
Under review as a conference paper at ICLR 2020

GENERATIVE RATIO MATCHING NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep generative models can learn to generate realistic-looking images, but many of
the most effective methods are adversarial and involve a saddlepoint optimization,
which require careful balancing of training between a generator network and a
critic network. Maximum mean discrepancy networks (MMD-nets) avoid this issue
by using kernel as a fixed adversary, but unfortunately they have not on their own
been able to match the generative quality of adversarial training. In this work,
we take their insight of using kernels as fixed adversaries further and present a
novel method for training deep generative models that does not involve saddlepoint
optimization. We call our method generative ratio matching or GRAM for short. In
GRAM, the generator and the critic networks do not play a zero-sum game against
each other, instead they do so against a fixed kernel. Thus GRAM networks are
not only stable to train like MMD-nets but they also match and beat the generative
quality of adversarially trained generative networks.

1 INTRODUCTION

Deep generative models (Kingma & Welling, 2013; Goodfellow et al., 2014; Kingma & Dhariwal,
2018) have been shown to learn to generate realistic-looking images. These methods train a deep
neural network, called a generator, to transform samples from a noise distribution to samples from
the data distribution. Most methods use adversarial learning (Goodfellow et al., 2014), in which the
generator is pitted against a critic function, also called a discriminator, which is trained to distinguish
between the samples from the data distribution and from the generator. Upon successful training the
two sets of samples become indistinguishable with respect to the critic.

Maximum mean discrepancy networks (MMD-nets) (Li et al., 2015; Dziugaite et al., 2015) are a class
of generative models that are trained to minimize the MMD Gretton et al. (2012) between the true
data distribution and the model distribution. MMD-nets are similar in spirit to generative adversarial
networks (GANs) (Goodfellow et al., 2014; Nowozin et al., 2016), in the sense that the MMD is
defined by maximizing over a class of critic functions. However, in contrast to GANs, where finding
the right balance between generator and critic is difficult, training is simpler for MMD-nets because
using the kernel trick the MMD can be estimated without the need to numerically optimize over critic
functions. This avoids the need in GANs to numerically solve a saddlepoint problem.

Unfortunately, although MMD-nets work well on low dimensional data, these networks have not
on their own matched the generative performance of adversarial methods on higher dimensional
datasets, such as natural images (Dziugaite et al., 2015). Several authors (Li et al., 2017; Bińkowski
et al., 2018a) suggest that a reason is that MMD is sensitive to the choice of kernel. Li et al. (2017)
propose a method called MMD-GAN, in which the critic maps the samples from the generator and
the data into a lower-dimensional representation, and MMD is applied in this transformed space. This
can be interpreted as a method for learning the kernel in MMD. The critic is learned adversarially
by maximizing the MMD at the same time as it is minimized with respect to the generator. This is
much more effective than MMD-nets, but training MMD-GANs can be challenging, because in this
saddlepoint optimization problem, the need to balance training of the learned kernel and the generator
can create a sensitivity to hyperparameter settings. In practice, it is necessary to introduce several
additional penalties to the loss function in order for training to be effective.

In this work, we present a novel training method that builds on MMD-nets’ insight to use kernels
as fixed adversaries in order to avoid saddlepoint optimization based training for the critic and the
generator. Our goal is for the critic to map the samples into a lower-dimensional space in which

1



Under review as a conference paper at ICLR 2020

the MMD-net estimator will be more effective. Our proposal is that the critic should be trained to
preserve density ratios, namely, the ratio of the true density to the model density. If the critic is
successful in this, then matching the generator to the true data in the lower dimensional space will
also match the distributions in the original space. We call networks that have been trained using this
criterion generative ratio matching (GRAM) networks, or GRAM-nets1. We show empirically that
our method is not only able to generate high quality images but by virtue of being non-adversarial (in
critic and generator) it avoids saddlepoint optimization and hence is more stable to train and robust to
the choice of hyperparameters.

1.1 RELATED WORK

Li et al. (2015) and Dziugaite et al. (2015) independently proposed MMD-nets, which use the
MMD criterion to train a deep generative model. Unlike f -divergences, MMD is well defined
even for distributions that do not have overlapping support, which is an important consideration for
training generative models (Arjovsky et al., 2017). Therefore, MMD-nets use equation (2) in order
to minimize the discrepancy between the distributions qx and px with respect to Gγ . However, the
sample quality of MMD-nets generally degrades for higher dimensional or color image datasets (Li
et al., 2015).

To address this problem, Li et al. (2017) introduce MMD-GANs, which use a critic fθ : RD 7→ RK
to map the samples to a lower dimensional space RK , and train the generator to minimize MMD
in this reduced space. This can be interpreted as learning the kernel function for MMD, because if
fθ is injective and k0 is a kernel in RK , then k(x, x′) = k0(fθ(x), fθ(x

′)) is a kernel in RD. This
injectivity constraint on fθ is imposed by introducing another deep neural network f ′φ, which is
trained to approximately invert fθ using an auto-encoding penalty. Though it has been shown before
that inverting fθ is not necessary for the method to work. We also confirm this in experiments (See
appendix).

