
Under review as a conference paper at ICLR 2020

ORDINARY DIFFERENTIAL EQUATIONS ON GRAPH
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently various neural networks have been proposed for irregularly structured
data such as graphs and manifolds. To our knowledge, all existing graph networks
have discrete depth. Inspired by neural ordinary differential equation (NODE)
for data in the Euclidean domain, we extend the idea of continuous-depth mod-
els to graph data, and propose graph ordinary differential equation (GODE). The
derivative of hidden node states are parameterized with a graph neural network,
and the output states are the solution to this ordinary differential equation. We
demonstrate two end-to-end methods for efficient training of GODE: (1) indirect
back-propagation with the adjoint method; (2) direct back-propagation through
the ODE solver, which accurately computes the gradient. We demonstrate that
direct backprop outperforms the adjoint method in experiments. We then intro-
duce a family of bijective blocks, which enables O(1) memory consumption. We
demonstrate that GODE can be easily adapted to different existing graph neu-
ral networks and improve accuracy. We validate the performance of GODE in
both semi-supervised node classification tasks and graph classification tasks. Our
GODE model achieves a continuous model in time, memory efficiency, accurate
gradient estimation, and generalizability with different graph networks.

1 INTRODUCTION

Convolutional neural networks (CNN) have achieved great success in various tasks, such as image
classification (He et al., 2016) and segmentation (Long et al., 2015), video processing (Deng et al.,
2014) and machine translation (Sutskever et al., 2014). However, CNNs are limited to data that can
be represented by a grid in the Euclidean domain, such as images (2D grid) and text (1D grid), which
hinders their application in irregularly structured datasets.

A graph data structure represents objects as nodes and relations between objects as edges. Graphs
are widely used to model irregularly structured data, such as social networks (Kipf & Welling, 2016),
protein interaction networks (Fout et al., 2017), citation and knowledge graphs (Hamaguchi et al.,
2017), and point cloud datasets (Hackel et al., 2017). Early works use traditional methods such as
random walk (Lovász et al., 1993), independent component analysis (ICA) (Hyvärinen & Oja, 2000)
and graph embedding (Yan et al., 2006) to model graphs, however their performance is inferior due
to the low expressive capacity. Furthermore, ICA and graph embedding treat edge information as
attributes of the nodes, while ignoring the information propagation on the edges.

Recently a new class of models called graph neural networks (GNN) (Scarselli et al., 2008) were
proposed. GNNs use a neural network to model the iterative propagation of node states on a graph
and have a larger capacity to capture information in a graph. Li et al. (2015) used gated recurrent
units to model the propagation process. However, these models only consider the message propaga-
tion, while ignoring local structures of a graph.

Inspired by the success of CNNs, researchers generalize convolution operations to graphs to capture
the local information. There are mainly two types of methods to perform convolution on a graph:
spectral methods and non-spectral methods. Spectral methods typically first compute the graph
Laplacian, then perform filtering in the spectral domain (Bruna et al., 2013). Other methods aim to
approximate the filters without computing the graph Laplacian, in order to accelerate the running
speed (Defferrard et al., 2016). For non-spectral methods, the convolution operation is directly per-
formed in the graph domain, aggregating information only from the neighbors of a node (Duvenaud

1

Under review as a conference paper at ICLR 2020

et al., 2015; Atwood & Towsley, 2016). The recently proposed GraphSAGE (Hamilton et al., 2017)
learns a convolution kernel in an inductive manner.

To our knowledge, all existing GNN models mentioned above have a structure of discrete layers.
The discrete structure makes it hard for the GNN to model continuous diffusion processes (Freidlin
& Wentzell, 1993; Kondor & Lafferty, 2002) in graphs. The recently proposed neural ordinary
differential equation (NODE) (Chen et al., 2018) views a neural network as an ordinary differential
equation (ODE), whose derivative is parameterized by the network, and the output is the solution
to this ODE. We extend NODE from the Euclidean domain to graphs and propose graph ordinary
differential equations (GODE), where the message propagation on a graph is modeled as an ODE.
GODE on a graph can be viewed as a continuous diffusion process and can be solved with any ODE
solver. We then introduce two methods for efficient training of GODE and demonstrate the superior
performance of GODE in experiments. Our contribution can be summarized as follows:

1. We generalize ordinary differential equation to graph data and model the continuous diffusion
process on a graph.
2. We apply two methods for end-to-end training of GODE, the adjoint method and direct back-
propagation through the ODE solver. We demonstrate direct back-prop is robust to the instability of
ODE.
3. We introduce a family of bijective blocks, which achieve O(1) memory consumption. The
bijective blocks enable training of GODE on large graphs.
4. We demonstrate GODE is generalizable, and can be applied to various GNN structures.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS

GNNs can be divided into two categories: spectral methods and non-spectral methods. Spectral
GNNs perform filtering in the Fourier domain of a graph, thus need information of the whole graph
to determine the graph Laplacian. In contrast, non-spectral GNNs only consider message aggrega-
tion around neighbor nodes, therefore are localized and generally require less computation (Zhou
et al., 2018).

We first briefly introduce several spectral methods. Bruna et al. (2013) first introduced graph con-
volution in the Fourier domain based on the graph Laplacian, however the computation burden is
heavy because of non-localized filters. Henaff et al. (2015) incorporated a graph estimation pro-
cedure in spectral networks and parameterized spectral filters into a localized version with smooth
coefficients. Defferrard et al. (2016) used Chebyshev expansion to approximate the filters without
the need to compute the graph Laplacian and its eigenvectors, therefore significantly accelerated
the running speed. Kipf & Welling (2016) proposed to use a localized first-order approximation of
graph convolution on graph data and achieved superior performance in semi-supervised tasks for
node classification. Defferrard et al. (2016) proposed fast localized spectral filtering on graphs.

Non-spectral methods typically define convolution operations on a graph, only considering neigh-
bors of a certain node. MoNet (Monti, 2017) uses a mixture of CNNs to generalize convolution to
graphs. GraphSAGE (Hamilton et al., 2017) samples a fixed size of neighbors for each node for
fast localized inference. Graph attention networks (Veličković et al., 2017) learn different weights
for different neighbors of a node. The graph isomorphism network (GIN) (Xu et al., 2018a) has a
structure as expressive as the Weisfeiler-Lehman graph isomorphism test.

