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ABSTRACT

Contextualized word representations such as ELMo and BERT have become the
de facto starting point for incorporating pretrained representations for downstream
NLP tasks. In these settings, contextual representations have largely made obso-
lete their static embedding predecessors such as Word2Vec and GloVe. However,
static embeddings do have their advantages in that they are straightforward to un-
derstand and faster to use. Additionally, embedding analysis methods for static
embeddings are far more diverse and mature than those available for their dy-
namic counterparts. In this work, we introduce simple methods for generating
static lookup table embeddings from existing pretrained contextual representa-
tions and demonstrate they outperform Word2Vec and GloVe embeddings on a
variety of word similarity and word relatedness tasks. In doing so, our results
also reveal insights that may be useful for subsequent downstream tasks using
our embeddings or the original contextual models. Further, we demonstrate the
increased potential for analysis by applying existing approaches for estimating
social bias in word embeddings. Our analysis constitutes the most comprehensive
study of social bias in contextual word representations (via the proxy of our dis-
tilled embeddings) and reveals a number of inconsistencies in current techniques
for quantifying social bias in word embeddings. We publicly release our code and
distilled word embeddings to support reproducible research and the broader NLP
community.

1 INTRODUCTION

Word embeddings (Bengio et al., 2003; Collobert & Weston, 2008; Collobert et al., 2011) have been
a hallmark of modern natural language processing (NLP) for several years. Pretrained embeddings in
particular have seen widespread use and have experienced parallel and complementary innovations
alongside neural networks for NLP. Advances in embedding quality in part have come from integrat-
ing additional information such as syntax (Levy & Goldberg, 2014b; Li et al., 2017), morphology
(Cotterell & Schütze, 2015), subwords (Bojanowski et al., 2017), subcharacters (Stratos, 2017; Yu
et al., 2017) and, most recently, context (Peters et al., 2018; Devlin et al., 2019). As a consequence
of their representational potential, pretrained word representations have seen widespread adoption
across almost every task in NLP and reflect one of the greatest successes of both representation
learning and transfer learning for NLP (Ruder, 2019b).

The space of pretrained word representations can be partitioned into static vs. dynamic embeddings
methods. Static methods such as Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014),
and FastText (Bojanowski et al., 2017) yield representations that are fixed after training and gener-
ally associate a single vector with a given word in the style of a lookup table. While subsequent work
addressed the fact that words may have multiple senses and should have different representations for
different senses (Pilehvar & Collier, 2016; Lee & Chen, 2017; Pilehvar et al., 2017; Athiwaratkun
& Wilson, 2017; Camacho-Collados & Pilehvar, 2018), fundamentally these methods cannot easily
adapt to the inference time context in which they are applied. This contrasts with contextual, or dy-
namic, methods such as CoVe (McCann et al., 2017), ELMo (Peters et al., 2018), and BERT (Devlin
et al., 2019), which produce vector representations for a word conditional on the inference time con-
text in which it appears. Given that dynamic representations are arguably more linguistically valid,
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more expressive (static embeddings are a special-case of dynamic embeddings that are optimally
ineffective at being dynamic), and have yielded significant empirical improvements (Wang et al.,
2019b;a; Ruder, 2019a), it would seem that static embeddings are outdated.

Static embeddings, however, have significant advantages over dynamic embeddings with regard to
speed, computational resources, and ease of use. These benefits have important implications for
time-sensitive systems, resource-constrained settings (Shen et al., 2019) or environmental concerns
(Strubell et al., 2019), and broader accessibility of NLP technologies1. As a consequence of this
dichotomy between static and dynamic representations and their disparate benefits, we propose in
this work a simple yet effective mechanism for converting from dynamic representations to static
representations. We begin by demonstrating that our method when applied to pretrained contex-
tual models (BERT, GPT-2, RoBERTa, XLNet, DistilBERT) yields higher quality static embeddings
than Word2Vec and GloVe when evaluated intrinsically on four word similarity and word related-
ness datasets. Further, since our procedure does not rely on specific properties of the pretrained
contextual model, it can be applied as needed to generate ever-improving static embeddings that
will track advances in pretrained contextual word representations. Our approach offers the hope
that high-quality embeddings can be maintained in both settings given their unique advantages and
appropriateness in different settings.

At the same time, we show that by distilling static embeddings from their dynamic counterparts,
we can then employ the more comprehensive arsenal of embedding analysis tools that have been
developed in the static embedding setting to better understand the original contextual embeddings.
As an example, we employ methods for identifying gender, racial, and religious bias (Bolukbasi
et al., 2016; Garg et al., 2018; Manzini et al., 2019) to our distilled representations and find that
these experiments not only shed light on the properties of our distilled embeddings for downstream
use but can also serve as a proxy for understanding existing biases in the original pretrained con-
textual representations. Our large-scale and exhaustive evaluation of bias further reveals dramatic
inconsistencies in existing measures of social bias and highlights sizeable discrepancies in the bias
estimates obtained for distilled embeddings drawn from different pretrained models and individual
model layers.

2 BACKGROUND

In this work, we study pretrained word embeddings, primarily of the static variety. As such, we
focus on comparing our embeddings against existing pretrained static embeddings that have seen
widespread adoption. We identify Word2Vec and GloVe as being the most prominent static embed-
dings currently in use and posit that these embeddings have been frequently chosen not only because
of their high quality representations but also because lookup tables pretrained on large corpora are
publicly accessible and easy to use. Similarly, in considering contextual models to distill from, we
begin with BERT as it has been the most prominent in downstream use among the growing number
of alternatives (e.g. ELMo (Peters et al., 2018), GPT (Radford et al., 2018), BERT (Devlin et al.,
2019), Transformer-XL (Dai et al., 2019), GPT-2 (Radford et al., 2019), XLNet (Yang et al., 2019),
RoBERTa (Liu et al., 2019b), and DistilBERT(Sanh, 2019)) though we provide similar analyses for
several of the other models (GPT-2, XLNet, RoBERTa, DistilBERT) and more comprehensively ad-
dress them in the appendices. We primarily report results for the bert-base-uncased model
and include complete results for the bert-large-uncased model in the appendices as well.

3 METHODS

In order to use a contextual model like BERT to compute a single context-agnostic representation for
a given word w, we define two operations. The first is subword pooling: the application of a pool-
ing mechanism over the subword representations generated for w in context c to compute a single
representation for w in c, i.e. {w1

c , . . . ,w
k
c } 7→ wc. Beyond this, we define context combination to

be the mapping from representations wc1 , . . . ,wcn of w in different contexts c1, . . . , cn to a single
static embedding w that is agnostic of context.

1A recent account from the perspective of a humanist about the (in)accessibility of BERT: https://
tedunderwood.com/2019/07/15/do-humanists-need-bert/
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3.1 SUBWORD POOLING

The tokenization procedure for BERT can be decomposed into two steps: performing a simple
word-level tokenization and then potentially deconstructing a word into multiple subwords, yield-
ing w1, . . . , wk such that cat(w1, . . . , wk) = w where cat(·) indicates concatenation. In English,
the subword tokenization algorithm is WordPiece (Wu et al., 2016). As a consequence, the decom-
position of a word into subwords is the same across contexts and the subwords can be unambigu-
ously associated with their source word. Therefore, any given layer of the model outputs vectors
w1

c , . . . ,w
k
c . We consider four potential pooling mechanisms to compute wc given these vectors:

wc = f(w1
c , . . . ,w

k
c ); f ∈ {min,max,mean, last} (1)

min(·) and max(·) are element-wise min and max pooling, mean(·) indicates mean pooling, i.e.

mean
x∈X

g(x) =

∑
x∈X

g(x)

|X | and last(·) indicates selecting the last vector, wk
c .

3.2 CONTEXT COMBINATION

In order to convert contextual representations into static ones, we describe two methods of specifying
contexts c1, . . . , cn and then combining the resulting representations wc1 , . . . ,wcn .

Decontextualized - For a word w, we use a single context where c1 = w. That is, we feed the
single word w by itself into the pretrained contextual model and consider the resulting vector to be
the representation (applying subword pooling if the word is split into multiple subwords).