The critic fθ is trained using an adversarial criterion (maximizing equation (2) that the generator
minimizes), which requires numerical saddlepoint optimization, and avoiding this was one of the
main attractions of MMD in the first place. Due to this, successfully training fθ in practice required
a penalty term called feasible set reduction on the class of functions that fθ can learn to represent.
Furthermore, f is restricted to be k-Lipschitz continuous by using a low learning rate and explicitly
clipping the gradients during update steps of f akin to WGAN (Arjovsky et al., 2017). Recently,
Bińkowski et al. (2018b); Li et al. (2019) have proposed improvements to stabilize the training of the
MMD-GAN method. But these method still rely on solving the same saddle-point problem to train
the critic.

2 BACKGROUND

Given data xi ∈ RD for i ∈ {1 . . . N} from a distribution of interest with density px, the goal of
deep generative modeling is to learn a parameterized function Gγ : Rh 7→ RD, called a generator
network, that maps samples z ∈ Rh where h < D from a noise distribution pz to samples from the
model distribution. Since Gγ defines a new random variable, we denote its density function by qx,
and also write xq = Gγ(z), where we suppress the dependency of xq on γ. The parameters γ of the
generator are chosen to minimize a loss criterion which encourages qx to match px.

2.1 MAXIMUM MEAN DISCREPANCY

Maximum mean discrepancy measures the discrepancy between two distributions as the maximum
difference between the expectations of a class of functions F , that is,

MMDF (p, q) = sup
f∈F

(Ep[f(x)]− Eq[f(x)]) , (1)

where E denotes expectation. If F is chosen to be a rich enough class, then MMD(p, q) = 0 implies
that p = q. Gretton et al. (2012) show that it is sufficient to choose F to be a unit ball within a

1Interestingly, the training of GRAM-nets heavily relies on the use of kernel Gram matrices.

2



Under review as a conference paper at ICLR 2020

reproducing kernel Hilbert spaceR with kernel k. Given samples x1 . . . xN ∼ p and yi . . . yM ∼ q,
we can estimate MMDR as

ˆMMDR(p, q) =
1

N2

N∑
i=1

N∑
i′=1

k(xi, xi′)−
2

NM

N∑
i=1

M∑
j=1

k(xi, yj) +
1

M2

M∑
j=1

M∑
j′=1

k(yj , yj′). (2)

2.2 DENSITY RATIO ESTIMATION

Sugiyama et al. (2012) present an elegant MMD-based estimator for the ratio between the densities p
and q; r(x) = p(x)

q(x) that only needs samples from p and q. This estimator is derived by optimizing

min
r∈R

∥∥∥∥∫ k(x; .)p(x)dx−
∫
k(x; .)r(x)q(x)dx

∥∥∥∥2
R
, (3)

where k is a kernel function. It is easy to see that at the minimum, we have r = p/q. This estimator
is not guaranteed to be non-negative. As such, a positivity constraint should be imposed if needed.

Sugiyama et al. (2011) suggest that density ratio estimation for distributions p and q over RD can
be more accurately done in lower dimensional sub-spaces RK . They propose to first learn a linear
projection to a lower dimensional space by maximizing an f -divergence between the distributions p̄
and q̄ of the projected data and then estimate the ratio of p̄ and q̄ (using direct density ratio estimation).
They showed that the projected distributions preserve the original density ratio.

3 METHOD

Our aim will be to enjoy the advantages of MMD-nets, but to improve their sample quality by mapping
the data (RD) into a lower-dimensional space (RK), using a critic network fθ, before computing
the MMD criterion. Because MMD with a fixed kernel performs well for lower-dimensional data
(Li et al., 2015; Dziugaite et al., 2015), we hope that by choosing K < D, we will improve the
performance of the MMD-net. Instead of training fθ using an adversarial criterion like MMD-GAN,
we aim at a stable training method that avoids the saddle-point optimization for training the critic.

More specifically, unlike the MMD-GAN type methods, instead of maximizing the same MMD
criterion that the generator is trained to minimize, we train fθ to minimize the squared ratio difference,
that is, the difference between density ratios in the original space and in the low-dimensional space
induced by fθ (Section 3.1). More specifically, let q̄ be the density of the transformed simulated data,
i.e., the density of the random variable fθ(Gγ(z)), where z ∼ pz . Similarly let p̄ be the density of
the transformed data, i.e., the density of the random variable fθ(x). The squared ratio difference
is minimized when θ is such that px/qx equals p̄/q̄. The motivation is that if density ratios are
preserved by fθ, then matching the generator to the data in the transformed space will also match
it in the original space (Section 3.2). The reduced dimension of fθ should be chosen to strike a
trade-off between dimensionality reduction and ability to approximate the ratio. If the data lie on a
lower-dimensional manifold in RD, which is the case for e.g. natural images, then it is reasonable
to suppose that we can find a critic that strikes a good trade-off. To compute this criterion, we need
to estimate density ratio p̄/q̄, which can be done in closed form using MMD (Section 2.2). The
generator is trained as an MMD-net to match the transformed data {fθ(xi)} with transformed outputs
from the generator {f(Gγ(zi)} in the lower dimensional space (Section 3.2). Our method performs
stochastic gradient (SG) optimization on the critic and the generator jointly (Section 3.3).

