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ABSTRACT

Deep image prior (DIP) (Ulyanov et al., 2018), which utilizes a deep convolutional
network (ConvNet) structure itself as an image prior, has attracted huge attentions
in computer vision community. It empirically shows the effectiveness of Con-
vNet structure for various image restoration applications. However, why the DIP
works so well is still unknown, and why convolution operation is essential for
image reconstruction or enhancement is not very clear. In this study, we tackle
these questions. The proposed approach is dividing the convolution into “delay-
embedding” and “transformation (i.e., encoder-decoder)”, and proposing a simple,
but essential, image/tensor modeling method which is closely related to dynamical
systems and self-similarity. The proposed method named as manifold modeling
in embedded space (MMES) is implemented by using a novel denoising-auto-
encoder in combination with multi-way delay-embedding transform. In spite of
its simplicity, the image/tensor completion and super-resolution results of MMES
are quite similar even competitive to DIP in our extensive experiments, and these
results would help us for reinterpreting/characterizing the DIP from a perspective
of “low-dimensional patch-manifold prior”.

1 INTRODUCTION

The most important piece of information for image/tensor restoration would be the “prior” which
usually converts the optimization problems from ill-posed to well-posed, and/or gives some robust-
ness for specific noises and outliers. Many priors were studied in computer science problems such as
low-rank representation (Pearson, 1901; Hotelling, 1933; Hitchcock, 1927; Tucker, 1966), smooth-
ness (Grimson, 1981; Poggio et al., 1985; Li, 1994), sparseness (Tibshirani, 1996), non-negativity
(Lee & Seung, 1999; Cichocki et al., 2009), statistical independence (Hyvarinen et al., 2004), and so
on. Particularly in today’s computer vision problems, total variation (TV) (Guichard & Malgouyres,
1998; Vogel & Oman, 1998), low-rank representation (Liu et al., 2013; Ji et al., 2010; Zhao et al.,
2015; Wang et al., 2017), and non-local similarity (Buades et al., 2005; Dabov et al., 2007) priors
are often used for image modeling. These priors can be obtained by analyzing basic properties of
natural images, and categorized as “unsupervised image modeling”.

By contrast, the deep image prior (DIP) (Ulyanov et al., 2018) has been come from a part of “super-
vised” or “data-driven” image modeling framework (i.e., deep learning) although the DIP itself is
one of the state-of-the-art unsupervised image restoration methods. The method of DIP can be sim-
ply explained to only optimize an untrained (i.e., randomly initialized) fully convolutional generator
network (ConvNet) for minimizing squares loss between its generated image and an observed image
(e.g., noisy image), and stop the optimization before the overfitting. Ulyanov et al. (2018) explained
the reason why a high-capacity ConvNet can be used as a prior by the following statement: Net-
work resists “bad” solutions and descends much more quickly towards naturally-looking images,
and its phenomenon of “impedance of ConvNet” was confirmed by toy experiments. However, most
researchers could not be fully convinced from only above explanation because it is just a part of
whole. One of the essential questions is why is it ConvNet? or in more practical perspective, to
explain what is “priors in DIP” with simple and clear words (like smoothness, sparseness, low-rank
etc) is very important.

In this study, we tackle the question why ConvNet is essential as an image prior, and try to translate
the “deep image prior” with words. For this purpose, we divide the convolution operation into
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Figure 1: Comparison of typical auto-encoder ConvNet and the proposed MMES network.

“embedding” and “transformation” (see Fig. 8 in Appendix). Here, the “embedding” stands for
delay/shift-embedding (i.e., Hankelization) which is a copy/duplication operation of image-patches
by sliding window of patch size (τ, τ). The embedding/Hankelization is a preprocessing to capture
the delay/shift-invariant feature (e.g., non-local similarity) of signals/images. This “transformation”
is basically linear transformation in a simple convolution operation, and it also indicates some non-
linear transformation from the ConvNet perspective.

To simplify the complicated “encoder-decoder” structure of ConvNet used in DIP, we consider
the following network structure: Embedding H (linear), encoding φr (non-linear), decoding ψr
(non-linear), and backward embedding H† (linear) (see Fig. 1). Note that its encoder-decoder part
(φr, ψr) is just a simple multi-layer perceptron along the filter domain (i.e., manifold learning), and
it is sandwitched between forward and backward embedding (H,H†). Hence, the proposed network
can be interpreted by Manifold Modeling in Embedded Space (MMES). The proposed MMES has
a high interpretability while keeping a essential ConvNet structure. Some parameters τ and r in
MMES are corresponded with a kernel size and a filter size in ConvNet.

When we set the horizontal dimension of hidden tensor L with r, each τ2-dimensional fiber in
H, which is a vectorization of each (τ, τ)-patch of an input image, is encoded into r-dimensional
space. Note that the volume of hidden tensor L looks to be larger than that of input/output image,
but representation ability of L is much lower than input/output image space since the first/last tensor
(H,H′) must have Hankel structure (i.e., its representation ability is equivalent to image) and the
hidden tensor L is reduced to lower dimensions from H. Here, we assume r < τ2, and its low-
dimensionality indicates the existence of similar (τ, τ )-patches (i.e., self-similarity) in the image,
and it would provide some “impedance” which passes self-similar patches and resist/ignore others.
Each fiber of Hidden tensor L represents a coordinate on the patch-manifold of image.