Aggregated - Observing that the Decontextualized strategy may be presenting an unnatural input
to the pretrained encoder which may have never encountered w by itself without a surrounding
phrase or sentence, we instead consider ways of combining the representations for w in multiple
contexts. In particular, we sample n sentences from a large corpus D, each of which contains the
word w, and compute the vectors wc1 , . . . ,wcn . Then, we apply a pooling strategy to yield a single
representation that aggregates the representations across the n contexts as is shown in Equation 2.

w = g(wc1 , . . . ,wcn); g ∈ {min,max,mean} (2)

4 REPRESENTATION QUALITY

To assess the representational quality of our static embeddings, we evaluate on several word similar-
ity and word relatedness datasets (see §A.2 for additional commentary). We consider 4 such datasets:
RG65 (Rubenstein & Goodenough, 1965), WS353 (Agirre et al., 2009), SIMLEX999 (Hill et al.,
2015) and SIMVERB3500 (Gerz et al., 2016). Taken together, these datasets contain 4917 exam-
ples and contain a vocabulary V of 2005 unique words. Each example is a pair of words (w1, w2)
with a gold-standard annotation (provided by one or more humans depending on the dataset) of how
semantically similar or how semantically related w1 and w2 are. A word embedding is evaluated by
the relative correctness of its ranking of the similarity/relatedness of all examples in a dataset with
respect to the gold-standard ranking using the Spearman ρ coefficient. Embedding predictions are
computed using cosine similarity as in Equation 3:

cos(w1, w2) =
w1 ·w2

‖w1‖ ‖w2‖
(3)

4.1 INTRINSIC EVALUATION

We begin by studying how the choices of f and g2 impact the performance of embeddings distilled
from bert-base-uncased. In Figure 1, we show the performance on all four datasets of the
resulting static embeddings where embeddings computed using the Aggregated strategy are pooled
over N = 100000 sentences. Here, N is the number of total contexts for all words (see §A.4).
Across all four datasets, we see that g = mean is the best performing pooling mechanism within the
Aggregated strategy and also outperforms the Decontexualized strategy by a substantial margin.

2For brevity, we treat Decontextualized as a choice for g and denote it as decont in the figures. Additional
shorthand is described in Appendix H.
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Fixing g = mean, we further observe that mean pooling at the subword level also performs best.
We further find that this trend that f = mean, g = mean is optimal among the 16 possible pairs
consistently holds for almost all pretrained contextual models we considered.

If we further consider the impacts of N as shown in Table 1, we see that performance for both
bert-base-uncased and bert-large-uncased tends to steadily increase for all datasets
with increasingN (and this trend holds for the 7 other pretrained models). In particular, in the largest
setting with N = 1000000, the bert-large-uncased embeddings distilled from the best per-
forming layer for each dataset dramatically outperform both Word2Vec and GloVe. However, this
can be seen as an unfair comparison given that we are selecting the layer for specific datasets. As
the middle band of table shows, we can fix a layer and still outperform both Word2Vec and Glove.

Beyond the benefits of using a larger N , Table 1 reveals an interesting relationship between N and
the best-performing layer. In Figure 1, there is a clear preference towards the first quarter of the
model’s layers (layers 0-3) with a sharp drop-off in performance immediately thereafter (we see a
similar preference for the first quarter in models with a different number of layers, e.g. Figure 3,
Figure 10) . Given that our intrinsic evaluation is centered on lexical semantic understanding, this
appears to be largely consistent with the findings of Liu et al. (2019a); Tenney et al. (2019). However,
as we pool over a larger number of contexts, we see that the best-performing layer monotonically
(with a single exception) shifts to be later and later within the pretrained model. What this indicates
is that since the later layers did not perform better for smaller values of N , these layers demonstrate
greater variance with respect to the layer-wise distributional mean and reducing this variance helps in
our evaluation3. This may have implications for downstream use, given that later layers of the model
are generally preferred by downstream practitioners (Zhang et al., 2019) and it is precisely these
layers where we see the greatest variance. Accordingly, combining our stable static embeddings
from layer ` with the contextual example-specific embeddings also from layer ` of the pretrained
model as was suggested in Peters et al. (2018) may be a potent strategy in downstream settings.
In general, we find these results suggest there may be merits towards further work studying the
unification of static and dynamic methods.

Along with a trend towards later layers for larger values of N , we see a similar preference towards
later layers as we consider each column of results from left to right. In particular, while the datasets
are ordered chronologically4, each dataset was explicitly introduced as an improvement over its
predecessors (perhaps transitively, see §A.3). While it is unclear from our evaluation as to what dif-
ferences in the examples in each dataset may cause this behavior, we find this correlation with dataset
difficulty and layer-wise optimality to be intriguing. In particular, we see that SIMVERB3500 which
contains verbs primarily (as opposed to nouns or adjectives which dominate the other datasets) tends
to yield the best performance for embeddings distilled from the intermediary layers of the model
(most clear for bert-large-uncased).

Remarkably, we find that most tendencies we observe generalize well to all other pretrained models
we study (specifically the optimality of f = mean, g = mean, the improved performance for larger
N , and the layer-wise tendencies with respect to N and dataset). In Table 2, we summarize the re-
sults of all models employing the Aggregated strategy with f = mean, g = mean andN = 100000
contexts. Surprisingly, despite the fact that many of these models perform approximately equally
on many downstream evaluations, we observe that their corresponding distilled embeddings per-
form radically differently even when the same distillation procedure is applied. These results can
be interpreted as suggesting that some models learn better lexical semantic representations whereas
others learn other behaviors such as context representation and semantic composition more accu-
rately. More generally, we argue that these results warrant reconsideration of analyses performed
on only one pretrained model as they may not generalize to other pretrained models even when the
models considered have (nearly) identical Transformer architectures. A noteworthy result in Table 2
is that of DistilBert-6 which outperforms BERT-12 on three out of the four datasets despite being
distilled using knowledge distillation (Ba & Caruana, 2014; Hinton et al., 2015) from BERT-12.
Analogously, RoBERTa, which was introduced as a direct improvement over BERT, does not reli-
ably outperform the corresponding BERT models when comparing the derived static embeddings.

3Shi et al. (2019) concurrently proposes a different approach with similar motivations.
4Incidentally, they also are ordered by dataset size. However, we do not believe this explains the layer-wise

trends.
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Figure 1: Layer-wise performance of distilled BERT-12 embeddings for all possible choices of f, g
with N = 100000.

Model N RG65 WS353 SIMLEX999 SIMVERB3500

Word2Vec - 0.6787 0.6838 0.4420 0.3636
GloVe - 0.6873 0.6073 0.3705 0.2271

BERT-12 (1) 500000 0.7206 0.7038 0.5019 0.3550
BERT-24 (1) 500000 0.7367 0.7074 0.5114 0.3687
BERT-24 (6) 500000 0.7494 0.7282 0.5116 0.4062

BERT-12 10000 0.5167 (1) 0.6833 (1) 0.4573 (1) 0.3043 (1)
BERT-12 100000 0.6980 (1) 0.7023 (1) 0.5007 (3) 0.3494 (3)
BERT-12 500000 0.7262 (2) 0.7038 (1) 0.5115 (3) 0.3853 (4)
BERT-12 1000000 0.7242 (1) 0.7048 (1) 0.5134 (3) 0.3948 (4)
BERT-24 100000 0.7749 (2) 0.7179 (6) 0.5044 (1) 0.3686 (9)
BERT-24 500000 0.7643 (2) 0.7282 (6) 0.5116 (6) 0.4146 (10)
BERT-24 1000000 0.7768 (2) 0.7301 (6) 0.5244 (15) 0.4280 (10)

Table 1: Performance of distilled BERT embeddings on word similarity and word relatedness tasks.
f and g are set to mean and (#) indicates the layer the embeddings are distilled from. Bold indicates
best performing embeddings for a given dataset of those depicted.

Model RG65 WS353 SIMLEX999 SIMVERB3500

BERT-12 0.6980 (1) 0.7023 (1) 0.5007 (3) 0.3494 (3)
BERT-24 0.7749 (2) 0.7179 (6) 0.5044 (1) 0.3686 (9)
GPT2-12 0.5156 (1) 0.6396 (0) 0.4547 (2) 0.3128 (6)
GPT2-24 0.5328 (1) 0.6830 (0) 0.4505 (3) 0.3056 (0)

RoBERTa-12 0.6597 (0) 0.6915 (0) 0.5098 (0) 0.4206 (0)
RoBERTa-24 0.7087 (7) 0.6563 (6) 0.4959 (0) 0.3802 (0)

XLNet-12 0.6239 (1) 0.6629 (0) 0.5185 (1) 0.4044 (3)
XLNet-24 0.6522 (3) 0.7021 (3) 0.5503 (6) 0.4545 (3)

DistilBERT-6 0.7245 (1) 0.7164 (1) 0.5077 (0) 0.3207 (1)

Table 2: Performance of static embeddings from different pretrained models on word similarity and
word relatedness tasks. f and g are set to mean for all models, N = 100000, and (#) indicates
the layer the embeddings are distilled from. Bold indicates best performing embeddings for a given
dataset of those depicted.
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5 BIAS

Bias is a complex and highly relevant topic in developing representations and models in machine
learning and natural language processing. In this context, we study the social bias encoded within
static word representations. As Kate Crawford argued for in her NIPS 2017 keynote, while studying
individual models is important given that specific models may propagate, accentuate, or diminish
biases in different ways, studying the representations that serve as the starting point and that are
shared across models (which are used for possibly different tasks) allows for more generalizable
understanding of bias (Barocas et al., 2017).