3.1 TRAINING THE CRITIC USING SQUARED RATIO DIFFERENCE

Our principle is to choose fθ so that the resulting densities p̄ and q̄ preserve the density ratio between
px and qx. We will choose fθ to minimize the distance between the two density ratio functions

rx(x) = px(x)/qx(x) rθ(x) = p̄(fθ(x))/q̄(fθ(x)).

One way to measure how well fθ preserves density ratios is to use the squared distance

D∗(θ) =

∫
qx(x)

(
px(x)

qx(x)
− p̄(fθ(x))

q̄(fθ(x))

)2

dx. (4)

3



Under review as a conference paper at ICLR 2020

This objective is minimized only when the ratios match exactly, that is, when rx = rθ for all x
in the support of qx. Clearly a distance of zero can be trivially achieved if K = D and if fθ is
the identity function. But nontrivial optima can exist as well. For example, suppose that px and
qx are “intrinsically low dimensional” in the following sense. Suppose K < D, and consider two
distributions p0 and q0 over RK , and an injective map T : RK → RD. Suppose that T maps samples
from p0 and q0 to samples from px and qx, by which we mean px(x) = J(DT )p0(T−1(x)), and
similarly for qx. Here J(DT ) denotes the Jacobian J(DT ) =

√
|δTδT>| of T . Then we have that

D∗ is minimized to 0 when fθ = T−1.

However, it is difficult to optimize D∗(θ) directly because density ratio estimation in high dimension,
where data lives, is known to be hard, i.e. the term px(x)

qx(x)
in (4) is difficult to estimate. We will show

how to alleviate this issue in next.

Avoiding estimating ratio in data space: To avoid computing the term px(x)
qx(x)

in (4), we expand
the square in (4), apply the law of the unconscious statistician and cancel terms out, which yields

D∗(θ) = C +

∫
q̄(fθ(x))

(
p̄(fθ(x))

q̄(fθ(x))

)2

dx− 2

∫
p̄(fθ(x))

p̄(fθ(x))

q̄(fθ(x))
dx,

= C ′ −

[∫
q̄(fθ(x))

(
p̄(fθ(x))

q̄(fθ(x))

)2

dx− 1

] (5)

where C and C ′ = C − 1 does not depend on θ. This implies that minimizing D∗ is equivalent to
maximizing the Pearson divergence

PD(p̄, q̄) =

∫
q̄(fθ(x))

(
p̄(fθ(x))

q̄(fθ(x))

)2

dx− 1 =

∫
q̄(fθ(x))

(
p̄(fθ(x))

q̄(fθ(x))
− 1

)2

dx (6)

between p̄ and q̄, which justifies our terminology of referring to fθ as a critic function. So we can
alternatively interpret our squared ratio distance objective as preferring fθ so that the low-dimensional
distributions p̄ and q̄ are maximally separated under Pearson divergence. Therefore D∗ can be
minimized empirically using samples xq1 . . . x

q
N ∼ qx, to maximize the critic loss function

L(θ) =
1

N

N∑
i=1

[rθ(x
q
i )− 1]

2
. (7)

Optimizing this requires a way to estimate rθ(x
q
i ). For this purpose we use the density ratio estimator

introduced in Section 2.2. Notice that to compute (7), we need the value of rθ only for the points
xq1 . . . x

q
N . In other words, we need to approximate the vector rq,θ = [rθ(x

q
1) . . . rθ(x

q
N )]T . Following

Sugiyama et al. (2012), we replace the integrals in (3) with Monte Carlo averages over the points
xq1 . . . x

q
N and over points xp1 . . . x

p
N ∼ px; the minimizing values of rq,θ can then be computed as

r̂q,θ = K−1q,qKq,p111. (8)

Here Kq,q and Kq,p denote the Gram matrices defined by [Kq,q]i,j = k(fθ(x
q
i ), fθ(x

q
j)) and

[Kq,p]i,j = k(fθ(x
q
i ), fθ(x

p
j )).

Substituting these estimates into (7) and adding a positivity constraint r̂Tq,θ.111 for using the MMD
density ratio estimator (Sugiyama et al., 2012), we get

L̂(θ) =
1

N

N∑
i=1

[rθ(x
q
i )− 1]

2
+ λr̂Tq,θ.111, (9)

where λ is a parameter to control the constraint, being set to 1 in all our experiments. This objective
can be maximised to learn the critic fθ. We see that this is an estimator of the Pearson divergence
PD(p̄, q̄) in that we are both, averaging over samples from qx, and approximating the density ratio.
Thus maximising this objective leads to the preservation of density ratio (Sugiyama et al., 2011).

4



Under review as a conference paper at ICLR 2020

3.2 GENERATOR LOSS

To train the generator network Gγ , we minimize the MMD in the low-dimensional space, where both
the generated data and the true data are transformed by fθ. In other words, we minimize the MMD
between p̄ and q̄. We sample points z1 . . . zM ∼ pz from the input distribution of the generator. Then
using the empirical estimate (2) of the MMD, we define the generator loss function as

L̂(γ) =
1

N2

N∑
i=1

N∑
i′=1

k(fθ(xi), fθ(xi′))−
2

NM

N∑
i=1

M∑
j=1

k(fθ(xi), fθ(Gγ(zj)))

+
1

M2

M∑
j=1

M∑
j′=1

k(fθ(Gγ(zj)), fθ(Gγ(zj′)))

, (10)

which we minimize with respect to γ.