2.2 NEURAL NETWORKS AND DIFFERENTIAL EQUATIONS

There have been efforts to view neural networks as differential equations. Lu (2017) viewed a
residual network as a discretization of a differential equation and proposed several new architectures
based on numerical methods in ODE solver. Haber & Ruthotto (2017) proposed a stable architecture
based on analysis of the ODE. Chen et al. (2018) proposed neural ordinary differential equation
(NODE), which treats the neural network as a continuous ODE. For a neural network with discrete
layers, the parameters can be optimized with layer-wise back-propagation; for a continuous model,
the adjoint method has long been widely used in optimal control (Stapor et al., 2018) and geophysical
problems (Plessix, 2006). Dupont et al. (2019) proposed augmented neural ODEs to improve the

2

Under review as a conference paper at ICLR 2020

expressive capacity of ODEs. NODE was later used in a continuous normalizing flow for generative
models (Grathwohl et al., 2018).

2.3 BIJECTIVE BLOCKS

Bijective blocks are a family of neural network blocks whose forward function is a bijective map-
ping. Therefore, the input to a bijective block can be accurately reconstructed from its outputs.
Bijective blocks have been used in normalizing flow (Rezende & Mohamed, 2015; Dinh, 2016;
Kingma & Dhariwal, 2018; Dinh et al., 2014; Kingma et al., 2016), where the model is required
to be invertible in order to calculate the log-density of data distribution. Later on, Jacobsen et al.
(2018) used bijective blocks to build invertible networks. Gomez et al. (2017) proposed to use
bijective blocks to perform back propagation without storing activation, which achieves a memory-
efficient network structure. They were able to discard activation of middle layers, because each
layer’s activation can be reconstructed from the next layer with bijective blocks.

3 GRAPH ORDINARY DIFFERENTIAL EQUATIONS

We first introduce graph neural networks with discrete layers, then extend to the continuous case
and introduce graph ordinary differential equations (GODE).

3.1 MESSAGE PASSING IN GNN

As shown in Fig. 1, a graph is represented with nodes (marked with circles) and edges (solid lines).
We assign a unique color to each node for ease of visualization. Current GNNs can generally be
represented in a message passing scheme (Fey & Lenssen, 2019):

message(v,u) = φ(k)(xuk−1, x
v
k−1, eu,v) (1)

aggregationu = ζv∈N (u)(message(v,u)) (2)

xuk = γ(k)(xuk−1, aggregationu) (3)
where xuk represents states of the uth node in the graph at kth layer and eu,v represents the edge
between nodes u and v. N (u) represents the set of neighbor nodes for node u. ζ represents a
differentiable, permutation invariant operation such as mean, max or sum. γ(k) and φ(k) are
differentiable functions parameterized by neural networks.

For a specific node u, a GNN can be viewed as a 3-stage model, corresponding to Eq. 1-3:
(1) Message passing, where neighbor nodes v ∈ N (u) send information to node u, denoted by
message(v,u). The message is generated from function φ(·), parameterized by a neural network.
(2) Message aggregation, where a node u aggregates all messages from its neighborsN (u), denoted
as aggregationu. The aggregation function ζ is typically permutation invariant operations such
as mean and sum, because graphs are invariant to permutation. (3) Update, where the states of a
node are updated according to its original states xuk−1 and aggregation of messages aggregationu,
denoted as γ(·).

3.2 FROM DISCRETE MODELS TO CONTINUOUS MODELS

We first consider GNNs with residual connection (Xu et al., 2018b; He et al., 2016) in the form of
addition, which can be represented as:

xk+1 = xk + fk(xk) (4)
where xk is the states of the graph in the kth layer; fk(·) is any differentiable function defined on the
graph, whose output has the same shape as its input. fk(·) denotes operations defined by Eq. 1-3.
For the ease of notation, we omit node index u in xk. The discrete update process is shown from left
to right in Fig. 1(a).

Equations 1-4 represent GNNs with discrete layers. When we add more layers with shared weights,
and let the stepsize in Eq. 4 goes to infinitesimal, the difference equation turns into an ordinary
differential equation:

dz(t)

dt
= f(z(t), t) (5)

3

Under review as a conference paper at ICLR 2020

Figure 1: Diecrete-time and continuous-time models on a graph. Nodes are represented with circles, and each
node is represented with a unique color. Edges are represented with solid lines. For discrete-time models in (a),
the hidden states of nodes are updated with discrete steps. For continuous-time models in (b), hidden states of
each node evolves continuously with time. The dynamics of nodes are represented with dashed lines, with the
same color as corresponding nodes.

We use z(t) in the continuous case and xk in the discrete case to represent hidden states of a graph.
f(·) is the derivative parameterized by a GNN as in Eq. 1-3. Since it’s an ODE on a graph, we
name Eq. 5 as Graph-ODE (GODE). Note that a key difference between Eq. 4 and 5 is the form
of f : in the discrete case, different layers (different k values) have their own function fk; while in
the continuous case, f is shared across all time t. In GODE, states of each node evolve with time
according to Eq. 5. The dynamics of nodes are represented with a dashed line in Fig. 1(b).

The forward pass of GNNs with discrete layers can be written as:

x0 = input, x1 = x0 + f0(x0), ..., xK = xK−1 + fK−1(xK−1) (6)

where K is the total number of layers. Then an output layer (e.g. fully-connected layer for classifi-
cation) is applied on xK .

The forward pass of a GODE is:

z(T) = z(0) +

∫ T

t=0

dz(t)

dt
dt = input +

∫ T

t=0

f(z(t), t)dt (7)

where z(0) = input and T is the integration time, corresponding to number of layers K in the
discrete case. The transformation of states z is modeled as the solution to the GODE. Then an
output layer is applied on z(T). Integration in the forward pass can be performed with any ODE
solver, such as the Euler Method, Runge-Kutta Method, VODE solver and Dopris Solver (Milne &
Milne, 1953; Brown et al., 1989; Ascher et al., 1997).

4 TRAINING OF GODE

Neural networks with discrete layers can be trained with back-propagation (Rumelhart et al., 1985).
In GODE, the back-propagation algorithm needs to be modified to deal with continuous cases. We
first introduce the adjoint method, then address its sensitivity to numerical errors. Next, we introduce
direct back-propagation through the ODE solver, which is more resistant to numerical errors. How-
ever, direct back-propagation requires large memory. To solve this, we introduce memory-efficient
bijective blocks.