In this work, we simultaneously consider multiple axes of social bias (i.e. gender, race, and religion)
and multiple proposed methods for computationally quantifying these biases. We do so precisely
because we find that existing NLP literature has primarily prioritized gender (which may be a tech-
nically easier setting) and because we find that different computational specifications of bias that
evaluate the same social phenomena yield different results. As a direct consequence, we strongly
caution that the results should be taken with respect to the definitions of bias being applied. Further,
we note that an embedding which receives low bias scores cannot be assumed to be (nearly) unbi-
ased, rather that under existing definitions the embedding exhibits low bias and perhaps additional
more nuanced definitions are needed.

5.1 DEFINITIONS

Bolukbasi et al. (2016) introduced a definition for computing gender bias which assumes access to
a set P = {(m1, f1), . . . , (mn, fn)} of (male, female) word pairs where mi and fi only differ in
gender (e.g. ‘men’ and ‘women’). They compute a gender direction ~g:

~g = PCA([E(m1)− E(f1); . . . ;E(mn)− E(fn)][0] (4)

where E(·) is the embedding function, “;” indicates horizontal concatenation/stacking and [0] indi-
cates taking the first principal component.

Then, given a set N of target words that we are interested in evaluating the bias with respect to,
Bolukbasi et al. (2016) specifies the bias as:

bias
BOLUKBASI

(N ) = mean
w∈N

| cos (E(w), ~g) | (5)

This definition is only inherently applicable to binary bias settings, i.e. where there are exactly two
protected classes, but still is difficult to apply to binary settings beyond gender as constructing a set
P can be challenging. Similarly, multi-class generalizations of this bias definition are also difficult
to propose due to the issue of constructing k-tuples that only differ in the underlying social attribute.
This definition also assumes the first principal component is capable of explaining a large fraction
of the variance.

Garg et al. (2018) introduced a different definition for computing binary bias that is not restricted to
gender, which assumes access to sets A1 = {m1, · · · ,mn} and A2 = {f1, · · · , fn′} of representa-
tive words for each of the two protected classes. For each class, µi = meanw∈Ai E(w) is computed.
Garg et al. (2018) computes the bias in the following ways:

bias
GARG-EUC

(N ) = mean
w∈N

‖E(w)− µ1‖2 − ‖E(w)− µ2‖2 (6)

bias
GARG-COS

(N ) = mean
w∈N

cos(E(w), µ1)− cos(E(w), µ2) (7)

Compared to the definition of Bolukbasi et al. (2016), these definitions may be more general as
constructing P is strictly more difficult than constructing A1,A2 (as P can always be split into two
such sets but the reverse is not generally true) and Garg et al. (2018)’s definition does not rely on
the first principal component explaining a large fraction of the variance. However, unlike the first
definition, Garg et al. (2018) computes the bias in favor of/against a specific class (meaning if N =
{‘programmer’, ‘homemaker’} and ‘programmer’ was equally male-biased as ‘homemaker’ was
female-biased, then under the definition of Garg et al. (2018), there would be no bias in aggregate).
For the purposes of comparison, we adjust their definition by taking the absolute value of each term
in the mean over N .
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Manzini et al. (2019) introduced a definition for quantifying multi-class bias which assumes access
to sets A1, . . . ,Ak of representative words as in Garg et al. (2018). They quantify the bias as5:

bias
MANZINI

(N ) = mean
w∈N

mean
i∈{1,...,k}

mean
a∈Ai

cos(E(w), E(a)) (8)

Similar to the adjustment made for the Garg et al. (2018) definition, we again take the absolute value
of each term in the mean over N .

5.2 RESULTS

Figure 2: Layer-wise bias of distilled BERT-12 embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion

Gender Race Religion
B, P GE, P GC, P M, P GE GC M M GE GC M

Word2Vec 0.0503 0.1758 0.075 0.2403 0.1569 0.0677 0.2163 0.0672 0.0907 0.053 0.14
GloVe 0.0801 0.3534 0.0736 0.1964 0.357 0.0734 0.1557 0.1171 0.2699 0.0702 0.0756

BERT-12 0.0736 0.3725 0.0307 0.3186 0.2868 0.0254 0.3163 0.2575 1.2349 0.0604 0.2955
BERT-24 0.0515 0.6418 0.0462 0.234 0.4674 0.0379 0.2284 0.1956 0.6476 0.0379 0.2316
GPT2-12 0.4933 25.8743 0.0182 0.6464 2.0771 0.0062 0.7426 0.6532 4.5282 0.0153 0.776
GPT2-24 0.6871 40.1423 0.0141 0.8514 2.3244 0.0026 0.9019 0.8564 8.9528 0.0075 0.9081

RoBERTa-12 0.0412 0.2923 0.0081 0.8546 0.2077 0.0057 0.8551 0.8244 0.4356 0.0111 0.844
RoBERTa-24 0.0459 0.3771 0.0089 0.7879 0.2611 0.0064 0.783 0.7479 0.5905 0.0144 0.7636

XLNet-12 0.0838 1.0954 0.0608 0.3374 0.6661 0.042 0.34 0.2792 0.8537 0.0523 0.318
XLNet-24 0.0647 0.7644 0.0407 0.381 0.459 0.0268 0.373 0.328 0.8009 0.0505 0.368

DistilBERT-6 0.0504 0.5435 0.0375 0.3182 0.3343 0.0271 0.3185 0.2786 0.8128 0.0437 0.3106

Table 3: Social bias within static embeddings from different pretrained models with respect to a set
of professions Nprof . Parameters are set as f = mean, g = mean, N = 100000 and the layer of
the pretrained model used in distillation is bX4 c. Lowest bias in a particular column is denoted in
bold.

Inspired by the results of Nissim et al. (2019), in this work we transparently report social bias in
existing static embeddings as well as the embeddings we compute. In particular, we exhaustively
report the bias for all 3542 valid (pretrained model, layer, social attribute, bias definition) 4-tuples
which describe all combinations of static embeddings and bias measures referenced in this work.

5Manzini et al. (2019) describes their score using slightly different phrasing; their score can easily be veri-
fied to be equivalent to our rephrasing up to two differences: (a) we use cosine similarity where they use cosine
distance and (b) we insert absolute values in the mean over N . We make these changes to introduce consistency
with the other definitions and to permit comparison.
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We specifically report results for binary gender (male, female), two-class religion (Christianity, Is-
lam) and three-class race (white, Hispanic, and Asian), directly following Garg et al. (2018). These
results are by no means intended to be comprehensive with regards to the breadth of bias socially and
only address a restricted class of social biases which notably does not include the important class of
intersectional biases. The types of biases being evaluated for are taken with respect to specific word
lists (which are sometimes subjective albeit being peer-reviewed) that serve as exemplars and with
respect to definitions of bias grounded in the norms of the United States.

Beginning with bert-base-uncased, we report the layer-wise bias across all (attribute, defi-
nition) pairs in Figure 2. What we immediately observe is that for any given social attribute, there
is a great deal of variation across the layers in the quantified amount of bias. Further, while we
are unsurprised that different bias measures for the same social attribute assign different absolute
scores, we observe that they also do not agree in relative judgments. For gender, we observe that
the bias estimated by the definition of Manzini et al. (2019) steadily increases before peaking at the
penultimate layer and slightly decreasing thereafter. In contrast, under biasGARG-EUC we see a distri-
bution with two peaks corresponding to layers at the start or end of the pretrained contextual model
with lower bias observed in the intermediary layers. For estimating the same quantity, biasGARG-COS

is mostly uniform across the layers (though the scale of the axes visually lessens the variation dis-
played). Similarly, in looking at the religious bias, we see similar inconsistencies with the bias
increasing monotonically from layers 2 through 8 under biasMANZINI, decreasing monotonically un-
der biasGARG-EUC, and remaining roughly constant under biasGARG-COS. In general, while the choice
ofN (and the choice ofAi in the gender bias case) does affect the absolute bias estimates under any
given definition, we find that the general trends in the bias across layers are approximately invariant
under these choices for a specific definition.

Taken together, our analysis suggests a concerning state of affairs regarding bias quantification mea-
sures for (static) word embeddings. In particular, while estimates are seemingly stable to some types
of choices regarding word lists, bias scores for a particular word embedding are tightly related to
the definition being used and existing bias measures are markedly inconsistent with each other. We
find this has important consequences beyond understanding the social biases in our representations.
Concretely, we argue that without certainty regarding the extent to which embeddings are biased,
it is impossible to properly interpret the meaningfulness of debiasing procedures (Bolukbasi et al.,
2016; Zhao et al., 2018a;b; Sun et al., 2019) as we cannot reliably estimate the bias in the embed-
dings both before and after the procedure. This is further compounded with the existing evidence
that current intrinsic measures of social bias may not handle geometric behavior such as clustering
(Gonen & Goldberg, 2019).