3.3 THE GENERATIVE RATIO MATCHING ALGORITHM

Finally, the overall training of the critic and the generator proceeds by jointly performing SG
optimization on L̂(θ) and L̂(γ). Unlike WGAN (Arjovsky et al., 2017) and MMD-GAN (Li et al.,
2017), we do not require the use of gradient clipping, feasible set reduction and autoencoding
regularization terms. Our algorithm is a simple iterative process.

while not converged do
Sample data x ∼ px and generated examples xq ∼ qx;
Transform data and generated samples using fθ as fθ(x) and fθ(xq);
Compute the Gram matrix K under Gaussian kernels in the transformed space;
Compute L̂(θ) via (8) and (9), and L̂(γ) via (10) using the same K;
Compute the gradients gθ = ∇θL̂(θ) and gγ = ∇γL̂(γ) ;
θ ← θ + ηgθ; γ ← γ − ηgγ ; // Perform SG optimisation for θ and γ

end
Algorithm 1: Generative ratio matching

Convergence: If we succeed in matching the generator to the true data in the low-dimensional space,
then we have also matched the generator to the data in the original space, in the limit of infinite data.
To see this, suppose that we have γ∗ and θ∗ such that D∗(θ∗) = 0 and that My = MMD(p̄, q̄) = 0.
Then for all x, we have rx(x) = rθ∗(x) because D∗(θ∗) = 0, and that rθ∗(x) = 1, because My = 0.
This means that rx(x) = 1, so we have that px = qx.

3.4 STABILITY OF GRAM-NETS

Unlike GANs, the GRAM formulation avoids the saddle-point optimization which leads to a very
stable training of the model. In this section we provide a battery of controlled experiments to
empirically demonstrate that GRAM training relying on the empirical estimators of MMD and
Pearson Divergence (PD), i.e. equations (7) and (9). While the MMD estimator is very extensively
studied, our novel empirical estimator of PD is not. Therefore we now show that in fact maximizing
our estimator for PD can be reliably used for training the critic, i.e. it minimizes equation (4).

Stability of adversarial methods has been extensively studied before by using a simple dataset of eight
axis-aligned Gaussian distributions with standard deviations of 0.01, arranged in a ring shape (Roth
et al., 2017; Mescheder et al., 2017; Srivastava et al., 2017). Therefore we train a simple generator
using GRAM on this 2D ring dataset to study the stability and accuracy of GRAM-nets. We set the
projection dimension K = D = 2 in order to facilitate visualization. Both the generator and the
projection networks are implemented as two-layer feed-forward neural networks with two hidden
layers of size of 100 and ReLU activations.

The generator output (orange) is visualized over the real data (blue) in Figure 1a at 10,100,1000 and
10,000th training iterations. The top row visualizes the observation space (RD) and the bottom row
visualizes the projected space (RK). Note, as the training progress the critic (bottom row) tries to

5



Under review as a conference paper at ICLR 2020

find projections that better separate the data and the generator distributions (especially noticeable
in columns 1 and 3). This provides a clear and strong gradient signal to the generator optimization
that successfully learns to minimize the MMD of the projected distributions and eventually the data
and the model distributions as well (as shown in the last column). Notice, how in the final column
the critic is no longer able to separate the distributions. Throughout this process the critic and the
generator objectives are consistently minimized. This is clearly shown in Figure 1b which records
the values of equations (10) for the generator (orange) loss and equation (5) for the critic objective
(blue).

(a) Data and samples in the original (top) and pro-
jected space (both) during training; four plots are
at iteration 10, 100, 1000 and 10, 000 respectively.
Notice how the projected space separates p̄ and q̄.

1 20 40 60 80 100

10−1

100

101

102

103

100 1000 2000 3000 4000 5000

̂γ ( ̂MMD)
D *  (Eq. 5)

(b) Trace of L̂γ and D∗ (equation (5)) during train-
ing. The left plot is for iteration 1 to 100 and the
right plot is for 100 to 5,000, with the same y-axes
in the log scale.

Figure 1: Training results with projected dimension fixed to 2.

Next, we compare GRAM-based training against classical adversarial training. For this purpose we
train a GAN with the same exact architecture and hyperparameter as those used for the GRAM-net
in the previous experiments. Adversarial models are known to be unstable on the 2D ring dataset
(Roth et al., 2017; Mescheder et al., 2017) as the critic can often easily outperform the generator in
this simple setting. Figure 2 summarizes the results of this comparison. Both models are trained on
three different levels of generator capacity and four different dimensions of the input noise variable
(h). GANs are known to be unstable at both low and high dimensional noise but they additionally
tend to mode-collapse (Srivastava et al., 2017) on high dimensional noise. This is confirmed in our
experiments; GANs failed to learn the true data distribution in every case and in most cases the
optimization also diverged. In sharp contrast to this, GRAM training successfully converged in all 12
settings. Adversarial training needs a careful balance between the generator and the critic capacities.
In the plot we can see that, as the capacity of the generator becomes larger, the training become
more unstable in GAN. This is not the case for GRAM-nets, which train well without requiring to
make any adjustments in other hyperparameters. This enlists as an important advantage of GRAM,
as one can use the most powerful model (generator and critic) given their computational budget
instead of worrying about balancing the optimization. We also provide the corresponding results for

2 4 8 16

20

100

200

(a) GAN

2 4 8 16

(b) GRAM-net

Figure 2: Training after 2,000 epochs by varying noise dimension h and the hidden layer size of
critic model. For each model, each row is a different layer size in [20, 100, 200] and each column is a
different h in [2, 4, 8, 16]. Half of the GAN training diverges while all GRAM training converges.

