of the robot is filled with
procedurally generated objects to be picked up by the robot. A binary reward is assigned if an object
is lifted off a bin at the end of an episode. We train a policy with QT-Opt (Kalashnikov et al., 2018),
a deep Q-Learning method that utilizes the cross-entropy method (CEM) to support continuous
actions. In the blocking mode, a displacement action is executed until completion: the robot uses a
closed-loop controller to fully execute an action, decelerating and coming to rest before observing
the next state. In the concurrent mode, an action is triggered and executed without waiting, which
means that the next state is observed while the robot remains in motion. Further details of the setup
are shown in Figure 3 and explained in Appendix A.3.2.

Table 1 summarizes the performance for blocking and concurrent modes comparing unconditioned
models against the concurrent knowledge models described in Section 3.5. Our results indicate that
the VTG model acting in concurrent mode is able to recover baseline task performance of the block-
ing execution unconditioned baseline, while the unconditioned baseline acting in concurrent model
suffers some performance loss. In addition to the success rate of the grasping policy, we also evalu-
ate the speed and smoothness of the learned policy behavior. Concurrent knowledge models are able
to learn faster trajectories: episode duration, which measures the total amount of wall-time used
for an episode, is reduced by 31.3% when comparing concurrent knowledge models with block-
ing unconditioned models. When switching from blocking execution mode to concurrent execution
mode, we see a significantly lower action completion, measured as the ratio from executed grip-
per displacement to commanded displacement, which expectedly indicates a switch to a concurrent
environment. The concurrent knowledge models have higher action completions than the uncondi-
tioned model in the concurrent environment, which suggests that the concurrent knowledge models
are able to utilize more efficient motions, resulting in smoother trajectories. The qualitative bene-
fits of faster, smoother trajectories are drastically apparent when viewing video playback of learned
policies1.

Real robot results In addition, we evaluate qualitative policy behaviors of concurrent models
compared to blocking models on a real-world robot grasping task, which is shown in Figure 3b. As

1https://youtu.be/Gr2sZVwrX5w
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Table 1: Large-Scale Simulated Robotic Grasping Results

Blocking
Actions

VTG Previous
Action

Grasp Success Episode Duration Action Completion

Yes No No 91.53%± 1.04% 120.81s ±9.13s 89.53%± 2.267%
No No No 83.77%± 9.27% 97.16s ±6.28s 34.69%± 16.80%
No Yes No 92.55%± 4.39% 82.98s± 5.74s 47.28%± 14.25%
No No Yes 92.70%± 1.42% 87.15s ±4.80s 50.09%± 14.25%
No Yes Yes 93.49%± 1.04% 90.75s ±4.15s 49.19%± 14.98%

Table 2: Real-World Robotic Grasping Results.

Blocking Actions VTG Grasp Success Policy Duration

Yes No 81.43% 22.60s ±12.99s
No Yes 68.60% 11.52s± 7.272s

seen in Table 2, the models achieve comparable grasp success, but the concurrent model is 49%
faster than the blocking model in terms of policy duration, which measures the total execution time
of the policy (this excludes the infrastructure setup and teardown times accounted for in episode
duration, which can not be optimized with concurrent actions). In addition, the concurrent VTG
model is able to execute smoother and faster trajectories than the blocking unconditioned baseline,
which is clear in video playback1.

5 DISCUSSION AND FUTURE WORK

We presented a theoretical framework to analyze concurrent systems where the robot must “think
while moving”.Viewing this formulation through the lens of continuous-time value-based reinforce-
ment learning, we showed that by considering concurrent knowledge about the time delay tAS and
the previous action, the concurrent continuous-time and discrete-time Bellman operators remained
contractions and thus maintained Q-Learning convergence guarantees. While more information
than tAS and previous action may be helpful, we showed that tAS and previous action (and different
representations of this information) are the sole theoretical requirements for good learning perfor-
mance. In addition, we introduced Vector-to-go (VTG), which incorporates the remaining previous
action to be executed, as an alternative representation for information about the concurrent system
that previous action and tAS contain.

Our theoretical findings were supported by experimental results on Q-learning models acting in
simulated control tasks that were engineered to support concurrent action execution. We conducted
large-scale ablation studies on toy task concurrent 3D Cartpole and Pendulum environments, across
model parameters as well as concurrent environment parameters. Our results indicated that VTG
is the least hyperparameter-sensitive representation, and was able to recover blocking learning per-
formance in concurrent settings. We extended these results to a complex concurrent large-scale
simulated robotic grasping task, where we showed that the concurrent models were able to recover
blocking execution baseline model success while acting 31.3% faster. We analyzed the qualitative
benefits of concurrent models through a real-world robotic grasping task, where we showed that a
concurrent model with comparable grasp success as a blocking baseline was able to learn smoother
trajectories that were 49% faster.