In light of the above, next we compare bias estimates across different pretrained models in Table 3.
Given the conflicting scores assigned by different definitions, we retain all definitions along with
all social attributes in this comparison. However, we only consider target words given by Nprof

for visual clarity as well as due to the aforementioned stability to the choice of N , with the results
for adjectives provided in Table 8. We begin by noting that since we do not perform preprocess-
ing to normalize embeddings, the scores using biasGARG-EUC are not comparable (and may not have
been proper to compare in the layer-wise case either) as they are sensitive to the absolute norms
of the embeddings which cannot be expected to be similar across models6. Further, we note that
biasBOLUKBASI may not be a reliable indicator as similar to Zhao et al. (2019a), we find that the first
principal component explains less than 35% of the variance in the majority of the static embed-
dings distilled from contextual models. Of the two bias definitions not mentioned thus far, we find
that all distilled static embeddings have substantially higher scores under biasMANZINI but generally
lower scores under biasGARG-COS when compared to Word2Vec and GloVe. Interestingly, we see
that under biasMANZINI both GPT-2 and RoBERTa embedding consistently get high scores across so-
cial attributes when compared to other distilled embeddings but under biasGARG-COS they receive the
lowest scores among distilled embeddings.

Ultimately, given the aforementioned issues regarding the reliability of bias measures, it is difficult
to arrive at a clear consensus of the comparative bias between our distilled embeddings and prior
static embeddings. What our analysis does resolutely reveal is a pronounced and likely problematic
effect of existing bias definitions on the resulting bias scores.

6When we did normalize using the Euclidean norm, we found the relative results to reliably coincide with
those for biasGARG-COS which is consistent with the findings of Garg et al. (2018).
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6 RELATED WORK

Distilled Static Representations. Recently, Akbik et al. (2019) introduced an approach similar
to our Aggregated strategy where representations are gradually aggregated across instances in a
dataset during training to model global information. Between epochs, the memory of past instances
is reset and during testing, inference-time instances are added into the memory. In that work, the
computed static embeddings are an additional feature that is used to achieve the state-of-the-art on
several NER datasets. Based on our results, we believe their approach could be further improved
by different decisions in pretrained model and layer choice. Their results may be explained by the
(desirable) variance reduction we observe in pooling over many contexts. Additionally, since they
only pool over instances in an online fashion within an epoch, the number of contexts is relatively
small in their approach as compared to ours which may help to explain why they find that min or
max pooling perform slightly better than mean pooling as the choice for g.
May et al. (2019) proposes a different approach to convert representations from sentence encoders
into static embeddings as a means for applying the WEAT (Caliskan et al., 2017) implicit bias tests
to a sentence encoder. In their method, a single semantically-bleached sentence is synthetically con-
structed from a template and then fed into the encoder to compute a static embedding for the word
of interest. We argue that this approach may inherently not be appropriate for quantifying bias in
sentence encoders7 in the general case as sentence encoders are trained on semantically-meaningful
sentences and semantically-bleached constructions are not representative of this distribution. More-
over, the types of templated constructions presented heavily rely on deictic expressions and there-
fore are difficult to adapt for certain syntactic categories such as verbs (as would be required for
the SimVerb3500 dataset especially) without providing arguments for the verb. These concerns are
further exacerbated by our findings given the poor representational behavior seen in our Decon-
textualized embeddings which have similar deficiencies with their static embeddings and the poor
representational behavior when we pool over relatively few semantically-meaningful contexts using
the Aggregated strategy (e.g. our results for N = 10000 which is still 50 instances per word on
average and is much more than the single instance they consider). We believe our quantification of
bias as a result can be taken as a more faithful estimator of bias in sentence encoders.
Concurrently, Hu et al. (2019) considers a similar approach towards diachronic sense modelling. In
particular, given a word, they find its senses and example sentences of each sense in the Oxford En-
glish Dictionary and use these to compute static embeddings using the Aggregated strategy with the
last layer of bert-base-uncased and ni upper-bounded at 10. Given our results, their perfor-
mance could likely be improved by pooling over more sentences, using bert-large-uncased,
and considering layer choice as their task heavily relies on lexical understanding which seems to
be better captured in earlier layers of the model than the last one. Since they require sense annota-
tions for their setting (and the number of example sentences in a dictionary for a sense is inherently
constrained), our findings also suggest that additional sense-annotated or weakly sense-annotated
sentences would be beneficial.
Lightweight Pretrained Representations. Taken differently, our approach can be seen as a method
for integrating pretraining in a more lightweight fashion. Model compression (LeCun et al., 1990;
Frankle & Carbin, 2019) and knowledge distillation (Ba & Caruana, 2014; Hinton et al., 2015) are
well-studied techniques in machine learning that have been recently applied for similar purposes.
In particular, several concurrent approaches have been proposed to yield lighter pretrained sentence
encoders and contextual word representations (Gururangan et al., 2019; Shen et al., 2019; Sanh,
2019; Tsai et al., 2019; Tang et al., 2019; Jiao et al., 2019). Our approach along with these recent
approaches yield representations that are more appropriate for resource-constrained settings such
as on-device models for mobile phones (Shen et al., 2019), for real-time settings where we require
low-latency and short inference times, and for users that may not have access to GPU or TPU com-
putational resources (Tsai et al., 2019). Additionally, this line of work is particularly timely given
the emergent concerns of the environmental impact/harm of training and using increasingly large
models in NLP (Strubell et al., 2019), machine learning (Li et al., 2016; Canziani et al., 2016), and
the broader AI community (Schwartz et al., 2019).
Bias. Social bias in NLP has been primarily evaluated in three ways: (a) using geometric similarity
between embeddings (Bolukbasi et al., 2016; Garg et al., 2018; Manzini et al., 2019), (b) adapting
psychological association tests (Caliskan et al., 2017; May et al., 2019), and (c) considering down-

7The authors also identified several empirical concerns that draw the meaningfulness of this method into
question.
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stream behavior (Zhao et al., 2017; 2018a; 2019a; Stanovsky et al., 2019)8. In relation to this body
of work, our bias evaluation is in the style of (a) as we are interested in intrinsic bias in embeddings
and considers (potentially) multi-class social bias in the lens of gender, race, and religion whereas
prior work has primarily focused on gender. Additionally, while most of the work on bias in em-
beddings has considered the static embedding setting, recent work has considered sentence encoders
and contextual models. Zhao et al. (2019a) considers gender bias in ELMo when applied to NER
and Kurita et al. (2019) extends these results by considering not only NER but also bias using WEAT
by leveraging the masked language modeling objective of BERT. Similarly, Basta et al. (2019) con-
siders intrinsic gender bias using ELMo by studying gender-swapped sentences. When compared to
these approaches, we study a broader class of biases under more than one bias definition and con-
sider more than one model. Further, while these approaches generally neglect reporting bias values
for different layers of the model, we show this is crucial as bias is not uniformly distributed through-
out model layers and downstream practitioners often do not use the last layer of deep Transformer
models (Liu et al., 2019a; Tenney et al., 2019; Zhang et al., 2019; Zhao et al., 2019b) 9.

7 FUTURE DIRECTIONS

Pretrained contextual word representations have quickly gained traction in the NLP community,
largely because of the flurry of empirical successes that have followed since their introduction.
For downstream practitioners, our work suggests several simple (e.g. subword pooling mechanism
choice) and more sophisticated (e.g. layer choice, benefits of variance reduction by using multi-
ple contexts) strategies that may yield better downstream performance. Additionally, some recent
models have combined static and dynamic embeddings (Peters et al., 2018; Bommasani et al., 2019;
Akbik et al., 2019) and our representations may support drop-in improvements in these settings.
Beyond furthering efforts in representation learning, this work introduces a new approach towards
the understanding of contextual word representations via proxy analysis. In particular, while in this
work we choose to study social bias, similar analyses toward other forms of interpretability and
understanding would be valuable. Additionally, post-processing approaches that go beyond analysis
such as dimensionality reduction may be particularly intriguing given that this is often challenging
to do within large multi-layered networks like BERT (Sanh, 2019) but has been successfully done
for static embeddings (Nunes & Antunes, 2018; Mu & Viswanath, 2018; Raunak et al., 2019).
Future work may also consider the choice of the corpus D from which contexts are drawn. In par-
ticular, we believe choosing D to be drawn from the target domain for some downstream task may
serve as an extremely lightweight domain adaptation strategy. Additionally, in this work we choose
to provide contexts of sentence length in order to facilitate regularity in the comparison across mod-
els. But for some models, such as Transformer-XL or XLNet which are trained with memories to
handle larger contexts, better performance may be achieved by using larger contexts.