4.1 BACK-PROP WITH ADJOINT METHOD IS SENSITIVE TO NUMERICAL ERROR

The adjoint method is widely used in optimal process control and functional analysis (Stapor et al.,
2018; Pontryagin, 2018). We follow the method by (Chen et al., 2018). Denote model parameters
as θ, which is independent of time. Define the adjoint as:

a(t) =
∂L

∂z(t)
(8)

where L is the loss function. Then we have

da(t)

dt
= −a(t)T ∂f(z(t), t, θ)

z(t)
,

dL

dθ
= −

∫ 0

T

a(t)T
∂f(z(t), t, θ)

∂θ
dt (9)

4

Under review as a conference paper at ICLR 2020

Figure 2: Comparison of two methods for back-propagation on GODE. As in figure (a), the ODE solver
is discretized at points {t0, t1, ..., tN} during forward pass. Black dashed curve shows hidden state solved in
forward-time, denoted as z(t). Figure (b) shows the adjoint method, red solid line shows the hidden state solved
in reverse-time, denoted as h(t). Ideally z(t) = h(t) and dashed curve overlaps with solid curve; however,
the reverse-time solution could be numerically unstable, and causes z(t) 6= h(t), thus causes error in gradient.
Figure (c) shows the direct back-propagation through ODE solver. Due to the discretization of the ODE solver,
the forward pass can be viewed as a discrete layer model, whose depth equals the number of time steps in the
ODE solver. In direct back-propagation, we have z(ti) = h(ti), which can be achieved with bijective blocks.

with detailed proof is in appendix G. Then we can perform gradient descent to optimize θ to mini-
mize L. Eq. 9 is a reverse-time integration, which can be solved with any ODE solver (Chen et al.,
2018). To evaluate ∂f(z(t),t,θ)

∂θ , we need to determine z(t) by solving Eq. 5 reverse-time (Directly
storing z(t) during forward pass requires a large memory consumption, because the continuous
model is equivalent to an infinite-layer model). To summarize, in the forward pass we solve Eq. 5
forward in time; in the backward pass, we solve Eq. 5 and 9 reverse in time, with initial condition
determined from Eq. 8 at time T .

We give an intuition why the reverse-time ODE solver causes inaccurate gradient in adjoint meth-
ods. The backward pass (Eq. 9) requires determining f(z(t), t, θ) and ∂f(z(t),t,θ)

∂θ , which requires
determining z(t) by solving Eq. 5 reverse-time. As shown in Fig. 2 (a,b), the hidden state solved
forward-time (z(ti)) and the hidden state solved reverse-time (h(ti)) may not be equal; this could
be caused by the instability of reverse-time ODE, and is represented by the mismatch between z(t)
(dashed curve) and h(t) (solid curve). Error h(t)− z(t) will cause error in gradient dL

dθ .

Proposition 1 For an ODE in the form dz(t)
dt = f(z(t), t), denote the Jacobian of f as Jf . If this

ODE is stable both in forward-time and reverse-time, then Re(λi(Jf)) = 0 ∀i, where λi(Jf) is the
ith eigenvalue of Jf , and Re(λ) is the real part of λ.

Detailed proof is in appendix D. Proposition 1 indicates that if the Jacobian of the original system
Eq. 5 has eigenvalues whose real-part are not 0, then either the reverse-time or forward-time ODE
is unstable. When |Re(λ)| is large, either forward-time or reverse-time ODE is sensitive to numer-
ical errors. This phenomenon is also addressed in Chang et al. (2018). This instability affects the
accuracy of solution to Eq. 5 and 9, thus affects the accuracy of the computed gradient.

4.2 DIRECT BACK-PROPAGATION THROUGH ODE SOLVER

The adjoint method might be sensitive to numerical errors when solving the ODE in reverse-time.
To resolve this, we propose to directly back-propagate through the ODE solver.

As in Fig. 2(a), since the ODE solver uses discretization for numerical integration, it can be viewed
as a sequence of discrete layers whose depth is the total number of time points {ti}. Fig. 2(c)
demonstrates the direct back-propagation with accurate hidden states h(ti), which can be achieved
with two methods: (1) the activation z(ti) can be saved in cache for back-prop; or (2) we can
accurately reconstruct z(ti) from z(ti+1) as in Gomez et al. (2017). Therefore direct back-prop is
accurate, regardless of the stability of Eq. 5. We demonstrate method (2) in the next section.

Similar to the continuous case, we can define the adjoint with discrete time. Then we have:

ai =
∂L

∂z(ti)
, ai+1 = ai

∂z(ti+1)

∂z(ti)
,

dL

dθ
=

N∑
i=1

ai
∂z(ti)

∂θ
(10)

where {t0, t1, ...ti, ...tN} is the set of discretized evaluation time points and ai is the adjoint for
the ith step in discrete forward-time ODE solution. Eq. 10 are in the discrete case, corresponding

5

Under review as a conference paper at ICLR 2020

Figure 3: Structure of bijective blocks. F and G
can be any differentiable neural network whose out-
put has the same shape as its input. Blue dot (Orange
diamond) represents the forward (inverse) of a bijec-
tive function, corresponding to ψ (ψ−1) in Eq. 11.
Left (right) figure represents the forward (inverse) as
in Eq. 11.

to Eq. 9 in the continuous case. We show Eq. 9 can be derived from an optimization perspective.
Detailed derivations of Eq. 9-10 are in appendix F and G.

4.3 MEMORY-EFFICIENT BIJECTIVE BLOCKS

Direct back-propagation through the ODE solver is accurate regardless of stability of the GODE
model. However, the effective depth is equivalent to the number of steps in the forward pass. In the
conventional back-propagation scheme, the activation for each layer needs to be cached during the
forward pass, which will be used later in the backward pass. Therefore, the direct back-propagation
requires a memory of K ×M , where M is the memory size for a single layer, and K is the number
of evaluation steps in the forward pass. The large memory requirements hinders the application of
GODE. To solve this problem, we introduce bijective blocks with O(1) memory consumption.

4.3.1 BIJECTIVE BLOCKS

Input x is split into two parts (x1, x2) of the same size (e.g. x has shape N × C, where N is batch
size, C is channel number; we can split x into x1 and x2 with shape N × C

2). The forward and
inverse of a bijective block can be denoted as: y2 = ψ

(
x2, F (x1)

)
y1 = ψ

(
x1, G(y2)

) x1 = ψ−1
(
y1, G(y2)

)
x2 = ψ−1

(
y2, F (x1)

) (11)

where the output of a bijective block is denoted (y1, y2) with the same size as (x1, x2). F and G
are any differentiable neural networks, whose output has the same shape as the input. ψ(α, β) is a
differentiable bijective function w.r.t α when β is given; ψ−1(α, β) is the inverse function of ψ.

We give an example of ψ.

η = ψ(α, β) = α× exp(2β), α = ψ−1(η, β) = η × exp(−2β) (12)

Structure of bijective blocks is shown in Fig. 3, where F and G are represented with squares, ψ is
denoted with blue dots, and ψ−1 is denoted with orange diamonds.
Theorem 1 If ψ(α, β) is a bijective function w.r.t α when β is given, then the block defined by
Eq. 11 is a bijective mapping.

Proof of Theorem 1 is given in the appendix. Based on this, we can apply different ψ functions for
different tasks.