It should be noted that the MMES network is a special case of deep neural networks. In fact,
the proposed MMES can be considered as a new kind of auto-encoder (AE) in which convolution
operations have been replaced by Hankelization in pre-processing and post-processing. Compared
with ConvNet, the forward and backward embedding operations can be implemented by convolution
and transposed convolution with one-hot-filters (see Fig. 11 in Appendix for details). Note that the
encoder-decoder part can be implemented by multiple convolution layers with kernel size (1,1) and
non-linear activations. In our model, we do not use convolution explicitly but just do linear transform
and non-linear activation for “filter-domain” (i.e., horizontal axis of tensors in Fig. 1).

The contributions in this study can be summarized as follow: (1) An interpretable approach of
image/tensor modeling is proposed which translates the ConvNet, (2) effectiveness of the proposed
method and similarity to the DIP are demonstrated in experiments, and (3) most importantly, there
is a prospect for interpreting/characterizing the DIP as “low-dimensional patch-manifold prior”.

2



Under review as a conference paper at ICLR 2020

patch-manifoldreconstructed imageobserved image

optimize embed

represent

Figure 2: Conceptual illustration of MMES for a image inpainting task.

2 RELATED WORKS

Note that the idea of low-dimensional patch manifold itself has been proposed by Peyre (2009) and
Osher et al. (2017). Peyre had firstly formulated the patch manifold model of natural images and
solve it by dictionary learning and manifold pursuit. Osher et al. formulated the regularization
function to minimize dimension of patch manifold, and solved Laplace-Beltrami equation by point
integral method. In comparison with these studies, we decrease the dimension of patch-manifold by
utilizing AE shown in Fig. 1.

A related technique, low-rank tensor modeling in embedded space, has been studied recently by
Yokota et al. (2018). However, the modeling approaches here are different: multi-linear vs non-
linear manifold. Thus, our study would be interpreted as manifold version of (Yokota et al., 2018)
in a perspective of tensor completion methods. Note that Yokota et al. (2018) applied their model
for only tensor completion task. By contrast, we investigate here both tensor completion and super-
resolution tasks.

Another related work is devoted to group sparse representation (GSR) (Zhang et al., 2014a). The
GSR is roughly characterized as a combination of similar patch-grouping and sparse modeling which
is similar to the combination of embedding and manifold-modeling. However, the computational
cost of similar patch-grouping is obviously higher than embedding, and this task is naturally included
in manifold learning.

The main difference between above studies and our is the motivation: Essential, interpretable, and
simple image modeling which can translate the ConvNet/DIP. The proposed MMES has many con-
nections with ConvNet/DIP such as embedding, non-linear mapping, and the training with noise.

3 MANIFOLD MODELING IN EMBEDDED SPACE

Here, on the contrary to Section 1, we start to explain the proposed method from the concept of
MMES, and we systematically derive the MMES structure from it. Conceptually, the proposed
tensor reconstruction method can be formulated by

minimize
X

||Y −F(X )||2F ,

s.t. H(X ) = [h1,h2, ...,hT ] =: H, (1)
ht ∈Mr for t = 1, 2, ..., T,

where Y ∈ RJ1×J2×···×JN is an observed corrupted tensor, X ∈ RI1×I2×···×IN is an estimated
tensor, F : RI1×I2×···×IN → RJ1×J2×···×JN is a linear operator which represents the observation
system,H : RI1×I2×···×IN → RD×T is padding and Hankelization operator with sliding window of
size (τ1, τ2, ..., τN ), and we impose each column of matrixH can be sampled from an r-dimensional
manifoldMr in D-dimensional Euclid space (see Appendix B for details). We have r ≤ D. For
simplicity, we puttedD :=

∏
n τn and T :=

∏
n(In+τn−1). For tensor completion task, F := PΩ

is a projection operator onto support set Ω so that the missing elements are set to be zero. For super-
resolution task, F is a down-sampling operator of images/tensors. Fig. 2 shows the concept of
proposed manifold modeling in case of image inpainting (i.e., N = 2). We minimize the distance
between observation Y and reconstruction X with its support Ω, and all patches in X should be
included in some restricted manifoldMr. In other words, X is represented by the patch-manifold,

3



Under review as a conference paper at ICLR 2020

and the property of the patch-manifold can be image priors. For example, low dimensionality of
patch-manifold restricts the non-local similarity of images/tensors, and it would be related with
“impedance” in DIP. We model X indirectly by designing the properties of patch-manifoldMr.

3.1 DEFINITION OF LOW-DIMENSIONAL MANIFOLD

We consider an AE to define the r-dimensional manifold Mr in (
∏
n τn)-dimensional Euclidean

space as follows:

Mr := {ψ̂r(l) | l ∈ Rr}, (ψ̂r, φ̂r) := argmin
(ψr,φr)

T∑
t=1

||ht − ψrφr(ht)||22, (2)

where φr : RD → Rr is an encoder, ψr : Rr → RD is a decoder, and ψ̂rφ̂r : RD → RD is an
auto-encoder constructed from {ht}Tt=1. Note that, in general, the use of AE models is a widely
accepted approach for manifold learning (Hinton & Salakhutdinov, 2006). The properties of the
manifoldMr are determined by the properties of φr and ψr. By employing multi-layer perceptrons
(neural networks) for φr and ψr, encoder-decoder may provide a smooth manifold.