8 CONCLUSION

In this work, we propose simple but effective procedures for converting contextual word represen-
tations into static word embeddings. When applied to pretrained models like BERT, we find the
resulting embeddings outperform Word2Vec and GloVe substantially under intrinsic evaluation and
provide insights into the pretrained model. We further demonstrate the resulting embeddings are
more amenable to (existing) embedding analysis methods and report the extent of various social
biases (gender, race, religion) across a number of measures. Our large-scale analysis furnishes sev-
eral findings with respect to social bias encoded in popular pretrained contextual representations via
the proxy of our embeddings and has implications towards the reliability of existing protocols for
quantifying bias in word embeddings.

9 REPRODUCIBILITY

All data, code, visualizations (and code to produce to them), and distilled word embeddings will be
publicly released. Additional reproducibility details are provided in Appendix A.

8Sun et al. (2019) provides a taxonomy of the work towards understanding gender bias within NLP.
9This is the only layer studied in Kurita et al. (2019).
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A REPRODUCIBILITY DETAILS

A.1 DATA

We use English Wikipedia as the corpus D in context combination for the Aggregated strategy.
The specific subset of English Wikipedia10 used was lightly preprocessed with a simple heuristic
to remove bot-generated content. Individual Wikipedia documents were split into sentences using
NLTK (Loper & Bird, 2002). We chose to exclude sentences containing fewer than 7 sentences or
greater than 75 tokens (token counts we computed using the NLTK word tokenizer) though we did
not find this filtering decision to be particularly impactful in initial experiments.
The specific pretrained Word2Vec11 and GloVe12 embeddings used were both 300 dimensional. The
Word2Vec embeddings were trained on approximately 100 billion words from Google News and
the GloVe embeddings were trained on 6 billion tokens from Wikipedia 2014 and Gigaword 5. We
chose the 300-dimensional embeddings in both cases as we believed they were the most frequently
used and generally the best performing on both intrinsic evaluations (Hasan & Curry, 2017) and
downstream tasks.

10https://blog.lateral.io/2015/06/the-unknown-perils-of-mining-wikipedia/
11https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
12https://nlp.stanford.edu/projects/glove/
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A.2 EVALUATION DECISIONS

In this work, we chose to conduct intrinsic evaluation experiments that focused on word similarity
and word relatedness. We did not consider the related evaluation of lexical understanding via word
analogies as they have been shown to decompose into word similarity subtasks (Levy & Goldberg,
2014a) and there are significant concerns about the validity of these analogies tests (Nissim et al.,
2019). We acknowledge that word similarity and word relatedness tasks have also been heavily scru-
tinized (Faruqui et al., 2016; Gladkova & Drozd, 2016). A primary concern is that results are highly
sensitive to (hyper)parameter selection (Levy et al., 2015). In our setting, where the parameters of
the embeddings are largely fixed based on which pretrained models are publicly released and where
we exhaustively report the impact of most remaining parameters, we find these concerns to still be
valid but less relevant.

To this end, prior work has considered various preprocessing operations on static embeddings such
as clipping embeddings on an elementwise basis (Hasan & Curry, 2017) when performing intrinsic
evaluation. We chose not to study these preprocessing choices as they create discrepancies between
the embeddings used in intrinsic evaluation and those used in downstream tasks (where this form of
preprocessing is generally not considered) and would have added additional parameters implicitly.
Instead, we directly used the computed embeddings from the pretrained model with no changes
throughout this work.

A.3 REPRESENTATION QUALITY DATASET TRENDS

Rubenstein & Goodenough (1965) introduced a set of 65 noun-pairs and demonstrated strong corre-
lation (exceeding 95%) between the scores in their dataset and additional human validation. Miller
& Charles (1991) introduced a larger collection of pairs which they argued was an improvement
over RG65 as it more faithfully addressed semantic similarity. Agirre et al. (2009) followed this
work by introducing a even more pairs that included those of Miller & Charles (1991) as a subset
and again demonstrated correlations with human scores exceeding 95%. Hill et al. (2015) argued
that SIMLEX999 was an improvement in coverage over RG65 and more correctly quantified seman-
tic similarity as opposed to semantic relatedness or association when compared to WS353. Beyond
this, SIMVERB3500 was introduced by Gerz et al. (2016) to further increase coverage over all pre-
decessors. Specifically, it shifted the focus towards verbs which had been heavily neglected in the
prior datasets which centered on nouns and adjectives.

A.4 EXPERIMENTAL DETAILS

We used PyTorch (Paszke et al., 2017) throughout this work with the pretrained contextual word
representations taken from the HuggingFace pytorch-transformers repository13. Tokeniza-
tion for each model was conducted using its corresponding tokenizer, i.e. results for GPT2 use the
GPT2Tokenizer in pytorch-transformers.
For simplicity, throughout this work, we introduce N as the total number of contexts used in dis-
tilling with the Aggregated strategy. Concretely, N =

∑
wi∈V ni where V is the vocabulary used

(generally the 2005 words in the four datasets considered). As a result, in finding contexts, we filter
for sentences inD that contain at least one word in V . We choose to do this as this requires a number
of candidate sentences upper bounded with respect to the most frequent word in V as opposed to
filtering for a specific value for n which requires a number of sentences scaling in the frequency of
the least frequent word in V .
The N samples from D for the Aggregated strategy were sampled uniformly at random. Accord-
ingly, as the aforementioned discussion suggests, for word wi, the number of examples ni which
contain wi scales in the frequency of wi in the vocabulary being used. As a consequence, for small
values of N , it is possible that rare words would have no examples and computing a representation
w using the Aggregated strategy would be impossible. In this case, we back-offed to using the
Decontextualized representation for wi.
Given this concern, in the bias evaluation, we fix ni = 20 for every wi. In initial experiments, we
found the bias results to be fairly stable when choosing values ni ∈ {20, 50, 100}. The choice of
ni would correspond to N = 40100 (as the vocabulary size was 2005) in the representation quality

13https://github.com/huggingface/pytorch-transformers
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section in some sense (however this assumes a uniform distribution of word frequency as opposed
to a Zipf distribution). The embeddings in the bias evaluation are drawn from layer bX4 c using
f = mean, g = mean as we found these to be the best performing embeddings generally across
pretrained models and datasets in the representational quality evaluation.

A.5 BIAS WORD LISTS

The set of gender-paired tuples P were taken from Bolukbasi et al. (2016). In the gender bias
section, P for definitions involving sets Ai indicates that P was split into equal-sized sets of male
and female work. For the remaining gender results, the sets described in §G.3 were used. The
various attribute sets Ai and target sets Nj were taken from Garg et al. (2018) which can be further
sourced to a number of prior works in studying social bias. We remove any multi-word terms from
these lists.

B BERT-LARGE

Figure 3: Layerwise performance of BERT-24 static embeddings for all possible choices of f, g
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C GPT-2

Figure 4: Layerwise performance of GPT2-12 static embeddings for all possible choices of f, g

Figure 5: Layerwise performance of GPT-24 static embeddings for all possible choices of f, g
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Model N RG65 WS353 SIMLEX999 SIMVERB3500

Word2Vec - 0.6787 0.6838 0.4420 0.3636
GloVe - 0.6873 0.6073 0.3705 0.2271

GPT2-12 10000 0.2843 (0) 0.4205 (1) 0.2613 (2) 0.1472 (6)
GPT2-12 50000 0.5000 (2) 0.5815 (1) 0.4378 (2) 0.2607 (2)
GPT2-12 100000 0.5156 (1) 0.6396 (0) 0.4547 (2) 0.3128 (6)
GPT2-24 10000 0.3149 (0) 0.5209 (0) 0.2940 (0) 0.1697 (0)
GPT2-24 50000 0.5362 (2) 0.6486 (0) 0.4350 (0) 0.2721 (0)
GPT2-24 100000 0.5328 (1) 0.6830 (0) 0.4505 (3) 0.3056 (0)

Table 4: Performance of Static Embeddings on Word Similarity and Word Relatedness Tasks. f and
g are set to mean for all GPT2-models and (#) indicates the layer the embeddings are distilled from.
Bold indicates best performing embeddings for a given dataset.