6



Under review as a conference paper at ICLR 2020

MMD-nets in Appendix A.2, in which one can see MMD-nets can also capture all modes, but the
learned distribution is less separated (or sharp) compared to GRAM-nets.

Please refer to Appendix A and our submitted code for other experimental details of interests. We
also provide TensorBoard logs for additional visualizations of the training process.

3.4.1 COMPUTATION GRAPHS

Figure 3 visualizes the computational graph for GAN, MMD-net, MMD-GAN and GRAM-net.
Solid arrows describe the direction of the computation, K denotes the kernel gram matrix and most

z ∼ pz

xq xp ∼ px

Lγ Lθ

γ

θ
θ

θ

(a) GAN

z ∼ pz xp ∼ px

xq K

Lγ

γ

(b) MMD-net

z ∼ pz xp ∼ px

xq fθ(x
p)

fθ(x
q) K

Lγ Lθ

γ θ

θ

(c) MMD-GAN

z ∼ pz xp ∼ px

xq fθ(x
p)

fθ(x
q) K

Lγ Lθ

γ θ

θ

(d) GRAM-net

Figure 3: Computation graphs of GAN, MMD-net, MMD-GAN and GRAM-net. K is the kernel
Gram matrix. Solid arrows represents the flow of the computation and dashed lines represents min-
max relationship between the losses, i.e. saddle-point optimization: minimizing one loss maximizes
the other. Therefore in adversarial case (GAN, MMD-GAN) the two objectives (Lγ and Lθ) cannot
be optimized simultaneously (Mescheder et al., 2017).

importantly dashed lines represent the presence of saddlepoint optimization. In case of GAN and
MMD-GAN, the dashed lines imply that by formulation, training the critic adversarially affects the
training of the generator as they are trained by minimizing and maximizing the same objective i.e.
Lγ = −Lθ. Both MMD-nets and GRAM-nets avoid this saddle-point problem. In GRAM-nets,
the critic and generator do not play an adversarial game as they are trained to optimize different
objectives, i.e. the critic learns to find a projection in which the density ratios of the pair of input
distributions are preserved after the projection and the generator tries to minimize the MMD in the
projected space.

4 EXPERIMENTS

In this section we empirically compare GRAM-nets against MMD-GANs and vanilla GANs, on the
Cifar10 and CelebA image datasets. Please note that while we have tried include maximum number
of evaluations in this section itself, due to space limitations, some of the results are made available in
the appendix. To evaluate the sample quality and resilience against mode dropping, we used Frechet
Inception Distance (FID) (Heusel et al., 2017).2 Like the Inception Score (IS), FID also leverages a
pre-trained Inception Net to quantify the quality of the generated samples, but it is more robust to
noise than IS and can also detect intra-class mode dropping (Lucic et al., 2017). FID first embeds
both the real and the generated samples into the feature space of a specific layer of the pre-trained
Inception Net. It further assumes this feature space to follow a multivariate Gaussian distribution and
calculates the mean and covariance for both sets of embeddings. The sample quality is then defined
as the Frechet distance between the two Gaussian distributions, which is

FID(xp, xq) = ‖µxp
− µxq

‖22 + Tr(Σxp
+ Σxq

− 2(Σxp
Σxq

)
1
2 ),

where (µxp
,Σxp

), and (µxq
,Σxq

) are the mean and covariance of the sample embeddings from the
data distribution and model distribution. We report FID on a held-out set that was not used to train

2We use a standard implementation available from https://github.com/bioinf-jku/TTUR

7

https://github.com/bioinf-jku/TTUR


Under review as a conference paper at ICLR 2020

the models. We run all the models three times from random initializations and report the mean and
standard deviation of FID over the initializations.

Architecture: We test all the methods on the same architectures for the generator and the critic, namely
a four-layer DCGAN architecture (Radford et al., 2015), because this has been consistently shown to
perform well for the datasets that we use. Additionally, to study the effect of changing architecture,
we also evaluate a slightly weaker critic, with the same number of layers but half the number of
hidden units. Details of the architectures are provided in Appendix C.

Hyperparameters: To facilitate fair comparison with MMD-GAN we set all the hyperparameters
shared across the three methods to the values used in Li et al. (2017). Therefore, we use a learning
rate of 5e−5 and set the batch size to 64. For the MMD-GAN and GRAM-nets, we used the same set
of RBF kernels that were used in Li et al. (2017). We used the implementation of MMD-GANs from
Li et al. (2017).3 We leave all the hyper-parameters that are only used by MMD-GAN to the settings
in the authors’ original code. For GRAM-nets, we choose K = h, i.e. the projected dimension equals
the input noise dimension. We present an evaluation of hyperparameter sensitivity in Section 4.2.