3.2 PROBLEM FORMULATION

In this section, we combine the conceptual formulation (1) and the AE guided manifold constraint to
derive a equivalent more practical optimization problem. First, we redefine a tensor X as an output
of generator:

X :=H†[h1,h2, ...,hT ], where ht ∈Mr

=H†[ψ̂r(l1), ψ̂r(l2), ..., ψ̂r(lT )], (3)

where lt ∈ Rr, and H† is a pseudo inverse of H. At this moment, X is a function of {lt}Tt=1, how-
ever Hankel structure of matrix H can not be always guaranteed under the unconstrained condition
of lt. For guaranteeing the Hankel structure of matrixH , we further transform it as follow:

X :=H†[ψ̂rφ̂r(g1), ψ̂rφ̂r(g2), ..., ψ̂rφ̂r(gT )],

=H†Ar[g1, g2, ..., gT ]

=H†ArH(Z), (4)

where we put Ar : RD×T → RD×T as an operator which auto-encodes each column of a input
matrix with (ψ̂r, φ̂r), and [g1, g2, ..., gT ] as a matrix, which has Hankel structure and is transformed
by Hankelization of some input tensor Z ∈ RI1×I2×···×IN . Note that Z is the most compact
representation for Hankel matrix [g1, g2, ..., gT ]. Eq. (4) describes the MMES network shown in
Fig. 1: H, φ̂r, ψ̂r andH† are respectively corresponding to forward embedding, encoding, decoding,
and backward embedding, where encoder and decoder can be defined e.g. by multi-layer perceptrons
(i.e., repetition of linear transformation and non-linear activation).

From this formulation, Problem (1) is transformed as minimizeZ ||Y − F(H†ArH(Z))||2F , where
Ar is an AE which defines the manifold Mr. In this study, the AE/manifold is learned from an
observed tensor Y itself, thus the optimization problem is finally formulated as

minimize
Z,Ar

||Y −F(H†ArH(Z))||2F︸ ︷︷ ︸
=:Lrec

+λ ||H(Z)−ArH(Z)||2F︸ ︷︷ ︸
=:LAE

, (5)

where we refer respectively the first and second terms by a reconstruction loss and an auto-encoding
loss, and λ > 0 is a trade-off parameter for balancing both losses.

3.3 OPTIMIZATION ALGORITHM

Optimization problem (5) consists of two terms: a reconstruction loss, and an auto-encoding loss.
Hyperparameter λ is set to balance both losses. Basically, λ should be large because auto-encoding
loss should be zero. However, very large λ prohibits minimizing the reconstruction loss, and may
lead to local optima. Therefore, we adjust gradually the value of λ in the optimization process.
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Algorithm 1 Optimization algorithm for tensor reconstruction
input: Y ∈ RJ1×···×JN (corrupted tensor), F , τ , r, σ;
initialize: Z ∈ RI1×···×IN , auto-encoder Ar, λ = 5.0;
repeat
H ← H(Z) ∈ RD×T with τ ;
generate noise E ∈ RD×T with σ;
LAE ← ||H −Ar(H +E)||2F ;
Lrec ← 1

D ||Y −F(H†Ar(H +E))||2F ;
update (Z,Ar) by Adam for Lrec + λLAE;
if Lrec < LAE then λ← 1.1λ; else λ← 0.99λ;

until converge
output: X̂ = H†ArH(Z) ∈ RI1×···×IN (reconstructed tensor);

Signal space

Embedded space

Original Corrupted
(incomplete&noisy)

Reconstructed
subspace modeling      manifold modeling

Figure 3: Time series signal recovery of subspace and manifold models in embedded space.

Algorithm 1 shows an optimization algorithm for tensor reconstruction and/or enhancement. For
AE learning, we employs a strategy of denoising-auto-encoder (see Appendix in detail). Adaptation
of λ is just an example, and it can be modified appropriately with data. Here, the trade-off parameter
λ is adjusted for keeping Lrec > LAE, but for no large gap between both losses. By exploiting the
convolutional structure ofH andH† (see Appendix B.1), the calculation flow of Lrec and LAE can be
easily implemented by using neural network libraries such as TensorFlow. We employed Adam
(Kingma & Ba, 2014) optimizer for updating (Z,Ar).

4 EXPERIMENTS

Here, we show the selective experimental results to demonstrate the close similarity and some slight
differences between DIP and MMES. First, toy examples with a time-series signal and a gray-scale
image were recovered by the proposed method to show its basic behaviors. Thereafter, we show the
main results by comparison with DIP and other selective methods on color-image inpainting, and
super-resolution tasks. Optional results of optimization behavior, hyper-parameter sensitivity, and
volumetric/3D image completion are shown in Appendix.