D ROBERTA

Figure 6: Layerwise performance of RoBERTa-12 static embeddings for all possible choices of f, g
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Figure 7: Layerwise performance of RoBERTa-24 static embeddings for all possible choices of f, g

Model N RG65 WS353 SIMLEX999 SIMVERB3500

Word2Vec - 0.6787 0.6838 0.4420 0.3636
GloVe - 0.6873 0.6073 0.3705 0.2271

RoBERTa-12 10000 0.5719 (0) 0.6618 (0) 0.4794 (0) 0.3968 (0)
RoBERTa-12 50000 0.6754 (0) 0.6867 (0) 0.501 (0) 0.4123 (0)
RoBERTa-12 100000 0.6597 (0) 0.6915 (0) 0.5098 (0) 0.4206 (0)
RoBERTa-12 500000 0.6675 (0) 0.6979 (0) 0.5268 (5) 0.4311 (0)
RoBERTa-12 1000000 0.6761 (0) 0.7018 (0) 0.5374 (5) 0.4442 (4)
RoBERTa-24 10000 0.5469 (1) 0.6144 (0) 0.4499 (0) 0.3403 (0)
RoBERTa-24 50000 0.6837 (1) 0.6412 (0) 0.4855 (0) 0.371 (0)
RoBERTa-24 100000 0.7087 (7) 0.6563 (6) 0.4959 (0) 0.3802 (0)
RoBERTa-24 500000 0.7557 (8) 0.663 (6) 0.5184 (18) 0.412 (6)
RoBERTa-24 1000000 0.739 (8) 0.6673 (6) 0.5318 (18) 0.4303 (9)

Table 5: Performance of Static Embeddings on Word Similarity and Word Relatedness Tasks. f and
g are set to mean for all RoBERTa-models and (#) indicates the layer the embeddings are distilled
from. Bold indicates best performing embeddings for a given dataset.
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E XLNET

Figure 8: Layerwise performance of XLNet-12 static embeddings for all possible choices of f, g

Figure 9: Layerwise performance of XLNet-24 static embeddings for all possible choices of f, g
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Model N RG65 WS353 SIMLEX999 SIMVERB3500

Word2Vec - 0.6787 0.6838 0.4420 0.3636
GloVe - 0.6873 0.6073 0.3705 0.2271

XLNet-12 10000 0.604 (0) 0.6482 (0) 0.483 (0) 0.3916 (0)
XLNet-12 50000 0.6056 (1) 0.6571 (0) 0.5157 (1) 0.3973 (1)
XLNet-12 100000 0.6239 (1) 0.6629 (0) 0.5185 (1) 0.4044 (3)
XLNet-12 500000 0.6391 (3) 0.6937 (3) 0.5392 (3) 0.4747 (4)
XLNet-12 1000000 0.6728 (3) 0.7018 (3) 0.5447 (4) 0.4918 (4)
XLNet-24 10000 0.6525 (0) 0.6935 (0) 0.5054 (0) 0.4332 (1)
XLNet-24 50000 0.6556 (0) 0.6926 (0) 0.5377 (5) 0.4492 (3)
XLNet-24 100000 0.6522 (3) 0.7021 (3) 0.5503 (6) 0.4545 (3)
XLNet-24 500000 0.66 (0) 0.7378 (6) 0.581 (8) 0.5095 (6)
XLNet-24 1000000 0.7119 (6) 0.7446 (7) 0.5868 (9) 0.525 (6)

Table 6: Performance of Static Embeddings on Word Similarity and Word Relatedness Tasks. f
and g are set to mean for all XLNet-models and (#) indicates the layer the embeddings are distilled
from. Bold indicates best performing embeddings for a given dataset.

F DISTILBERT

Figure 10: Layerwise performance of DistilBERT-6 static embeddings for all possible choices of
f, g
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Model N RG65 WS353 SIMLEX999 SIMVERB3500

Word2Vec - 0.6787 0.6838 0.4420 0.3636
GloVe - 0.6873 0.6073 0.3705 0.2271

DistilBERT-6 10000 0.57 (0) 0.6828 (1) 0.4705 (0) 0.2971 (0)
DistilBERT-6 50000 0.7257 (1) 0.6928 (1) 0.5043 (0) 0.3121 (0)
DistilBERT-6 100000 0.7245 (1) 0.7164 (1) 0.5077 (0) 0.3207 (1)
DistilBERT-6 500000 0.7363 (1) 0.7239 (1) 0.5093 (0) 0.3444 (2)
DistilBERT-6 1000000 0.7443 (1) 0.7256 (1) 0.5095 (0) 0.3536 (3)

Table 7: Performance of Static Embeddings on Word Similarity and Word Relatedness Tasks. f and
g are set to mean for all DistilBERT-models and (#) indicates the layer the embeddings are distilled
from. Bold indicates best performing embeddings for a given dataset.

G BIAS

G.1 ADDITIONAL MODELS

Figure 11: Layerwise bias of BERT-24 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion
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Figure 12: Layerwise bias of GPT2-12 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion

Figure 13: Layerwise bias of GPT2-24 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion

26



Under review as a conference paper at ICLR 2020

Figure 14: Layerwise bias of RoBERTa-12 static embeddings for f = mean, g = mean, N =
100000
Left: Gender, Center: Race, Right: Religion

Figure 15: Layerwise bias of RoBERTa-24 static embeddings for f = mean, g = mean, N =
100000
Left: Gender, Center: Race, Right: Religion
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Figure 16: Layerwise bias of XLNet-12 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion

Figure 17: Layerwise bias of XLNet-24 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion
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Figure 18: Layerwise bias of DistilBERT-6 static embeddings for f = mean, g = mean, N =
100000
Left: Gender, Center: Race, Right: Religion

G.2 ADJECTIVE RESULTS

Gender Race Religion
B, P GE, P GC, P M, P GE GC M M GE GC M

Word2Vec 0.0482 0.1656 0.0435 0.1347 0.1247 0.0343 0.1178 0.0661 0.13 0.0434 0.1264
GloVe 0.095 0.2206 0.0403 0.1289 0.2017 0.0355 0.1108 0.0714 0.2341 0.0606 0.0675

BERT-12 0.0506 0.2637 0.0213 0.2684 0.1879 0.0175 0.2569 0.2358 0.8858 0.0365 0.2677
BERT-24 0.0389 0.4405 0.0277 0.199 0.2978 0.0248 0.189 0.1768 0.5505 0.0316 0.212
GPT2-12 0.4631 26.0809 0.0176 0.6126 2.1238 0.0068 0.7101 0.621 4.4775 0.0152 0.7525
GPT2-24 0.6707 40.4664 0.0141 0.8367 2.1771 0.0023 0.89 0.843 8.3889 0.0064 0.9006

RoBERTa-12 0.0381 0.1754 0.005 0.8472 0.1649 0.0046 0.8444 0.8153 0.2608 0.0069 0.8387
RoBERTa-24 0.0248 0.2626 0.0064 0.7647 0.1821 0.0048 0.7562 0.73 0.4492 0.0117 0.7472

XLNet-12 0.0399 0.6265 0.0312 0.2214 0.3354 0.0237 0.2196 0.1911 0.4716 0.0321 0.2549
XLNet-24 0.0468 0.5423 0.025 0.3307 0.2697 0.0153 0.3144 0.2871 0.4318 0.0282 0.3235

DistilBERT-6 0.0353 0.4274 0.0247 0.2825 0.2461 0.0185 0.2824 0.2603 0.6842 0.035 0.2994

Table 8: Social bias within static embeddings from different pretrained models with respect to a set
of adjectives, Nadj . Parameters are set as f = mean, g = mean, N = 100000 and the layer of the
pretrained model used in distillation is bX4 c.