Bijective blocks can accurately reconstruct its input from its output based on Eq. 11. This enables
accurate reconstruction of h(ti) = z(ti).

4.3.2 BACKPROP WITHOUT STORING ACTIVATION

We follow the work of Gomez et al. (2017) with two important modifications: (1) We generalize
to a family of bijective blocks with different ψ, while Gomez et al. (2017) restrict the form of ψ to
be sum. (2) We propose a parameter state checkpoint method, which enables bijective blocks to be
called more than once, while still generating accurate inversion.

The algorithm is summarized in Algo 1. We write the pseudo code for forward and backward func-
tion as in PyTorch. Note that we use “inversion” to represent reconstructing input from the output,
and use “backward” to denote calculation of the gradient. To reduce memory consumption, in the
forward function, we only keep the outputs y1, y2 and delete all other variables and computation

6

Under review as a conference paper at ICLR 2020

graphs. In the backward function, we first “inverse” the block to calculate x1, x2 from y1, y2, then
perform a local forward and calculate the gradient ∂[y1,y2]∂[x1,x2]

.

Note that in GODE, F and G need to be reused for different steps in ODE solver. At different
steps, the running statistics (e.g. sample mean and variance in Batch Normalization layer) in F,G
are different. Therefore the inversion is inaccurate in this case. To solve this, we keep the states
(running statistics, random seed, et al.) of F and G in cache (checkpoint), and reset states of F,G
during inversion in the backward function. The state-checkpoint method requires minimal memory
while enabling re-use of bijective blocks in ODE solvers.

Algorithm 1: Function for memory-efficient bijective blocks

Forward (cache, x1, x2, F , G, ψ)
cache.save([F states, G states])
forward in Eq. 11

η1 = F (x1), y2 = ψ(x2, η1)
η2 = G(y2), y1 = ψ(x1, η2)

delete η1, η2, x1, x2
delete computation graphs generated by F and G
return cache, y1, y2

Backward(cache, y1, y2, F , G, ψ, ∂L
∂y1

, ∂L
∂y2

)
Reset F and G states from cache
Inverse from y1, y2 to x1, x2

η2 = G(y2), x1 = ψ−1(y1, η2)
η1 = F (x1), x2 = ψ−1(y2, η1)

Local forward pass and gradient
X1, X2 = x1.detach(), x2.detach()
calculate Y1, Y2 from X1, X2 as Eq. 11
determine ∂[Y1, Y2]/∂[X1, X2, θF , θG]

∂L
∂[x1,x2]

= ∂L
∂[y1,y2]

∂[Y1,Y2]
∂[X1,X2]

∂L
∂[θF ,θG]

= ∂L
∂[y1,y2]

∂[Y1,Y2]
∂[θF ,θG]

delete Y1, Y2, X1, X2

return ∂L/∂[x1, x2], ∂L/∂[θF , θG]

4.4 MEMORY-EFFICIENT DIRECT BACK-PROP THROUGH ODE SOLVER

We use a bijective block (Eq. 11) as f in GODE model (Eq. 5). The full algorithm is summarized
in Algo. 2 in appendix B. The forward pass is determined by an ODE solver, where the function
is evaluated (in memory-efficient manner defined in Algo. 1) at multiple time points for numerical
integration; then to calculate gradients, back-propagation is directly applied on the ODE solver.
Since each call on the bijective blocks is memory-efficient, Algo. 2 requires a constant memory
usage.

By combining memory-efficient bijective blocks with direct back-propagation, we are able to train
a continuous-time model on graphs. The proposed method has the following advantages: (1)
continuous-time models, which enables us to model continuous diffusion processes on graphs; (2)
constant memory usage because of the memory-efficient bijective blocks; (3) adaptive computation,
achieved by using an ODE solver with adaptive step size; (4) accurate estimation of gradient regard-
less of stability of the original system, achieved by direct back-propagation through the ODE solver;
(5) generalization to different graph network structures, since any differentiable GCN structure can
be applied in F,G in Eq. 11.

5 EXPERIMENTS

5.1 DATASETS

We performed experiments on several benchmark datasets, including 2 bioinformatic graph classi-
fication datasets (MUTAG and PROTEINS), 3 social network graph classification datasets (IMDB-
BINRAY, REDDIT-BINARY and COLLAB) (Yanardag & Vishwanathan, 2015), and 3 citation net-
works (Cora, CiteSeer and PubMed). For graph classification tasks, nodes in the bioinformatic
graphs have categorical features, while nodes in social network graphs have no features. Different
from the experiment settings in Xu et al. (2018a), we input the raw dataset into our models without
pre-processing. For node classification tasks, we performed transductive inference and strictly fol-
lowed the train-validation-test split by Kipf & Welling (2016), where less than 6% nodes are used
as training examples. Details of datasets are summarized in appendix A.

7

Under review as a conference paper at ICLR 2020

MUTAG PROTEINS IMDB REDDIT COLLAB
adjoint 68.1± 4.6 67.0±3.7 72.1±0.4 69.5±5.9 80.0±1.3
direct 80.8±8.3 73.9±3.1 74.6±5.1 92.4±2.1 82.0±2.1

Table 1: Accuracy of adjoint method and direct back-prop.
We trained a GODE model with GCN as the derivative func-
tion. For the same column, all experiment settings are the same
except the back-prop method.

Depth Memory-efficient Conventional
10 2.2G 5.3G
20 2.6G 10.5G

Table 2: Memory consumption of bijective
blocks. “Conventional” represents storing
activation of all layers in cache, “memory-
efficient” represents our method in Algo. 1.

5.2 MODEL STRUCTURES

GODE can be applied to any graph neural network by simply replacing f in Eq. 5 with corresponding
structures, or replacing F,G in Eq. 11 with other structures. To demonstrate that GODE is easily
generalized to existing structures, we used several different GNN architectures, including the graph
convolutional network (GCN) (Kipf & Welling, 2016), graph attention network (GAT) (Veličković
et al., 2017), graph network approximated with Chebyshev expansion (ChebNet) (Defferrard et al.,
2016), and graph isomorphism network (GIN) (Xu et al., 2018a). For a fair comparison, we trained
GNNs with different depths of layers (1-3 middle layers, besides an initial layer to transform data
into specified channels, and a final layer to generate prediction), and reported the best results among
all depths for each model structure.

On the same task, different models use the same hyper-parameters on model structures, such as
channel number. For graph classification tasks, we set the channel number of hidden layers as 32 for
all models; for ChebNet, we set the number of hops as 16. For node classification tasks, we set the
channel number as 16 for GCN and ChebNet, and set number of hops as 3 for ChebNet; for GAT,
we used 8 heads, and set each head as 8 channels.