4.1 TOY EXAMPLES

In this section, we apply the proposed method into a toy example of signal recovery. Fig. 3 shows
a result of this experiment. A one-dimensional time-series signal is generated from Lorentz sys-
tem, and corrupted by additive Gaussian noise, random missing, and three block occlusions. The
corrupted signal was recovered by the subspace modeling (Yokota et al., 2018), and the proposed
manifold modeling in embedded space. Window size of delay-embedding was τ = 64, the lowest
dimension of autoencoder was r = 3, and additive noise standard deviation was set to σ = 0.05.
Manifold modeling catched the structure of Lorentz attractor much better than subspace modeling.

Fig. 4 visualizes a two-dimensional (8, 8)-patch manifold learned by the proposed method from a
50% missing gray-scale image of ‘Lena’. For this figure, we set τ = [8, 8], r = 2, σ = 0.05.
Similar patches are located near each other, and the smooth change of patterns can be observed. It
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Figure 4: Distribution of two-dimensional (8,8)-patches on manifold learned from a 50% missing
gray-scale image of ‘Lena’.
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Figure 5: Comparison of performance by averages of PSNR and SSIM for color image completion
and super-resolution tasks with various settings.

implies the relationship between non-local similarity based methods (Buades et al., 2005; Dabov
et al., 2007; Gu et al., 2014; Zhang et al., 2014a), and the manifold modeling (i.e., DAE) plays a
key role of “patch-grouping” in the proposed method. The difference from the non-local similarity
based approach is that the manifold modeling is “global” rather than “non-local” which finds similar
patches of the target patch from its neighborhood area.

4.2 COLOR IMAGE COMPLETION, ESPECIALLY FOR EXTREMELY HIGH NUMBER OF MISSING
PIXELS

In this section, we compare performance of the proposed method with several selected unsupervised
image inpainting methods: low-rank tensor completion (HaLRTC) (Liu et al., 2013), parallel low-
rank matrix factorization (TMac) (Xu et al., 2015), tubal nuclear norm regularization (tSVD) (Zhang
et al., 2014b), Tucker decomposition with rank increment (Tucker inc.) (Yokota et al., 2018), low-
rank and total-variation (LRTV) regularization (Yokota & Hontani, 2017; 2019), smooth PARAFAC
tensor completion (SPC) (Yokota et al., 2016), GSR (Zhang et al., 2014a), multi-way delay embed-
ding based Tucker modeling (MDT-Tucker) (Yokota et al., 2018), and DIP (Ulyanov et al., 2018).
Implementation and detailed hyper-parameter settings are explained in Appendix. Basically, we
carefully tuned the hyper-parameters for all methods to perform the best scores of peak-signal-to-
noise ratio (PSNR) and structural similarity (SSIM).

Fig. 5(a) shows the eight test images and averages of PSNR and SSIM for various missing ratio
{50%, 70%, 90%, 95%, 99%} and for selective competitive methods. The proposed method is quite
competitive with DIP. Fig. 6 shows the illustration of results. The 99% of randomly selected voxels
are removed from 3D (256,256,3)-tensors, and the tensors were recovered by various methods. Ba-
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Figure 6: Illustration of image inpainting results from nature images with 99% missing pixels by
HaLTRC, TMac, tSVD, Tucker inc., LRTV, SPC, GSR, MDT-Tucker, DIP and the proposed MMES.
Note that DIP and MMES approaches provide the best performance in comparison to state-of-the-
arts methods.

sically low-rank priors (HaLRTC, TMac, tSVD, Tucker) could not recover such highly incomplete
image. In piecewise smoothness prior (LRTV), over-smoothed images were reconstructed since
the essential image properties could not be captured. There was a somewhat jump from them by
SPC (i.e., smooth prior of basis functions in low-rank tensor decomposition). MDT-Tucker further
improves it by exploiting the shift-invariant multi-linear basis. GSR nicely recovered the global
pattern of images but details were insufficient. Finally, the reconstructed images by DIP and MMES
recovered both global and local patterns of images.

These are quite important results to explain DIP with words. It shows the non-local similarity prior
is closely related with DIP, and low-rank, piecewise smoothness are not. Especially, the results by
MMES were quite similar with those of DIPand the low-dimensional patch-manifold prior is the
strongest candidate for explaining DIP with words.

4.3 COLOR IMAGE SUPERRESOLUTION

In this section, we compare the proposed method with selected unsupervised image super-resolution
methods: Bicubic interpolation, GSR (Zhang et al., 2014a), and DIP (Ulyanov et al., 2018). Imple-
mentation and detailed hyper-parameter settings are explained in Appendix. Basically, we carefully
tuned the hyper-parameters for all methods to perform the best scores of PSNR and SSIM.

Tab. 5(b) shows values of PSNR and SSIM of the computer simulation results. We used three
(256,256,3) color images, and six (512,512,3) color images. Super resolution methods scaling up
them from four or eight times down-scaled images of them with Lanczos2 kernels. According to this
quantitative evaluation, bicubic interpolation was clearly worse than others. Basically, GSR, DIP,
and MMES were very competitive. In detail, DIP was slightly better than GSR, and the proposed
MMES was slightly better than DIP. More detailed PSNR/SSIM values are given by Table 2 in
Appendix. Fig. 7 shows selected high resolution images reconstructed by four super-resolution
methods. In general, bicubic method reconstructed blurred images and these were visually worse
than others. GSR results had smooth outlines in all images, but these were slightly blurred. DIP
reconstructed visually sharp images but these images had jagged artifacts along the diagonal lines.
The proposed MMES reconstructed sharp and smooth outlines.