G.3 WORD SETS

Nprof = {‘accountant’, ‘acquaintance’, ‘actor’, ‘actress’, ‘administrator’, ‘adventurer’, ‘advo-
cate’, ‘aide’, ‘alderman’, ‘ambassador’, ‘analyst’, ‘anthropologist’, ‘archaeologist’, ‘archbishop’,
‘architect’, ‘artist’, ‘artiste’, ‘assassin’, ‘astronaut’, ‘astronomer’, ‘athlete’, ‘attorney’, ‘author’,
‘baker’, ‘ballerina’, ‘ballplayer’, ‘banker’, ‘barber’, ‘baron’, ‘barrister’, ‘bartender’, ‘biologist’,
‘bishop’, ‘bodyguard’, ‘bookkeeper’, ‘boss’, ‘boxer’, ‘broadcaster’, ‘broker’, ‘bureaucrat’, ‘busi-
nessman’, ‘businesswoman’, ‘butcher’, ‘cabbie’, ‘cameraman’, ‘campaigner’, ‘captain’, ‘cardiol-
ogist’, ‘caretaker’, ‘carpenter’, ‘cartoonist’, ‘cellist’, ‘chancellor’, ‘chaplain’, ‘character’, ‘chef’,
‘chemist’, ‘choreographer’, ‘cinematographer’, ‘citizen’, ‘cleric’, ‘clerk’, ‘coach’, ‘collector’,
‘colonel’, ‘columnist’, ‘comedian’, ‘comic’, ‘commander’, ‘commentator’, ‘commissioner’, ‘com-
poser’, ‘conductor’, ‘confesses’, ‘congressman’, ‘constable’, ‘consultant’, ‘cop’, ‘correspondent’,
‘councilman’, ‘councilor’, ‘counselor’, ‘critic’, ‘crooner’, ‘crusader’, ‘curator’, ‘custodian’, ‘dad’,
‘dancer’, ‘dean’, ‘dentist’, ‘deputy’, ‘dermatologist’, ‘detective’, ‘diplomat’, ‘director’, ‘doctor’,
‘drummer’, ‘economist’, ‘editor’, ‘educator’, ‘electrician’, ‘employee’, ‘entertainer’, ‘entrepreneur’,
‘environmentalist’, ‘envoy’, ‘epidemiologist’, ‘evangelist’, ‘farmer’, ‘filmmaker’, ‘financier’, ‘fire-
brand’, ‘firefighter’, ‘fireman’, ‘fisherman’, ‘footballer’, ‘foreman’, ‘gangster’, ‘gardener’, ‘ge-
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ologist’, ‘goalkeeper’, ‘guitarist’, ‘hairdresser’, ‘handyman’, ‘headmaster’, ‘historian’, ‘hitman’,
‘homemaker’, ‘hooker’, ‘housekeeper’, ‘housewife’, ‘illustrator’, ‘industrialist’, ‘infielder’, ‘inspec-
tor’, ‘instructor’, ‘inventor’, ‘investigator’, ‘janitor’, ‘jeweler’, ‘journalist’, ‘judge’, ‘jurist’, ‘la-
borer’, ‘landlord’, ‘lawmaker’, ‘lawyer’, ‘lecturer’, ‘legislator’, ‘librarian’, ‘lieutenant’, ‘lifeguard’,
‘lyricist’, ‘maestro’, ‘magician’, ‘magistrate’, ‘manager’, ‘marksman’, ‘marshal’, ‘mathematician’,
‘mechanic’, ‘mediator’, ‘medic’, ‘midfielder’, ‘minister’, ‘missionary’, ‘mobster’, ‘monk’, ‘musi-
cian’, ‘nanny’, ‘narrator’, ‘naturalist’, ‘negotiator’, ‘neurologist’, ‘neurosurgeon’, ‘novelist’, ‘nun’,
‘nurse’, ‘observer’, ‘officer’, ‘organist’, ‘painter’, ‘paralegal’, ‘parishioner’, ‘parliamentarian’, ‘pas-
tor’, ‘pathologist’, ‘patrolman’, ‘pediatrician’, ‘performer’, ‘pharmacist’, ‘philanthropist’, ‘philoso-
pher’, ‘photographer’, ‘photojournalist’, ‘physician’, ‘physicist’, ‘pianist’, ‘planner’, ‘playwright’,
‘plumber’, ‘poet’, ‘policeman’, ‘politician’, ‘pollster’, ‘preacher’, ‘president’, ‘priest’, ‘principal’,
‘prisoner’, ‘professor’, ‘programmer’, ‘promoter’, ‘proprietor’, ‘prosecutor’, ‘protagonist’, ‘pro-
tege’, ‘protester’, ‘provost’, ‘psychiatrist’, ‘psychologist’, ‘publicist’, ‘pundit’, ‘rabbi’, ‘radiolo-
gist’, ‘ranger’, ‘realtor’, ‘receptionist’, ‘researcher’, ‘restaurateur’, ‘sailor’, ‘saint’, ‘salesman’, ‘sax-
ophonist’, ‘scholar’, ‘scientist’, ‘screenwriter’, ‘sculptor’, ‘secretary’, ‘senator’, ‘sergeant’, ‘ser-
vant’, ‘serviceman’, ‘shopkeeper’, ‘singer’, ‘skipper’, ‘socialite’, ‘sociologist’, ‘soldier’, ‘solicitor’,
‘soloist’, ‘sportsman’, ‘sportswriter’, ‘statesman’, ‘steward’, ‘stockbroker’, ‘strategist’, ‘student’,
‘stylist’, ‘substitute’, ‘superintendent’, ‘surgeon’, ‘surveyor’, ‘teacher’, ‘technician’, ‘teenager’,
‘therapist’, ‘trader’, ‘treasurer’, ‘trooper’, ‘trucker’, ‘trumpeter’, ‘tutor’, ‘tycoon’, ‘undersecre-
tary’, ‘understudy’, ‘valedictorian’, ‘violinist’, ‘vocalist’, ‘waiter’, ‘waitress’, ‘warden’, ‘warrior’,
‘welder’, ‘worker’, ‘wrestler’, ‘writer’}
Nadj = {‘disorganized’, ‘devious’, ‘impressionable’, ‘circumspect’, ‘impassive’, ‘aimless’, ‘ef-
feminate’, ‘unfathomable’, ‘fickle’, ‘inoffensive’, ‘reactive’, ‘providential’, ‘resentful’, ‘bizarre’,
‘impractical’, ‘sarcastic’, ‘misguided’, ‘imitative’, ‘pedantic’, ‘venomous’, ‘erratic’, ‘insecure’, ‘re-
sourceful’, ‘neurotic’, ‘forgiving’, ‘profligate’, ‘whimsical’, ‘assertive’, ‘incorruptible’, ‘individ-
ualistic’, ‘faithless’, ‘disconcerting’, ‘barbaric’, ‘hypnotic’, ‘vindictive’, ‘observant’, ‘dissolute’,
‘frightening’, ‘complacent’, ‘boisterous’, ‘pretentious’, ‘disobedient’, ‘tasteless’, ‘sedentary’, ‘so-
phisticated’, ‘regimental’, ‘mellow’, ‘deceitful’, ‘impulsive’, ‘playful’, ‘sociable’, ‘methodical’,
‘willful’, ‘idealistic’, ‘boyish’, ‘callous’, ‘pompous’, ‘unchanging’, ‘crafty’, ‘punctual’, ‘com-
passionate’, ‘intolerant’, ‘challenging’, ‘scornful’, ‘possessive’, ‘conceited’, ‘imprudent’, ‘duti-
ful’, ‘lovable’, ‘disloyal’, ‘dreamy’, ‘appreciative’, ‘forgetful’, ‘unrestrained’, ‘forceful’, ‘submis-
sive’, ‘predatory’, ‘fanatical’, ‘illogical’, ‘tidy’, ‘aspiring’, ‘studious’, ‘adaptable’, ‘conciliatory’,
‘artful’, ‘thoughtless’, ‘deceptive’, ‘frugal’, ‘reflective’, ‘insulting’, ‘unreliable’, ‘stoic’, ‘hysteri-
cal’, ‘rustic’, ‘inhibited’, ‘outspoken’, ‘unhealthy’, ‘ascetic’, ‘skeptical’, ‘painstaking’, ‘contem-
plative’, ‘leisurely’, ‘sly’, ‘mannered’, ‘outrageous’, ‘lyrical’, ‘placid’, ‘cynical’, ‘irresponsible’,
‘vulnerable’, ‘arrogant’, ‘persuasive’, ‘perverse’, ‘steadfast’, ‘crisp’, ‘envious’, ‘naive’, ‘greedy’,
‘presumptuous’, ‘obnoxious’, ‘irritable’, ‘dishonest’, ‘discreet’, ‘sporting’, ‘hateful’, ‘ungrateful’,
‘frivolous’, ‘reactionary’, ‘skillful’, ‘cowardly’, ‘sordid’, ‘adventurous’, ‘dogmatic’, ‘intuitive’,
‘bland’, ‘indulgent’, ‘discontented’, ‘dominating’, ‘articulate’, ‘fanciful’, ‘discouraging’, ‘treach-
erous’, ‘repressed’, ‘moody’, ‘sensual’, ‘unfriendly’, ‘optimistic’, ‘clumsy’, ‘contemptible’, ‘fo-
cused’, ‘haughty’, ‘morbid’, ‘disorderly’, ‘considerate’, ‘humorous’, ‘preoccupied’, ‘airy’, ‘im-