Table 1: Sample quality (measured by FID; lower is better) of
GRAM-nets compared to GANs.

Arch. Dataset MMD-GAN GAN GRAM-net
DCGAN Cifar10 40.00± 0.56 26.82± 0.49 24.85 ± 0.94
Weaker Cifar10 210.85± 8.92 31.64± 2.10 24.82 ± 0.62
DCGAN CelebA 41.105± 1.42 30.97± 5.32 27.04 ± 4.24

Table 2: FID with fully convo-
lutional architecture originally
used by Li et al. (2017).

Dataset MMD-GAN
Cifar10 38.39± 0.28
CelebA 40.27± 1.32

4.1 IMAGE QUALITY

We now look at how our method competes against GANs and MMD-GANs on sample quality and
mode dropping on Cifar10 and CelebA datasets. Results are shown in Table 1. Clearly, GRAM-nets
outperform both baselines. For CelebA, we do not run experiments using the weaker critic, because
this is a much larger and higher-dimensional dataset, so a low-capacity critic is unlikely to work well.

It is worth noting that while the difference between the FIDs of GAN and GRAM-net is relatively
smaller, it is quite significant that GRAM-net outperforms GAN on both datasets. As shown in a
large scale study of adversarial generative models (Lucic et al., 2017), GANs in general perform very
well on FID when compared to the state-of-the-art methods such as WGAN (Arjovsky et al., 2017).
Interestingly, in the case CIFAR10, GANs are the state-of-art on FID performance.

To provide evidence that GRAM-nets are not simply memorizing the training set, we note that we
measure FID on a held-out set, so a network that memorized the training set would be likely to have
poor performance. For additional qualitative evidence of this, see Figure 4. This figure shows the
five nearest neighbors from the training set for 20 randomly generated samples from the trained
generator of our GRAM-net. None of the generated images have an exact copy in the training set,
and qualitatively the 20 images appear to be fairly diverse.

Figure 4: Nearest training images to samples from a GRAM-net trained on Cifar10. In each column,
the top image is a sample from the generator, and the images below it are the nearest neighbors.

3Available at https://github.com/OctoberChang/MMD-GAN.

8

https://github.com/OctoberChang/MMD-GAN


Under review as a conference paper at ICLR 2020

10 6 10 5 10 4 10 3 10 2

learning rate

50

100

150

200

250

300

FI
D

MMD-GAN 
GAN 
GRAMnet

(a) FID vs Learning Rate

64 150 300
batch size

25

30

35

40

45

50

FI
D

MMD-GAN 
GAN 
GRAM-net

(b) FID vs Batch Size

0 500 1000 1500 2000 2500 3000
Output Dimensionality of the Critic

24

26

28

30

32

34

FI
D

(c) FID vs critic output dimension for
GRAM-nets.

Figure 5: Hyper-parameter sensitivity of MMD-GAN, GAN and GRAM-net on Cifar10 dataset.
Sample quality measured by FID.

Note that our architecture is different from that used in the results of Li et al. (2017). That work
uses a fully convolutional architecture for both the critic and the generator, which results in an
order of magnitude more weights. This makes a large comparison more expensive, and also risks
overfitting on a small dataset like Cifar10. However, for completeness, and to verify the fairness
of our comparison, we also report the FID that we were able to obtain with MMD-GAN on this
fully-convolutional architecture in Table 2. Compared to our experiments using MMD-GAN to train
the DCGAN architecture, the performance of MMD-GAN with the fully convolutional architecture
remains unchanged for the larger CelebA dataset. On Cifar10, not surprisingly, the larger fully
convolutional architecture performs slightly better than the DCGAN architecture trained using MMD-
GAN. The difference in FID between the two different architectures is relatively small, justifying our
decision to compare the generative training methods on the DCGAN architecture.

4.2 SENSITIVITY TO HYPERPARAMETERS AND EFFECT OF THE CRITIC DIMENSIONALITY

GAN training can be sensitive to the learning rate and the batch size used for training (Lucic et al.,
2017). We examine the effect of learning rates and batch sizes on the performance of all three
methods. Figure 5a compares the performance as a function of the learning rates. We see that
GRAM-nets are much less sensitive to the learning rate than MMD-GAN, and are about as robust to
changes in the learning rate as a vanilla GAN. MMD-GAN seems to be especially sensitive to this
hyperparameter. We suggest that this might be the case since the critic in MMD-GAN is restricted to
the set of k-Lipschitz continuous functions using gradient clipping, and hence needs lower learning
rates. Similarly, Figure 5b shows the effect of the batch size on three models. We notice that all
models are slightly sensitive to the batch size, and lower batch size is in general better for all methods.

We examine how changing the dimensionality K of the critic affects the performance of our method.
We use the Cifar10 data. Results are shown in Figure 5c. Interestingly, we find that there are two
regimes: the output dimensionality steadily improves the FID until K = 1000, but larger values
sharply degrade performance. This agrees with the intuition in Section 3.1 that dimensionality
reduction is especially useful for an “intrinsically low dimensional” distribution.