These results indicate that the DIP is somewhat unstable. It possibly come from the complicated
structure design of ConvNet, or the timing of early stopping. By contrast, the structure of MMES is
quite simple, and the solution of MMES is given as convergent point without using early stopping.
These are important merits of MMES including its explainability.
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Figure 7: Comparison of our approach with other methods for super-resolution task. The first line
‘Leaves’ were up-scaled from (64,64,3) to (256,256,3), and the second line ‘Airplane’ was up-scaled
from (64,64,3) to (512,512,3).

5 DISCUSSIONS AND CONCLUSIONS

A beautiful manifold representation of complicated signals in embedded space has been originally
discovered in a study of dynamical system analysis (i.e., chaos analysis) for time-series signals
(Packard et al., 1980). After this, many signal processing and computer vision applications have
been studied but most methods have considered only linear approximation because of the difficulty
of non-linear modeling (Van Overschee & De Moor, 1991; Szummer & Picard, 1996; Li et al.,
1997; Ding et al., 2007; Markovsky, 2008). However nowadays, the study of non-linear/manifold
modeling has been well progressed with deep learning, and it was successfully applied in this study.
Interestingly, we could apply this non-linear system analysis not only for time-series signals but
also natural color images and tensors (this is an extension from delay-embedding to multi-way shift-
embedding). The best of our knowledge, this is the first study to apply Hankelization with AE into
general tensor data reconstruction.

The interpretability of MMES is higher than recent sophisticated deep learning models, and it keeps
the relationship with ConvNet based on the convolution divided into embedding and transformation.
This helps us to understand how work ConvNet through MMES. Moreover, our experiments showed
an important feature of the patch-manifold reconstruction (see Fig. 4) in ConvNet.

The main proposition of DIP study (Ulyanov et al., 2018) was that there are some image priors
in ConvNet structure itself, however the priors could not be explicitly explained with words. In
this study, we claim that one of the priors in ConvNet structure, which is exploited in DIP, would
be some kind of a “low-dimensional patch-manifold prior” (which may provide the “impedance of
ConvNet”). In the first step of DIP denoising, a randomly initialized low-dimensional manifold is
fitted to the noisy patch point cloud of a corrupted image. In some middle point of error minimiza-
tion, it becomes a manifold which smoothly through the center of patch point cloud, and it is the
early stopping point of DIP. Thereafter, the manifold becomes peaky to fit perfectly the noisy patch
point clould. This is our senario to explain DIP from a perspective of patch-manifold reconstruction.

Our approach provides a deep interpretation of DIP from a perspective of low-dimensional patch-
manifold reconstruction, and support to use DIP in more general applications like tensor/image
reconstruction or enhancement. Moreover, several merits of MMES are also shown such as explain-
ability, simplicity, and non-use of early stopping. Finally, we established bridges between quite
different research areas such as the dynamical system analysis, the deep learning, and the tensor
modeling.

Summarizing this paper, we claim three new contributions. (1) We provided novel interpretation of
DIP via manifold modeling in embedded space. (2) We developed new AE with multi-way delay
embedding transform. (3) We have demonstrated high performance of our AE in image reconstruc-
tion and enhancements.

The proposed method is just a prototype and can be further improved by incorporating other methods
such as regularizations, multi-scale extensions, and adversarial training.
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A HANKELIZATION OF ONE- AND TWO-DIMENSIONAL ARRAYS

For example, Hankelization of one-dimensional array f = [f1, f2, ..., f7] with window size τ = 3
is given by (

f1 f2 f3 f4 f5

f2 f3 f4 f5 f6

f3 f4 f5 f6 f7

)
. (6)

We can see the anti-diagonal elements of above matrix are equivalent. Such matrix is called as
“Hankel matrix”.

For a two-dimensional array (
f11 f12 f13

f21 f22 f23

f31 f32 f33

)
, (7)

we consider unfold of it and inverse folding by

unfold

(
f11 f12 f13

f21 f22 f23

f31 f32 f33

)
=



f11

f21

f31

f12

f22

f32

f13

f23

f33


, and

(
f11 f12 f13

f21 f22 f23

f31 f32 f33

)
= fold



f11

f21

f31

f12

f22

f32

f13

f23

f33


. (8)

The point here is that we scan matrix elements column-wise manner. Hankelization of this two-
dimensional array (matrix) with τ = [2, 2] is given by scanning a matrix with local (2,2)-window
column-wise manner, and unfold and stack each local patch left-to-right. Thus, it is given as

f11

f21

f12

f22


f21

f31

f22

f32


f12

f22

f13

f23


f22

f32

f23

f33


 =


(
f11 f21

f21 f31

) (
f12 f22

f22 f32

)
(
f12 f22

f22 f32

) (
f13 f23

f23 f33

)
 . (9)

We can see that it is not a Hankel matrix. However, it is a “block Hankel matrix” in perspective of
block matrix, a matrix that its elements are also matrices. We can see the block matrix itself is a
Hankel matrix and all elements are Hankel matrices, too. Thus, Hankel matrix is a special case of
block Hankel matrix in case of that all elements are scalar. In this paper, we say simply “Hankel
structure” for block Hankel structure.