5.3 TRAINING SCHEMES AND EVALUATION METRICS

We implemented all models using PyTorch and PyTorch Geometric Library (Fey & Lenssen, 2019).
For graph classification tasks, all models were trained with the Adam optimizer for 150 epochs, with
an initial learning rate of 0.01, and decayed by a factor of 0.3 every 30 epochs; the batchsize was
set as 32. For node classification tasks, all models were trained with the Adam optimizer for 200
epochs, with an initial learning rate of 0.1, and decayed by a factor of 0.1 at epoch 100.

For every GNN structure, we experimented with different number of hidden layers (1,2,3), calculated
the mean and variance of accuracy of 10 runs, and reported the best result for each model under each
task.

5.4 COMPARISON OF BACK-PROPAGATION METHODS

We compared the adjoint method and direct back-propagation on the same network, and demon-
strated direct back-prop generates higher accuracy. We trained a GODE model with a GCN to
parameterize the derivative. We compared the performance of the adjoint method and direct back-
propagation on the same task with the same network, trained with the same hyper-parameters.

Results are summarized in Table 1. Direct back-propagation consistently outperformed the ad-
joint method. This result validates our analysis on the instability of the adjoint method, which is
intuitively caused by the instability of the reverse-time ODE. On the other hand, for direct back-
propagation, the gradient is always accurate, because h(ti) = z(ti) is guaranteed as in Fig. 2(c).

We also validate our arguments with extra experiments on image classification tasks; results are in
appendix C. We observed that the adjoint method generated inferior performance, while using a
solver with accurate gradient estimation, our ODE network directly modified from ResNet18 out-
performed standard ResNet50 and ResNet101.

5.5 MEMORY EFFICIENCY

In this section we demonstrate that our bijective block is memory efficient. We trained a GODE
model with bijective blocks, and compared the memory consumption using our memory-efficient
function as in Algo. 1 and a memory-inefficient method as in conventional back-propagation. Re-
sults were measured with a batchsize of 100 on MUTAG dataset.

8

Under review as a conference paper at ICLR 2020

Model ψ Cora CiteSeer PubMed
GCN 81.6±0.5 71.6±0.3 79.2±0.1

GCN-ODE additive 81.7±0.7 72.4±0.6 80.0±0.2
l sigmoid 81.8±0.3 72.4±0.8 80.1±0.3

GAT 82.9±0.3 71.7±0.8 78.9±0.3

GAT-ODE additive 83.3±0.3 72.1±0.6 79.1±0.5
l sigmoid 83.1±0.4 72.1±0.3 79.0±0.5

ChebNet 82.1±0.5 70.8±0.5 76.6±0.8

Cheb-ODE additive 82.4±0.5 71.1±0.5 77.8±1.2
l sigmoid 82.2±0.4 70.8±0.6 77.0±1.1

Table 3: Results on node classification tasks. We
compared various discrete-layer structures and
their corresponding GODE models (marked with
ODE). We tested GODE model with different ψ
functions (“l sigmoid” represents linear sigmoid).

MUTAG PROTEIN IMDB REDDIT COLLAB
GCN 74.5±6.5 72.4±3.2 74.4±3.6 86.3±3.1 80.9±1.7
GCN-ODE 80.8±8.3 73.9±3.1 74.6±5.1 92.4±2.1 82.0±2.1
ChebNet 82.5±4.8 70.5±4.8 73.4±3.7 91.9±1.6 81.3±1.9
Cheb-ODE 86.7±8.8 70.0±4.0 73.6±4.6 92.1±1.1 81.0±2.2
GIN 84.5±0.5 73.1±3.9 73.1±5.1 88.3±4.0 81.0±2.4
GIN-ODE 89.3±3.7 72.9±2.8 73.2±4.4 90.3±1.8 81.2±1.7

Table 4: Results on graph-classification tasks. Corre-
sponding GODE models of discrete-layer structures are
marked with ODE. Results are reported from a 10-fold
cross-validation.

Results are summarized in Table. 2. We measured the memory consumption with different depths,
which is the number of ODE blocks. When depth increases from 10 to 20, the memory by con-
ventional methods increases from 5.3G to 10.5G, while our memory-efficient version only increases
from 2.2G to 2.6G. In theory, our bijective block takesO(1) memory, because we only need to store
the outputs in cache, while deleting activations of middle layers. For memory-efficient network, the
slightly increased memory consumption is because states of F,G need to be cached; but this step
takes up minimal memory compared to input data.

5.6 GENERAL BIJECTIVE BLOCKS

We demonstrate that bijective blocks defined as Eq. 11 can be easily generalized: F and G are
general neural networks, which can be adapted to different tasks; ψ(α, β) can be any differentiable
bijective mapping w.r.t. α when β is given. We leave the results of different network architectures
of F,G in the next section, and demonstrate a few examples of ψ: (1) additive, forward is η =
ψ(α, β) = α+ β, inverse is α = ψ−1(η, β) = η− β; (2) linear sigmoid, forward is η = ψ(α, β) =
α× sigmoid(β), inverse is α = ψ−1(η, β) = η/sigmoid(β).

Results for different ψ are reported in Table 3. Note that we experimented with different depths and
reported the best accuracy for each model. All GODE models outperformed their corresponding
discrete-layer models, validating the effectiveness of GODE; different ψ functions behaved simi-
larly on our node classification tasks, indicating the continuous-time model is more important than
coupling function ψ.

5.7 RESULTS ON GRAPH CLASSIFICATION TASK

Results for different models on graph classification tasks are summarized in Table 4. We experi-
mented with different structures, including GCN, ChebNet and GIN, and denote the corresponding
GODE models with suffix “-ODE”. Our results demonstrate that GODE models achieved or outper-
formed state-of-the-art models. GODE model with GCN structure generated the highest accuracy
except on the MUTAG dataset; GODE model with GIN structure generated the highest accuracy on
MUTAG. For all experiments, GODE models generated higher or very similar accuracy compared
to their discrete-layer counterparts. This indicates the continuous process model might be important
for graph models. Furthermore, we notice that GODE with simple GCN structures outperformed
networks with complicated structures, such as ChebNet and GIN.

6 CONCLUSIONS

We propose GODE, which enables us to model continuous diffusion process on graphs. For effi-
cient training of GODE models, we propose to perform direct back-prop through ODE solvers to
accurately determine the gradient; we further modify bijective blocks for GODE, so they can be re-
cursively called at a constant memory cost, and can be applied to large graphs. The proposed GODE
is a general framework, which can be used with different GNN structures. We derive the optimiza-
tion scheme from an optimization perspective in theory, and validate the superior performance of
GODE with various experiments.