An interesting topic to explore in future work is the possibility of increased data efficiency when
training on off-policy data from various latency regimes. Another natural extension of this work is
to evaluate DRL methods beyond value-based algorithms, such as on-policy learning and policy gra-
dient approaches. Finally, concurrent methods may allow robotic control in dynamic environments
where it is not possible for the robot to stop the environment before computing the action. In these
scenarios, robots must truly think and act at the same time.
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A APPENDIX

A.1 DEFINING BLOCKING BELLMAN OPERATORS

As introduced in Section 3.4, we define a continuous-time Q-function estimator with concurrent
actions.

Q̂(s(t), a, t,H) =

∫ t′=t+tAS

t′=t

γt
′−tr(s(t′),ai−1(t

′))dt′+ (10)∫ t′′=t+H

t′′=t+tAS

γt
′′−tr(s(t′′),ai(t

′′))dt′′ + γHV (s(t+H)) (11)

=

∫ t′=t+tAS

t′=t

γt
′−tr(s(t′),ai−1(t

′))dt′+ (12)

γtAS

∫ t′′=t+H

t′′=t+tAS

γt
′′−t−tASr(s(t′′),ai(t

′′))dt′′ + γHV (s(t+H)) (13)

=

∫ t′=t+tAS

t′=t

γt
′−tr(s(t′),ai−1(t

′))dt′+ (14)

γtAS [

∫ t′′=t+H

t′′=t+tAS

γt
′′−t−tASr(s(t′′),ai(t

′′))dt′′ + γH−tASV (s(t+H))] (15)

We observe that the second part of this equation (after γtAS ) is itself a Q-function at time t + tAS .
Since the future state, action, and reward values at t + tAS are not known at time t, we take the
following expectation:

Q(s(t), a, t,H) =

∫ t′=t+tAS

t′=t

γt
′−tr(s(t′),ai−1(t

′))dt′+ (16)

γtASEsQ̂(s(t), a, t+ tAS , H − tAS) (17)

which indicates that the Q-function in this setting is not just the expected sum of discounted future
rewards, but it corresponds to an expected future Q-function.

In order to show the discrete-time version of the problem, we parameterize the discrete-time con-
current Q-function as:

Q̂(st,at−1, t, tAS , H) = r(st,at−1) + γ
tAS
H Ep(st+tAS

|st,at−1)r(st+tAS
,at)+ (18)

γ
H
H Ep(st+H |st+tAS

,at)V (st+H) (19)

which with tAS = 0, corresponds to a synchronous environment.

Using this parameterization, we can rewrite the discrete-timeQ-function with concurrent actions as:

Q̂(st,at−1, t, tAS , H) = r(st,at−1) + γ
tAS
H [Ep(st+tAS

|st,at−1)r(st+tAS
,at)+ (20)

γ
H−tAS

H Ep(st+H |st+tAS ,at)V (st+H)] (21)

= r(st,at−1) + γ
tAS
H Ep(st+tAS

|st,at−1)Q̂(st,at, t+ tAS , tas′ , H − tAS)
(22)

A.2 CONTRACTION PROOFS FOR THE BLOCKING BELLMAN OPERATORS

Proof of the Discrete-time Blocking Bellman Update

Lemma A.1. The traditional Bellman operator is a contraction, i.e.:

||T πQ∞(s,a)− T πQ∈(s,a)|| ≤ c||Q1(s,a)−Q2(s,a)||, (23)

where T πQ(s,a) = r(s,a) + γEπQ(s′,a′) and 0 ≤ c ≤ 1.
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Proof. In the original formulation, we can show that this is the case as following:

T πQ1(s,a)− T πQ2(s,a) (24)

= r(s,a) + γEπ[Q1(s
′,a′)− r(s,a)− γEπQ2(s

′,a′)] (25)

= γEπ[Q1(s
′,a′)−Q2(s

′,a′)] (26)

≤ γ sup
s′,a′

[Q1(s
′,a′)−Q2(s

′,a′)], (27)

with 0 ≤ γ ≤ 1 and ||f ||∞ = supx[f(x)].

Similarly, we can show that the updated Bellman operators introduced in Section 3.4 are contractions
as well.

Proof of Lemma 3.2

Proof.