Figure 8 shows an illustrative explanation of valid convolution which is decomposed into delay-
embedding/Hankelization and linear transformation. 1D valid convolution of f with kernel h =
[h1, h2, h3] can be provided by matrix-vector product of the Hankel matrix and h. In similar way,
2D valid convolution can be provided by matrix-vector product of the block Hankel matrix and
unfolded kernel.

B MULTIWAY-DELAY EMBEDDING FOR TENSORS

Multiway-delay embedding transform (MDT) is a multi-way generalization of Hankelization pro-
posed by Yokota et al. (2018).

In (Yokota et al., 2018), MDT is defined by using the multi-linear tensor product with multiple
duplication matrices and tensor reshaping. Basically, we use the same operation, but a padding
operation is added. Thus, the multiway-delay embedding used in this study is defined by

H(X ) := unfold(D,T )(padτ (X )×1 S1 · · · ×N SN ), (10)
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Delay-embedding
or Hankelization
+ Linear transform

(1D case)

(2D case)

Figure 8: Decomposition of 1D and 2D convolutions: Valid convolution can be divided into delay-
embedding/Hankelization and linear transformation.

where padτ : RI1×···×IN → R(I1+2(τ1−1))×···×(IN+2(τN−1)) is a N -dimensional reflection padding
operator1 of tensor, unfold(D,T ) : Rτ1(I1+τ1−1)×···×τN (IN+τN−1) → RD×T is an unfolding opera-
tor which outputs a matrix from an input N -th order tensor, and Sn ∈ Rτn(In+τn−1)×(In+2(τn−1))

is a duplication matrix. Fig. 9 shows the duplication matrix with τ .

For example, our Hankelization with reflection padding of f = [f1, f2, ..., f7] with τ = 3 is given
by (

f3 f2 f1 f2 f3 f4 f5 f6 f7

f2 f1 f2 f3 f4 f5 f6 f7 f6

f1 f2 f3 f4 f5 f6 f7 f6 f5

)
. (11)

Fig. 10 shows an example of our multiway-delay embedding in case of second order tensors. The
overlapped patch grid is constructed by multi-linear tensor product with Sn. Finally, all patches are
splitted, lined up, and vectorized.

The Moore-Penrose pseudo inverse ofH is given by

H†(H) = trimτ (fold(D,T )(H)×1 S
†
1 · · · ×N S

†
N ), (12)

whereS†n := (STnSn)−1STn is a pseudo inverse ofSn, fold(D,T ) := unfold−1
(D,T ), and trimτ = pad†τ

is a trimming operator for removing (τn−1) elements at start and end of each mode. Note thatH†◦H
is an identity map, butH ◦H† is not, that is kind of a projection.

B.1 DELAY EMBEDDING USING CONVOLUTION

Delay embedding and its pseudo inverse can be implemented by using convolution with all one-
hot-tensor windows of size (τ1, τ2, ..., τN ). The one-hot-tensor windows can be given by folding a
D-dimensional identity matrix ID ∈ RD×D into ID ∈ Rτ1×···×τN×D. Fig. 11 shows a calculation
flow of multi-way delay embedding using convolution in a case of N = 2. Multi-linear tensor
product is replaced with convolution with one-hot-tensor windows.

1For one dimensional array x = [x1, ..., xI ]
T , we have padτ (x) =

[xτ , ..., x2︸ ︷︷ ︸
τ−1

, x1, ..., xI︸ ︷︷ ︸
I

, xI−1, ..., xI−τ︸ ︷︷ ︸
τ−1

]T .
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Pseudo inverse of the convolution with padding is given by its adjoint operation, which is called as
the “transposed convolution” in some neural network library, with trimming and simple scaling with
D−1.

...

...

Figure 9: Duplication matrix. In case that we have I columns, it consists of (I − τ + 1) identity
matrices of size (τ, τ).

pad ...

vectorize

unfold

...

duplicate

matricize

fold
pseudo inversetrim

Figure 10: Flow of multiway-delay-embedding operation (N = 2).

pad

unfold

convolution

fold

conv_transpose 

division with

trim

...1 1
1

1

filters

Figure 11: Multiway-delay-embedding using convolution (N = 2).

C DESIGN OF AUTO-ENCODER

In this section, we discuss how to design the neural network architecture of auto-encoder for restrict-
ing the manifold Mr. The simplest way is controlling the value of r, and it directly restricts the
dimensionality of latent space. There are many other possibilities: Tikhonov regularization (Good-
fellow et al., 2016), drop-out (Gal & Ghahramani, 2016), denoising auto-encoder (Vincent et al.,
2008), variational auto-encoder (Diederik P Kingma, 2014), adversarial auto-encoder (Makhzani
et al., 2015), alpha-GAN (Rosca et al., 2017), and so on. All methods have some perspective and
promise, however the cost is not low. In this study, we select an attractive and fundamental one:
“denoising auto-encoder”(DAE) (Vincent et al., 2008). The DAE is attractive because it has a strong
relationship with Tikhonov regularization (Bishop, 1995), and decreases the entropy of data (Sonoda
& Murata, 2017). Furthermore, learning with noise is also employed in the deep image prior.