5 SUMMARY

We propose a new algorithm for training MMD-nets. While MMD-nets in their original formulation
fail to generate high dimensional images in good quality, their performance can be greatly improved
by training them under a low dimensional mapping. Unlike the adversarial alternative (MMD-GAN)
for learning such a mapping, our training method, GRAM, learns this mapping while avoiding the
saddle-point optimization by being trained to match density ratios of the input and the projected pair
of distributions. This leads to a sizable improvement in stability and generative quality, that is at par
with or better than adversarial generative methods.

9



Under review as a conference paper at ICLR 2020

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

Mikołaj Bińkowski, Dougal J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. arXiv preprint arXiv:1801.01401, 2018a.

Mikołaj Bińkowski, Dougal J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. arXiv preprint arXiv:1801.01401, 2018b.

Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training generative neural
networks via maximum mean discrepancy optimization. arXiv preprint arXiv:1505.03906, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 30, pp. 6626–6637. 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215–10224, 2018.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. Mmd gan:
Towards deeper understanding of moment matching network. In Advances in Neural Information
Processing Systems, pp. 2200–2210, 2017.

Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, and Barnabás Póczos. Implicit
kernel learning. arXiv preprint arXiv:1902.10214, 2019.

Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In International
Conference on Machine Learning, pp. 1718–1727, 2015.

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are gans created
equal? a large-scale study. arXiv preprint arXiv:1711.10337, 2017.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. In Advances in
Neural Information Processing Systems, pp. 1825–1835, 2017.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In Advances in Neural Information Processing Systems,
pp. 271–279, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training
of generative adversarial networks through regularization. In Advances in neural information
processing systems, pp. 2018–2028, 2017.

Akash Srivastava, Lazar Valkoz, Chris Russell, Michael U Gutmann, and Charles Sutton. Veegan:
Reducing mode collapse in gans using implicit variational learning. In Advances in Neural
Information Processing Systems, pp. 3310–3320, 2017.

10



Under review as a conference paper at ICLR 2020

Masashi Sugiyama, Makoto Yamada, Paul von Bünau, Taiji Suzuki, Takafumi Kanamori, and
Motoaki Kawanabe. Direct density-ratio estimation with dimensionality reduction via least-squares
hetero-distributional subspace search. Neural Networks, 24 2:183–98, 2011.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine
learning. Cambridge University Press, 2012.

11



Under review as a conference paper at ICLR 2020

A EXPERIMENTAL DETAILS AND MORE RESULTS FOR SECTION 3.4

A.1 EXPERIMENTAL DETAILS

Below list the hyper-parameters used in Section 3.4, except from those being varied in the experiments.

• Number of epochs: 2,000

• Noise distribution: Gaussian

• Activation between hidden layers: ReLU

• Batch normalisation: not used

• Batch size: 200

• Batch size for generated samples: 200

• GAN

– Optimizer: ADAM
– Learning rate: 1e-4
– Momentum decay: 0.5
– Critic architecture: 2-100-100-10

• MMD-net

– Optimizer: RMSprop
– Learning rate: 1e-3
– RBF kernel bandwidth: 1

• GRAM-net

– Optimizer: ADAM
– Learning rate: 1e-3
– Momentum decay: 0.5
– RBF kernel bandwidth: 1
– Critic architecture: 2-100-100-10

Note that we also provide the experimental details for MMD-nets where we will show the results in
Appendix A.2.

All parameter settings are also available in the examples/Hyper.toml file of our submitted
code. All parameters being varied are also available in the examples/parallel_exps.jl file
of our submitted code.

A.2 MMD-NETS ON THE RING DATASET

We conduct the same stability experiment on GANs and GRAM-nets in Section 3.4 for MMD-nets,
which is shown in Figure 6. One can see MMD-nets can also capture all modes, but the learned
distribution is less separated (or sharp) compared to GRAM-nets. This is because the MMD is
computed with a fixed kernel and in a fixed space.

A.3 GRAM-NETS ON THE MNIST DATASET

In this section we show the results of training GRAM-nets on the MNIST dataset. Figure 7a
shows how the generated samples change during the phase of training. Figure 7b shows how the
generator loss and the ratio matching objective are being optimized simultaneously. The generator
used in this experiment is a multilayer perceptron (MLP) of size 100-600-600-800-784 with ReLU
activations between hidden layers and sigmoid activation for the output layer; the noise distribution
is a multivariate uniform distribution between [−1, 1] with 100 dimensions. For the critic, we use a
convolution architecture specified in Table 3. For the optimisation, we use ADAM with a learning
rate of 1e-3, momentum decay of 0.5, and batch size of 200 for both data and generated samples. For
the RBF kernels, we use bandwidths of [0.1, 1, 10, 100]

12

examples/Hyper.toml
examples/parallel_exps.jl


Under review as a conference paper at ICLR 2020

2 4 8 16

20

100

200

Figure 6: Corresponding plots to Figure 2 for MMD-nets.

13



Under review as a conference paper at ICLR 2020

(a) Data and samples (top and bottom half in each plot) during training at iteration 100, 250, 500 (first row), at
750, 1,000, 2,000 (second row), and 3,000, 4,000 and 5,000 (last row). The orders for each row are from left to
right.