9

Under review as a conference paper at ICLR 2020

REFERENCES

Uri M Ascher, Steven J Ruuth, and Raymond J Spiteri. Implicit-explicit runge-kutta methods for
time-dependent partial differential equations. Applied Numerical Mathematics, 25(2-3):151–167,
1997.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In NIPS, 2016.

Peter N Brown, George D Byrne, and Alan C Hindmarsh. Vode: A variable-coefficient ode solver.
SIAM, 1989.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible
architectures for arbitrarily deep residual neural networks. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differ-
ential equations. In Advances in neural information processing systems, pp. 6571–6583, 2018.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foundations and Trends R© in
Signal Processing, 7(3–4):197–387, 2014.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Laurent et al Dinh. Density estimation using real nvp. arXiv, 2016.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. arXiv preprint
arXiv:1904.01681, 2019.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. In Advances in Neural Information Processing Systems, pp. 6530–6539,
2017.

Mark I Freidlin and Alexander D Wentzell. Diffusion processes on graphs and the averaging princi-
ple. The Annals of probability, 1993.

Amir Gholami, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-efficient
gradients for neural odes. arXiv preprint arXiv:1902.10298, 2019.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual net-
work: Backpropagation without storing activations. In Advances in neural information processing
systems, pp. 2214–2224, 2017.

Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
2017.

10

Under review as a conference paper at ICLR 2020

Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan D Wegner, Konrad Schindler, and Marc Polle-
feys. Semantic3d. net: A new large-scale point cloud classification benchmark. arXiv preprint
arXiv:1704.03847, 2017.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowledge trans-
fer for out-of-knowledge-base entities: A graph neural network approach. arXiv preprint
arXiv:1706.05674, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163, 2015.

Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications.
Neural networks, 13(4-5):411–430, 2000.

Jörn-Henrik Jacobsen, Arnold Smeulders, and Edouard Oyallon. i-revnet: Deep invertible networks.
arXiv preprint arXiv:1802.07088, 2018.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
NIPS, 2018.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved variational inference with inverse autoregressive flow. In Advances in neural information
processing systems, pp. 4743–4751, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Risi Imre Kondor and John Lafferty. Diffusion kernels on graphs and other discrete structures. In
ICML, 2002.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

László Lovász et al. Random walks on graphs: A survey. Combinatorics, Paul erdos is eighty, 2(1):
1–46, 1993.

Yiping et al Lu. Beyond finite layer neural networks: Bridging deep architectures and numerical
differential equations. arXiv, 2017.

William Edmund Milne and WE Milne. Numerical solution of differential equations. 1953.

Federico et al Monti. Geometric deep learning on graphs and manifolds using mixture model cnns.
In CVPR, 2017.

R-E Plessix. A review of the adjoint-state method for computing the gradient of a functional with
geophysical applications. Geophysical Journal International, 167(2):495–503, 2006.

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge, 2018.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. arXiv,
2015.

11

Under review as a conference paper at ICLR 2020

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations
by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive
Science, 1985.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Paul Stapor, Fabian Froehlich, and Jan Hasenauer. Optimization and uncertainty analysis of ode
models using second order adjoint sensitivity analysis. BioRxiv, pp. 272005, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536, 2018b.

Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang, and Stephen Lin. Graph
embedding and extensions: A general framework for dimensionality reduction. IEEE transactions
on pattern analysis and machine intelligence, 29(1):40–51, 2006.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In ACM KDD, 2015.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
networks: A review of methods and applications. arXiv preprint arXiv:1812.08434, 2018.

12

Under review as a conference paper at ICLR 2020

A DATASETS

We perform experiments on various datasets, including citation networks (Cora, CiteSeer, PubMed),
social networks (COLLAB, IMDB-BINARY, REDDIT-BINARY), and bioinformatics datasets
(MUTAG, PROTEINS). Details of each dataset are summarized in Table 1.

Table 1: Statistics of datasets
Dataset Graphs Nodes Edges Features Classes Label rate
Cora 1 2,708 5,278 1,433 7 0.052
CiteSeer 1 3,327 4,552 3,703 6 0.036
PubMEd 1 19,717 44,324 500 3 0.003
MUTAG 188 17.93 19.79 7 2 0.8
PROTEINS 1,113 39.06 72.82 3 2 0.8
COLLAB 5,000 74.49 2,457.22 - 3 0.8
IMDB-BINARY 1,000 19.77 96.53 - 2 0.8
REDDIT-BINARY 200 429.63 497.76 - 2 0.8

B FULL ALGORITHM TO TRAIN A GODE MODEL WITH DIRECT BACK-PROP

Algorithm 2: Full algorithm to use memory-efficient bijective block in GODE with direct back-
propagation

Define model dz(t)
dt = f(z(t), t), where f is a bijective block in Eq. equation 11. Denote

integration time as T .

Forward
t = 0, i = 0.
While t < T :

Determine time point ti
Evaluate z(ti) with ODE solver. Each call of f uses Algo. 1.
t← ti, i← i+ 1

return z(T)

Backward
For ti in {tN , tN−1, ..., t1, t0} :

Determine a(ti) = ∂L
∂z(ti)

and ∂z(ti)
∂θ as Algo. 1.

dL
dθ =

∑N
i=1 ai

∂z(ti)
∂θ

return dL
dθ

C EXPERIMENTS ON CIFAR

We demonstrate that accurate gradient calculation is essential for neural ODEs (NODE) in image
classification tasks. We perform experiments on CIFAR10 and CIFAR100. We modify a ResNet18
into a corresponding NODE with the same number of parameters.

Adaptive solvers Fixed-stepsize solver adjoint ResNet18 ResNet50 ResNet101Heun-Euler RK23 RK45 Euler RK2 RK4
Cifar10 4.85 4.92 5.29 5.52 5.27 5.24 19.2 6.98 6.38 6.25
Cifar100 22.66 24.13 23.56 24.44 24.44 24.43 37.6 27.08 25.73 24.84

Table 2: Error rate on test set. Left half are NODE models directly modified from ResNet18, trained with
Heun-Euler solver, but tested with different solvers. Middle is the result when trained and tested with adjoint
method reported by (Gholami et al., 2019). Right half are results from standard ResNet with different depth.

13

Under review as a conference paper at ICLR 2020

For the training of NODE, we use the checkpoint scheme (Gholami et al., 2019) which can accu-
rately calculate gradient, but we make two important modifications: (1) We implement ODE solvers
both with fixed stepsize and adaptive stepsize. For adaptive ODE solvers, the stepsize (including
initial stepsize) is fully automatically determined by the solver. (2) For adaptive solvers, the step-
size is recursively adjusted until the error is below a threshold. Therefore, there are many steps of
trial-and-error on stepsize before a step is taken. We discard the computation graph for all the trial-
and-error processes, and only keep the last step. This simplifies the computation graph for accurate
gradient estimation.