T πnbQ1(st,at,at−1, t, tAS , H)− T πnbQ2(st,at,ai−1, t, tAS , H) (28)

= r(st,at−1) + γ
tAS
H Ep(st+tAS

|st,at−1)Q1(st,at, t+ tAS , tAS′ , H − tAS) (29)

− r(st,at−1)− γ
tAS
H Ep(st+tAS

|st,at−1)Q2(st,at, t+ tAS , tAS′ , H − tAS) (30)

= γ
tAS
H Ep(st+tAS

|st,at−1)[Q1(st,at, t+ tAS , tAS′ , H − tAS)−Q2(st,at, t+ tAS , tAS′ , H − tAS)]
(31)

≤ γ
tAS
H sup

st,at,t+tAS ,tAS′ ,H−tAS

[Q1(st,at, t+ tAS , tAS′ , H − tAS)−Q2(st,at, t+ tAS , tAS′ , H − tAS)]

(32)

Proof of Lemma 3.1

Proof. To prove that this the continuous-time Bellman operator is a contraction, we can follow the
discrete-time proof, from which it follows:

T πnbQ1(s(t), ai−1, t, tAS)− T πnbQ2(s(t), ai−1, t, tAS) (33)

= γtASEs[Q1(s(t), ai, t+ tAS , H − tAS)−Q2(s(t), ai, t+ tAS , H − tAS)] (34)

≤ γtAS sup
s(t),ai,t+tAS ,H−tAS

[Q1(s(t), ai, t+ tAS , H − tAS)−Q2(s(t), ai, t+ tAS , H − tAS)]

(35)

A.3 EXPERIMENT IMPLEMENTATION DETAILS

A.3.1 CARTPOLE AND PENDULUM ABLATION STUDIES

Here, we describe the implementation details of the toy task Cartpole and Pendulum experiments in
Section 4.1.

For the environments, we use the 3D MuJoCo implementations of the Cartpole-Swingup and
Pendulum-Swingup tasks in DeepMind Control Suite (Tassa et al., 2018). We use discretized
action spaces for first-order control of joint position actuators. For the observation space of both
tasks, we use the default state space of ground truth positions and velocities.

For the baseline learning algorithms, we use the TensorFlow Agents (Guadarrama et al., 2018)
implementations of a DeepQ-Network agent, which utilizes a Feed-forward Neural Network (FNN),
and a DeepQ-Recurrent Neutral Network agent, which utilizes a Long Short-Term Memory (LSTM)
network. Learning parameters such as learning rate, lstm size, and fc layer size
were selected through hyperparameter sweeps.

12



Under review as a conference paper at ICLR 2020

To approximate different difficulty levels of latency in concurrent environments, we utilize different
parameter combinations for action execution steps and action selection steps (tAS). The number of
action execution steps is selected from {0ms, 5ms, 25ms, or 50ms} once at environment initializa-
tion. tAS is selected from {0ms, 5ms, 10ms, 25ms, or 50ms} either once at environment initializa-
tion or repeatedly at every episode reset. The selected tAS is implemented in the environment as
additional physics steps that update the system during simulated action selection.

Frame-stacking parameters affect the observation space by saving previous observations and actions.
The number of previous actions to store as well as the number of previous observations to store are
independently selected from the range [0, 4]. Concurrent knowledge parameters, as described in
Section 4, include whether to use VTG and whether to use tAS . Including the previous action is
already a feature implemented in the frame-stacking feature of including previous actions. Finally,
the number of actions to discretize the continuous space to is selected from the range [3, 8].

A.3.2 LARGE SCALE SIMULATED ROBOTIC GRASPING

We simulate a 7 DoF arm with an over-the-shoulder camera (see Figure 3). A bin in front of
the robot is filled with procedurally generated objects to be picked up by the robot. A binary
reward is assigned if an object is lifted off a bin at the end of an episode. We train a policy with
QT-Opt(Kalashnikov et al., 2018), a Deep Q-Learning method that utilizes the Cross-Entropy
Method (CEM) to support continuous actions. States are represented in form of RGB images and
actions are continuous Cartesian displacements of the gripper 3D positions and yaw. In addition,
the policy commands discrete gripper open and close actions and may terminate an episode.

In blocking mode, a displacement action is executed until completion: the robot uses a closed loop
controller to fully execute an action, decelerating and coming to rest before observing the next state.
In concurrent mode, an action is triggered and executed without waiting, which means that the next
state is observed while the robot remains in motion. It should be noted that in blocking mode, action
completion is close to 100% unless the gripper moves are blocked by contact with the environment
or objects; this causes average blocking mode action completion to be lower than 100%, as seen in
Table 1.

A.4 FIGURES

See Figure 4 and Figure 5 on the next page.
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Figure 4: Environment rewards achieved by DQN with different network architectures [either a
feedforward network (FNN) or a Long Short-Term Memory (LSTM) network] and different con-
current knowledge features [Unconditioned, vector-to-go (VTG), or previous action and tAS] on the
concurrent Cartpole task for every hyperparameter in a sweep, sorted in decreasing order. Providing
the critic with VTG information leads to more robust performance across all hyperparameters. This
figure is a larger version of 2a.

Figure 5: Environment rewards achieved by DQN with a FNN and different frame-stacking and
concurrent knowledge parameters on the concurrent Pendulum task for every hyperparameter in a
sweep, sorted in decreasing order.
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