1 20 40 60 80 100

100

101

102

100 1000 2000 3000 4000 5000

̂γ ( ̂MMD)
D *  (Eq. 5)

(b) Trace of L̂γ and D∗ (equation (5)) during training. The left plot is for iteration 1 to 100 and the right plot is
for 100 to 5,000, with the same y-axes in the log scale.

Figure 7: Training results of GRAM-nets on the MNIST dataset.

B STABILITY OF MMD-GANS

For MMD-GANs, we evaluate the effect of the various stabilization techniques used for training,
namely the autoencoder penalty (AE) and the feasible set reduction (FSR) techniques from (Li
et al., 2017) on the Cifar10 data over two settings of the batch size. Table 4 shows the results. The

14



Under review as a conference paper at ICLR 2020

Op Input Output Filter Pooling Padding

Reshape 784 (-1,28,28,1) - - -

Conv2D + BatchNorm 1 16 3 2 1

Conv2D + BatchNorm 16 32 3 2 1

Conv2D + BatchNorm 32 32 3 2 1

Reshape (-1,3,3,32) (-1,288) - - -

Linear 288 100 - - -

Table 3: Critic architecture for MNIST. All BatchNorm are followed by a ReLU activation.

Table 4: Performance of MMD-GAN (Inception scores; larger is better) for MMD-GAN with and
without additional penalty terms: feasible set reduction (FSR) and the autoencoding loss (AE). The
full MMD-GAN method is MMD+FSR+AE.

Batch Size MMD-GAN = MMD+FSR+AE MMD+FSR MMD+AE MMD
64 5.35 ± 0.05 5.40 ± 0.04 3.26 ± 0.03 3.51 ± 0.03

300 5.43 ± 0.03 5.15 ± 0.06 3.68 ± 0.22 3.87 ± 0.03

performance of MMD-GAN training clearly relies heavily on FSR. This penalty not only stabilizes
the critic but it can also provides additional learning signal to the generator. Because these penalties
are important to the performance of MMD-GANs, it requires tuning several weighting parameters,
which need to be set carefully for successful training.

C ARCHITECTURE

For the generator used in Section 4, we used the following DCGAN architecture,

Op Input Output Filter Stride Padding

Linear 128 2048 - - -

Reshape 2048 (-1,4,4,128) - - -

Conv2D_transpose 128 64 4 2 SAME

Conv2D_transpose 64 32 4 2 SAME

Conv2D_transpose 32 3 4 2 SAME

Table 5: DCGAN generator architecture for Cifar10.

We used two different architectures for the experiments on Cifar10 dataset. Table 6 shows the
standard DCGAN discriminator that was used. Table 7 shows the architecture of the weaker DCGAN
discriminator architecture that was also used for Cifar10 experiments. While leaky-ReLU was used
as non-linearity in the discriminator, ReLU was used in the generator, except for the last layer, where
it was tanh. Batchnorm was used in both the generator and the discriminator.

D SAMPLES

We show some of the randomly generated samples from our method on CIFAR10 and CelebA in
Figure 8.

15



Under review as a conference paper at ICLR 2020

Op Input Output Filter Stride Padding

Conv2D 3 32 4 2 SAME

Conv2D 32 64 4 2 SAME

Conv2D 64 128 4 2 SAME

Flatten 128 2048 - - -

Linear 2048 128 - - -

Table 6: DCGAN discriminator architecture for Cifar10.

Op Input Output Filter Stride Padding

Conv2D 3 32 4 2 SAME

Conv2D 32 32 4 2 SAME

Conv2D 32 64 4 2 SAME

Flatten 64 1024 - - -

Linear 1024 128 - - -

Table 7: Shallow DCGAN discriminator architecture.

E INCEPTION SCORE

Inception score (IS) is another evaluation metric for quantifying the sample quality in GANs. Com-
pared FID, IS is not very robust to noise and cannot account for mode dropping. In addition to the
FID scores that we provide in the paper, here we also report IS for all the methods on CIFAR10 for
completeness since the MMD-GAN paper used it as their evaluation criteria.

Table 8: Inception Scores for MMD-GAN, GAN, GRAM-net and MMD-nets on CIFAR10 for three
random initializations.

MMD-GAN GAN GRAM-net

Inception Score
5.35 ± 0.12
5.21 ± 0.14
5.31 ± 0.10

5.17 ± 0.13
4.94 ± 0.15
5.27 ± 0.05

5.73 ± 0.10
5.44 ± 0.12
5.45 ± 0.18

16



Under review as a conference paper at ICLR 2020

(a) CIFAR10

(b) CelebA

Figure 8: Random Samples from a randomly selected epoch (>100).

17


	Introduction
	Related Work

	Background
	Maximum Mean Discrepancy
	Density Ratio Estimation

	Method
	Training the Critic using Squared Ratio Difference
	Generator Loss
	The Generative Ratio Matching Algorithm
	Stability of GRAM-nets
	Computation Graphs


	Experiments
	Image Quality
	Sensitivity to Hyperparameters and Effect of the Critic Dimensionality

	Summary
	Experimental details and more results for Section 3.4
	Experimental details
	MMD-nets on the ring dataset
	GRAM-nets on the MNIST dataset

	Stability of MMD-GANs
	Architecture
	Samples
	Inception Score