personal’, ‘cultured’, ‘trusting’, ‘respectful’, ‘scrupulous’, ‘scholarly’, ‘superstitious’, ‘tolerant’,
‘realistic’, ‘malicious’, ‘irrational’, ‘sane’, ‘colorless’, ‘masculine’, ‘witty’, ‘inert’, ‘prejudiced’,
‘fraudulent’, ‘blunt’, ‘childish’, ‘brittle’, ‘disciplined’, ‘responsive’, ‘courageous’, ‘bewildered’,
‘courteous’, ‘stubborn’, ‘aloof’, ‘sentimental’, ‘athletic’, ‘extravagant’, ‘brutal’, ‘manly’, ‘cooper-
ative’, ‘unstable’, ‘youthful’, ‘timid’, ‘amiable’, ‘retiring’, ‘fiery’, ‘confidential’, ‘relaxed’, ‘imagi-
native’, ‘mystical’, ‘shrewd’, ‘conscientious’, ‘monstrous’, ‘grim’, ‘questioning’, ‘lazy’, ‘dynamic’,
‘gloomy’, ‘troublesome’, ‘abrupt’, ‘eloquent’, ‘dignified’, ‘hearty’, ‘gallant’, ‘benevolent’, ‘mater-
nal’, ‘paternal’, ‘patriotic’, ‘aggressive’, ‘competitive’, ‘elegant’, ‘flexible’, ‘gracious’, ‘energetic’,
‘tough’, ‘contradictory’, ‘shy’, ‘careless’, ‘cautious’, ‘polished’, ‘sage’, ‘tense’, ‘caring’, ‘suspi-
cious’, ‘sober’, ‘neat’, ‘transparent’, ‘disturbing’, ‘passionate’, ‘obedient’, ‘crazy’, ‘restrained’,
‘fearful’, ‘daring’, ‘prudent’, ‘demanding’, ‘impatient’, ‘cerebral’, ‘calculating’, ‘amusing’, ‘honor-
able’, ‘casual’, ‘sharing’, ‘selfish’, ‘ruined’, ‘spontaneous’, ‘admirable’, ‘conventional’, ‘cheerful’,
‘solitary’, ‘upright’, ‘stiff’, ‘enthusiastic’, ‘petty’, ‘dirty’, ‘subjective’, ‘heroic’, ‘stupid’, ‘modest’,
‘impressive’, ‘orderly’, ‘ambitious’, ‘protective’, ‘silly’, ‘alert’, ‘destructive’, ‘exciting’, ‘crude’,
‘ridiculous’, ‘subtle’, ‘mature’, ‘creative’, ‘coarse’, ‘passive’, ‘oppressed’, ‘accessible’, ‘charm-
ing’, ‘clever’, ‘decent’, ‘miserable’, ‘superficial’, ‘shallow’, ‘stern’, ‘winning’, ‘balanced’, ‘emo-
tional’, ‘rigid’, ‘invisible’, ‘desperate’, ‘cruel’, ‘romantic’, ‘agreeable’, ‘hurried’, ‘sympathetic’,
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‘solemn’, ‘systematic’, ‘vague’, ‘peaceful’, ‘humble’, ‘dull’, ‘expedient’, ‘loyal’, ‘decisive’, ‘ar-
bitrary’, ‘earnest’, ‘confident’, ‘conservative’, ‘foolish’, ‘moderate’, ‘helpful’, ‘delicate’, ‘gentle’,
‘dedicated’, ‘hostile’, ‘generous’, ‘reliable’, ‘dramatic’, ‘precise’, ‘calm’, ‘healthy’, ‘attractive’,
‘artificial’, ‘progressive’, ‘odd’, ‘confused’, ‘rational’, ‘brilliant’, ‘intense’, ‘genuine’, ‘mistaken’,
‘driving’, ‘stable’, ‘objective’, ‘sensitive’, ‘neutral’, ‘strict’, ‘angry’, ‘profound’, ‘smooth’, ‘igno-
rant’, ‘thorough’, ‘logical’, ‘intelligent’, ‘extraordinary’, ‘experimental’, ‘steady’, ‘formal’, ‘faith-
ful’, ‘curious’, ‘reserved’, ‘honest’, ‘busy’, ‘educated’, ‘liberal’, ‘friendly’, ‘efficient’, ‘sweet’,
‘surprising’, ‘mechanical’, ‘clean’, ‘critical’, ‘criminal’, ‘soft’, ‘proud’, ‘quiet’, ‘weak’, ‘anxious’,
‘solid’, ‘complex’, ‘grand’, ‘warm’, ‘slow’, ‘false’, ‘extreme’, ‘narrow’, ‘dependent’, ‘wise’, ‘or-
ganized’, ‘pure’, ‘directed’, ‘dry’, ‘obvious’, ‘popular’, ‘capable’, ‘secure’, ‘active’, ‘independent’,
‘ordinary’, ‘fixed’, ‘practical’, ‘serious’, ‘fair’, ‘understanding’, ‘constant’, ‘cold’, ‘responsible’,
‘deep’, ‘religious’, ‘private’, ‘simple’, ‘physical’, ‘original’, ‘working’, ‘strong’, ‘modern’, ‘deter-
mined’, ‘open’, ‘political’, ‘difficult’, ‘knowledge’, ‘kind’}
P = {(‘she’, ‘he’), (‘her’, ‘his’), (‘woman’, ‘man’), (‘mary’, ‘john’), (‘herself’, ‘himself’), (‘daugh-
ter’, ‘son’), (‘mother’, ‘father’), (‘gal’, ‘guy’), (‘girl’, ‘boy’), (‘female’, ‘male’)}
Amale = {‘he’, ‘son’, ‘his’, ‘him’, ‘father’, ‘man’, ‘boy’, ‘himself’, ‘male’, ‘brother’, ‘sons’, ‘fa-
thers’, ‘men’, ‘boys’, ‘males’, ‘brothers’, ‘uncle’, ’uncles’, ‘nephew’, ‘nephews’}
Afemale = {‘she’, ‘daughter’, ‘hers’, ‘her’, ‘mother’, ‘woman’, ‘girl’, ‘herself’, ‘female’, ‘sister’,
‘daughters’, ‘mothers’, ‘women’, ’girls’, ‘femen’14, ‘sisters’, ‘aunt’, ‘aunts’, ‘niece’, ‘nieces’}
Awhite = {‘harris’, ‘nelson’, ‘robinson’, ‘thompson’, ‘moore’, ‘wright’, ‘anderson’, ‘clark’, ‘jack-
son’, ‘taylor’, ‘scott’, ‘davis’, ’allen’, ‘adams’, ‘lewis’, ‘williams’, ‘jones’, ‘wilson’, ‘martin’,
‘johnson’}
Ahispanic = {‘castillo’, ‘gomez’, ‘soto’, ‘gonzalez’, ‘sanchez’, ‘rivera’, ‘martinez’, ‘torres’, ‘ro-
driguez’, ‘perez’, ‘lopez’, ‘medina’, ‘diaz’, ‘garcia’, ‘castro’, ‘cruz’}
Aasian = {‘cho’, ‘wong’, ‘tang’, ‘huang’, ‘chu’, ‘chung’, ‘ng’, ‘wu’, ‘liu’, ‘chen’, ‘lin’, ‘yang’,
‘kim’, ‘chang’, ‘shah’, ‘wang’, ‘li’, ‘khan’, ’singh’, ‘hong’}
Aislam = {‘allah’, ‘ramadan’, ‘turban’, ‘emir’, ‘salaam’, ‘sunni’, ‘koran’, ‘imam’, ‘sultan’,
‘prophet’, ‘veil’, ‘ayatollah’, ‘shiite’, ’mosque’, ‘islam’, ‘sheik’, ‘muslim’, ‘muhammad’}
Achristian = {‘baptism’, ‘messiah’, ‘catholicism’, ‘resurrection’, ‘christianity’, ‘salvation’, ‘protes-
tant’, ‘gospel’, ‘trinity’, ’jesus’, ‘christ’, ‘christian’, ‘cross’, ‘catholic’, ‘church’}

H NAMING CONVENTIONS

Throughout this work, we make use of several naming conventions/substitutions. In the case of
models, we use the form ‘MODEL-X’ where X indicates the number of layers in the model and
consequently the model produces X+1 representations for any given subword (including the initial
layer 0 representation). Table 9 describes the complete correspondence of our shorthand and the full
names. In the case of model names, the full form is the name assigned to the pretrained model (that
was possibly reimplemented) released by HuggingFace.

14We remove ‘femen’ when using Word2Vec as it is not in the vocabulary of the pretrained embeddings we
use.
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Our Shorthand Full Name

BERT-12 bert-base-uncased
BERT-24 bert-large-uncased
GPT2-12 gpt2
GPT2-24 gpt2-medium

RoBERTa-12 roberta-base
RoBERTa-24 roberta-large

XLNet-12 xlnet-base-cased
XLNet-24 xlnet-base-cased

DistilBERT-6 distilbert-base-uncased

SL999 SIMLEX999
SV3500 SIMVERB3500

B biasBOLUKBASI

GE biasGARG-EUC

GC biasGARG-COS

M biasMANZINI

Table 9: Naming conventions used throughout this work
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