Finally, we designed an auto-encoder with controlling the dimension r and the standard deviation σ
of additive zero-mean Gaussian noise. Fig. 12 shows the illustration of an example of architecture of
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auto-encoder which we used in this study. In this case, it consists of five hidden variables of which
sizes are [D,D, r,D,D] with leaky ReLU activation.

input output

dense layer + leaky relu

dense layer

Figure 12: An example of architecture of auto-encoder.

D A SPECIAL SETTING FOR COLOR-IMAGE RECOVERY

In case of multi-channel or color image recovery case, we use a special setting of generator network
because spacial pattern of individual channels are similar and the patch-manifold can be shared.
Fig. 13 shows an illustration of the auto-encoder shared version of MMES in a case of color image
recovery. In this case, we put three channels of input and each channel input is embedded, indepen-
dently. Then, three block Hankel matrices are concatenated, and auto-encoded simultaneously. In-
verted three images are stacked as a color-image (third-order tensor), and finally color-transformed.
The last color-transform can be implemented by convolution layer with kernel size (1,1), and it is
also optimized as parameters. It should be noted that the input three channels are not necessary to
correspond to RGB, but it would be optimized as some compact color-representation.

embed
auto-encoder

embed
invertinvert

color-adjustment

and normalization

Figure 13: Generator network in a case of color-image recovery.

E OTHER DETAILS OF IMAGE-INPAINTING EXPERIMENTS

Here, we explain detailed experimental settings in Section 4.2.

In this section, we compared performance of the proposed method with several selected unsuper-
vised image inpainting methods: low-rank tensor completion (HaLRTC) (Liu et al., 2013), parallel
low-rank matrix factorization (TMac) (Xu et al., 2015), tubal nuclear norm regularization (tSVD)
(Zhang et al., 2014b), Tucker decomposition with rank increment (Tucker inc.) (Yokota et al.,
2018), low-rank and total-variation (LRTV) regularization2 (Yokota & Hontani, 2017; 2019), smooth
PARAFAC tensor completion (SPC)3 (Yokota et al., 2016), GSR4 (Zhang et al., 2014a), multi-way

2For LRTV, the MATLAB software was downloaded from https://sites.google.com/site/
yokotatsuya/home/software/lrtv_pds

3For SPC, the MATLAB software was downloaded from https://sites.google.com/site/
yokotatsuya/home/software/smooth-parafac-decomposition-for-tensor-completion.

4For GSR, each color channel was recovered, independently, using the MATLAB software downloaded
from https://github.com/jianzhangcs/GSR.
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Table 1: Parameter settings for MMES in image completion experiments
(τ, r) airplane baboon barbara facade house lena peppers saiboat
50 % (16,4) (10,4) (6,4) (10,4) (16,4) (6,4) (6,4) (6,4)
70 % (16,4) (10,4) (6,4) (16,4) (16,4) (6,4) (16,4) (6,4)
90 % (16,4) (4,8) (6,4) (16,4) (16,4) (8,4) (16,4) (4,4)
95 % (16,4) (4,6) (6,4) (16,4) (16,4) (6,8) (16,4) (6,8)
99 % (8,32) (4,4) (6,4) (4,1) (8,16) (10,32) (8,8) (6,4)

delay embedding based Tucker modeling (MDT-Tucker)5 (Yokota et al., 2018), and DIP6 (Ulyanov
et al., 2018).

For this experiments, hyper-parameters of all methods were tuned manually to perform the best peak-
signal-to-noise ratio (PSNR) and for structural similarity (SSIM), although it would not be perfect.
For DIP, we did not try the all network structures with various kernel sizes, filter sizes, and depth.
We just employed “default architecture”, which the details are available in supplemental material7
of (Ulyanov et al., 2018), and employed the best results at the appropriate intermediate iterations in
optimizations based on the value of PSNR. For the proposed MMES method, we adaptively selected
the patch-size τ , and dimension r. Table 1 shows parameter settings of τ = [τ, τ ] and r for MMES.
Noise level of denoising auto-encoder was set as σ = 0.05 for all images. For auto-encoder, same
architecture shown in Fig. 12 was employed. Initial learning rate of Adam optimizer was 0.01 and
we decayed the learning rate with 0.98 every 100 iterations. The optimization was stopped after
20,000 iterations for each image.

F OTHER DETAILS OF SUPER-RESOLUTION EXPERIMENTS

Here, we explain detailed experimental settings in Section 4.3.

In this section, we compare performance of the proposed method with several selected unsuper-
vised image super-resolution methods: bicubic interpolation, GSR8 (Zhang et al., 2014a), and DIP
(Ulyanov et al., 2018).