Adaptive solvers include Heun-Euler, RK23 and RK45; fixed-stepsize solvers include Euler, RK2
and RK4. We directly modify a ResNet18 into a NODE, and train it with Heun-Euler solver. For the
same model trained with Heun-Euler solver, we test it with different solvers. Results are summarized
in Table. 2.

Our NODE18 has the same number of parameters as ResNet18, and achieves 4.85% test error on CI-
FAR10 and 22.66% test error on CIFAR100, outperforming standard ResNet50 and ResNet101. Ad-
joint method generates the highest error, due to the numerical error when solving the ODE backward-
in-time. Furthermore, NODE trained with our method is robust to ODE solvers. NODEs are trained
with Heun-Euler solvers, and their performance has minimal drop when tested with different solvers,
as shown in Table. 2. Each solver corresponds to a different discretization thus a different model
structure of discrete depths, but the robustness to solvers implies some invariance property of ODE
networks. This could give some insight into theoretical analysis on neural networks.

D PROOF FOR PROPOSITION 1

Proposition 1 For an ODE in the form dz(t)
dt = f(z(t), t), denote the Jacobian of f as Jf . If this

ODE is stable both in forward-time and reverse-time, then Re(λi(Jf)) = 0 ∀i, where λi(Jf) is the
ith eigenvalue of Jf , and Re(λ) is the real part of λ.

Proof Denote s = T − t, where T is the end time. Notice that the reverse-time in t is equivalent
to forward-time in s.
Therefore, we have forward-time ODE:

dz(t)

dt
= f(z(t), t) (1)

and reverse-time ODE:
dz(s)

ds
= −f(z(s), s) = g(z(s), s) (2)

Therefore, we have λ(Jf) = −λ(Jg). For both forward-time and reverse-time ODE to be stable,
the eigenvalues of J need to have non-positive real part.
Therefore

Reλi(Jf) ≤ 0, Reλi(Jg) = −Reλi(Jf) ≤ 0, ∀i (3)
The only solution is

Reλi(Jg) = −Reλi(Jf) = 0, ∀i (4)

E PROOF FOR THEOREM 1

Theorem 1 For bijective block whose forward and reverse mappings are defined as

Forward(x1, x2) =

 y2 = ψ
(
x2, F (x1)

)
y1 = ψ

(
x1, G(y2)

) Reverse(y1, y2) =

 x1 = ψ−1
(
y1, G(y2)

)
x2 = ψ−1

(
y2, F (x1)

)
If ψ(α, β) is a bijective function w.r.t α when β is given, then the block is a bijective mapping.

Proof To prove the forward mapping is bijective, it is equivalent to prove the mapping is both
injective and surjective.

14

Under review as a conference paper at ICLR 2020

Injective We need to prove, if Forward(x1, x2) = Forward(x3, x4), then x1 = x3, x2 = x4.

The assumption above is equivalent to

Forward(x1, x2) = Forward(x3, x4) ⇐⇒ y2 = ψ(x2, F (x1)) = ψ(x4, F (x3)) (5)
ψ(x1, G(y2)) = ψ(x3, G(y2)) (6)

Since ψ(α, β) is bijective w.r.t α when β is given, from Eq.(6), we have x1 = x3.
Similarly, condition on x1 = x3 and Eq.(5), using bijective property of ψ, we have x2 = x4.
Therefore, the mapping is injective.

Surjective We need to prove ∀ [y1, y2], ∃ [x1, x2] s.t. Forward(x1, x2) = [y1, y2].

Given y1, y2, we construct

x1 = ψ−1
(
y1, G(y2)

)
, x2 = ψ−1

(
y2, F (x1)

)
(7)

Then for the forward function, given bijective property of ψ, apply Forward and Reverse defined
in the proposition statement,

z2 = ψ(x2, F (x1)) = ψ
(
ψ−1

(
y2, F (x1)

)
, F (x1)

)
= y2 (8)

z1 = ψ(x1, G(y2)) = ψ
(
ψ−1

(
y1, G(y2)

)
, G(y2)

)
= y1 (9)

Therefore we construct x1, x2 s.t. Forward(x1, x2) = [y1, y2].
Therefore the mapping is surjective.
Therefore is bijective.

F DERIVATION OF GRADIENT IN DISCRETE CASE

We use a figure to demonstrate the computation graph, and derive the gradient from the computation
graph.

The loss is L, forward pass is denoted with black arrows, gradient back-propagation is shown with
red arrows. We use p to denote each path from θ to L, corresponding to all paths in red that goes
from L to θ.

dL

dθ
=
∑
p

∂Lp
∂θ

=
∑
i

∂L

∂z(ti)

∂z(ti)

∂θ
=
∑
i

ai
∂z(ti)

∂θ
(10)

ai =
∂L

∂z(ti)
=

∂L

∂z(ti+1)

∂z(ti+1)

∂z(ti)
= ai+1

∂z(ti+1)

∂z(ti)
(11)

15

Under review as a conference paper at ICLR 2020

G DERIVATION OF PARAMETER GRADIENTS IN CONTINUOUS CASE

In this section we derive the gradient of parameters in an neural-ODE model from an optimization
perspective. Then we extend from continuous cases to discrete cases.

Notations With the same notations as in the main paper, we use z(t) to denote hidden states z at
time t. Denote parameters as θ, and input as x, target as y, and predicted output as ŷ. Denote the
loss as J(ŷ, y). Denote the integration time as 0 to T .

Problem setup The continuous model is defined to follow an ODE:

dz(t)

dt
= f(z(t), t, θ), s.t. z(0) = x (12)

We assume f is differentiable, since f is represented by a neural network in our case. The forward
pass is defined as:

ŷ = z(T) = z(0) +

∫ T

0

f(z(t), t, θ)dt (13)

The loss function is defined as:
J(ŷ, y) = J(z(T), y) (14)

We formulate the training process as an optimization problem:

argminθ
1

N

N∑
i=1

J(ŷi, yi) s.t.
dz(t)

dt
= f(z(t), t, θ), zi(0) = xi (15)

For simplicity, Eq. 15 only considers one ODE block. In the case of multiple blocks, z(T) is the
input to the next ODE block. As long as we can derive dLoss

dθ and dLoss
dz(0) when dLoss

dz(T) is given, the
same analysis here can be applied to the case with a chain of ODE blocks.

Lagrangian Multiplier Method We use the Lagrangian Multiplier Method to solve the problem
defined in Eq. 15. For simplicity, only consider one example (can be easily extended to multiple
examples cases), the Lagrangian is

L = J(z(T), y) +

∫ T

0

λ(t)[
dz(t)

dt
− f(z(t), t, θ)]dt (16)

Karush-Kuhn-Tucker (KKT) conditions are necessary conditions for an solution to be optimal. In
the following sections we start from the KKT condition and derive our results.

Derivative w.r.t. λ At optimal point, we have δL
δλ = 0. Note that λ is a function of t, we derive

the derivative from calculus of variation.

Consider a cotninuous and differentiable perturbation λ(t) on λ(t), and a scalar ε, L now becomes
a function of ε,

L(ε) = J(z(0) +

∫ T

0

f(z(t), t, θ), y) +

∫ T

0

(λ(t) + ελ(t))[
dz(t)

dt
− f(z(t), t, θ)]dt (17)

It’s easy to check the conditions for Leibniz integral rule, and we can switch integral and differenti-
ation, thus:

dL

dε
=

∫ T

0

λ(t)[
dz(t)

dt
− f(z(t), t, θ)]dt (18)

At optimal λ(t), dLdε |ε=0 = 0 for all continuous differentiable λ(t).

Therefore,
dz(t)

dt
− f(z(t), t, θ) = 0, ∀t ∈ (0, T) (19)

16

Under review as a conference paper at ICLR 2020

Derivative w.r.t z Consider perturbation z(t) on z(t), with scale ε. With similar analysis:

L(ε) = J(z(T) + εz(T), y) +

∫ T

0

λ(t)[
dz(t) + εz(t)

dt
− f(z(t) + εz(t), t, θ)]dt (20)

Take derivative w.r.t ε, it’s easy to check conditions for Leibniz integral rule are satisfied, when f
and z(t) are Lipschitz continuous differentiable functions:

(1) f(z(t), t, θ) is a Lebesgue-integrable function of θ for each z(t) ∈ Rd, since we use a neural
network to represent f , which is continuous and differentiable almost everywhere.

(2) for almost all θ, ∂f(z(t),t,θ)∂z(t) exists for almost all x ∈ Rd.

(3) ∂f(z(t),t,θ)∂z(t) is bounded by g(θ) for all z(t) for almost all θ.

Then we calculate dL(ε)
d , note that we can switch integral and derivative:

dL

dε
|ε=0 =

∂J

∂z(T)
z(T) +

d

dε

∫ T

0

λ(t)[
dz(t) + εz(t)

dt
− f(z(t) + εz(t), t, θ)]dt (21)

=
∂J

∂z(T)
z(T) +

∫ T

0

λ(t)[
dz(t)

dt
− ∂f(z(t), t, θ)

∂z(t)
z(t)]dt (22)

=
∂J

∂z(T)
z(T) +

∫ T

0

[λ(t)
dz(t)

dt
+
dλ(t)

dt
z(t)− dλ(t)

dt
z(t)− λ(t)∂f(z(t), t, θ)

∂z(t)
z(t)]dt

(23)

=
∂J

∂z(T)
z(T) + λ(t)z(t)|T0 −

∫ T

0

z(t)[
dλ(t)

dt
+ λ(t)

∂f(z(t), t, θ)

∂z(t)
]dt (24)

=
∂J

∂z(T)
z(T) + λ(T)z(T)− λ(0)z(0)−

∫ T

0

z(t)[
dλ(t)

dt
+ λ(t)

∂f(z(t), t, θ)

∂z(t)
]dt (25)

= (
∂J

∂z(T)
+ λ(T))z(T)− λ(0)z(0)−

∫ T

0

z(t)[
dλ(t)

dt
+ λ(t)

∂f(z(t), t, θ)

∂z(t)
]dt (26)

Since the initial condition z(0) = x is given, perturbation z(0) at t = 0 is 0, then we have:

dL

dε
|ε=0 = (

∂J

∂z(T)
+ λ(T))z(T)−

∫ T

0

z(t)[
dλ(t)

dt
+ λ(t)

∂f(z(t), t, θ)

∂z(t)
]dt = 0 (27)

for any z(t) s.t. z(0) = 0 and z(t) is differentiable.

The solution is:
∂J

∂z(T)
+ λ(T) = 0 (28)

dλ(t)

dt
+ λ(t)

∂f(z(t), t, θ)

∂z(t)
= 0 ∀t ∈ (0, T) (29)

Derivative w.r.t θ From Eq. 16,

dL

dθ
= −

∫ T

0

λ(t)
∂f(z(t), t, θ)

∂θ
dt (30)

To sum up, first solve the ODE forward-in-time with Eq. 19, then determine the boundary condition
by Eq. 28, then solve the ODE backward with Eq. 29, and finally calculate the gradient with Eq. 30.
In fact λ corresponds to the negative adjoint.

17

Under review as a conference paper at ICLR 2020

From continuous to discrete case To derive corresponding results in discrete cases, we need to
replace all integration with finite sum.

In discrete cases, the ODE condition turns into:

zi+1 − zi
ti+1 − ti

= f(zi, ti, θ) (31)

from Eq. 31, we can get:

∂L

∂zi
=

∂L

∂zi+1

∂zi+1

∂zi
=

∂L

∂zi+1
(I +

∂f(zi, ti, θ)

∂zi
(ti+1 − ti)) (32)

Re-arranging terms we have:

[(− ∂L

∂zi+1
)− (− ∂L

∂zi
)]/[ti+1 − ti] + (− ∂L

∂zi+1
)
∂f(zi, ti, θ)

∂zi
= 0 (33)

which is the discrete version of Eq. 29. Which also corresponds to our analysis in Eq. 10 and 11.

18

	Introduction
	Related Works
	Graph Neural Networks
	Neural Networks and Differential Equations
	Bijective Blocks

	Graph Ordinary Differential Equations
	Message Passing in GNN
	From Discrete Models to Continuous Models

	Training of GODE
	Back-prop with Adjoint Method is Sensitive to Numerical Error
	Direct Back-propagation through ODE Solver
	Memory-efficient Bijective Blocks
	Bijective Blocks
	Backprop without storing activation

	Memory-efficient Direct Back-prop through ODE Solver

	Experiments
	Datasets
	Model Structures
	Training Schemes and Evaluation Metrics
	Comparison of Back-propagation Methods
	Memory Efficiency
	General Bijective Blocks
	Results on Graph Classification Task

	Conclusions
	Datasets
	Full algorithm to train a GODE model with direct back-prop
	Experiments on CIFAR
	Proof for Proposition 1
	Proof for Theorem 1
	Derivation of Gradient in Discrete case
	Derivation of parameter gradients in Continuous case