In this experiments, DIP was conducted with the best number of iterations from {1000, 2000, 3000,
..., 9000}. For four times (x4) up-scaling in MMES, we set τ = 6, r = 32, and σ = 0.1. For eight
times (x8) up-scaling in MMES, we set τ = 6, r = 16, and σ = 0.1. For all images in MMES, the
architecture of auto-encoder consists of three hidden layers with sizes of [8τ2, r, 8τ2]. We assumed
the same Lanczos2 kernel for down-sampling system for all super-resolution methods.

Tab. 2 shows values of PSNR and SSIM of the results. We used three (256,256,3) color images, and
six (512,512,3) color images. Super resolution methods scaling up them from four or eight times
down-scaled images of them. According to this quantitative evaluation, bicubic interpolation was
clearly worse than others. Basically, GSR, DIP, and MMES were very competitive. In detail, DIP
was slightly better than GSR, and the proposed MMES was slightly better than DIP.

G OTHER EXPERIMENTAL RESULTS

G.1 OPTIMIZATION BEHAVIOR

For this experiment, we recovered 50% missing gray-scale image of ‘Lena’. We stopped the opti-
mization algorithm after 20,000 iterations. Learning rate was set as 0.01, and we decayed the learn-

5For MDT-Tucker, the MATLAB software was downloaded from
https://sites.google.com/site/yokotatsuya/home/software/
mdt-tucker-decomposition-for-tensor-completion.

6For DIP, we implemented by ourselves in Python with TensorFlow.
7https://dmitryulyanov.github.io/deep_image_prior
8For GSR, each color channel was recovered, independently, using the MATLAB software downloaded

from https://github.com/jianzhangcs/GSR. We slightly modified its MATLAB code for applying
it to super-resolution task.
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Table 2: Values of PSNR and SSIM in super-resolution task
PSNR / SSIM Bicubic GSR DIP MMES (proposed)
Starfish (64 to 256) 23.98 / .7124 25.73 / .7922 25.79 / .7930 26.18 / .8099
House (64 to 256) 26.21 / .7839 28.05 / .8394 28.33 / .8420 28.79 / .8448
Leaves (64 to 256) 19.10 / .6673 22.60 / .8511 22.54 / .8535 23.96 / .8935
Airplane (128 to 512) 26.30 / .9176 27.74 / .9487 27.49 / .9375 28.40 / .9503
Airplane (64 to 512) 22.93 / .7545 23.79 / .8061 23.83 / .8155 24.10 / .8207
Baboon (128 to 512) 20.61 / .6904 20.93 / .7542 20.52 / .7260 20.92 / .7486
Baboon (64 to 512) 19.38 / .4505 19.61 / .5039 19.64 / .5085 19.64 / .5024
Lena (128 to 512) 28.64 / .9172 30.36 / .9481 29.91 / .9406 29.76 / .9406
Lena (64 to 512) 25.23 / .7710 26.47 / .8271 26.71 / .8340 26.68 / .8327
Monarch (128 to 512) 24.88 / .9322 27.67 / .9679 27.90 / .9576 28.81 / .9686
Monarch (64 to 512) 20.65 / .7697 22.13 / .8393 22.65 / .8594 23.01 / .8627
Peppers (128 to 512) 27.27 / .9392 29.19 / .9642 28.78 / .9578 28.85 / .9584
Peppers (64 to 512) 24.15 / .8173 25.52 / .8753 26.07 / .8904 25.75 / .8794
Sailboat (128 to 512) 24.38 / .8885 25.43 / .9262 25.13 / .9130 25.72 / .9273
Sailboat (64 to 512) 21.22 / .6898 21.94 / .7463 22.32 / .7664 23.37 / .7705
Average 23.66 / .7801 25.14 / .8393 25.19 / .8401 25.53 / .8474

1 iter. 10 iter. 100 iter. 1000 iter. 10000 iter. 20000 iter.

Figure 14: Optimization behavior.

ing rate with 0.98 every 100 iterations. λ was adapted by Algorithm 1 every 10 iterations. Fig. 14
shows optimization behaviors of reconstructed image, reconstruction loss Lrec, auto-encoding loss
LDAE, and trade-off coefficient λ. By using trade-off adjustment, the reconstruction loss and the
auto-encoding loss were intersected around 1,500 iterations, and both losses were jointly decreased
after the intersection point.

G.2 HYPER-PARAMETER SENSITIVITY

We evaluate the sensitivity of MMES with three hyper-parameters: r, σ, and τ . First, we fixed the
patch-size as (8, 8), and dimension r and noise standard deviation σ were varied. Fig. 16 shows
the reconstruction results of a 99% missing image of ‘Lena’ by the proposed method with different
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Original Missing(99%) With noise Without noise

Figure 15: Reconstruction of ‘home’ image by training with/without noise in deep image prior.

settings of (r, σ). The proposed method with very low dimension (r = 1) provided blurred results,
and the proposed method with very high dimension (r = 64) provided results which have many
peaks. Furthermore, some appropriate noise level (σ = 0.05) provides sharp and clean results. For
reference, Fig. 15 shows the difference of DIP optimized with and without noise. From both results,
the effects of learning with noise can be confirmed.

Next, we fixed the noise level as σ = 0.05, and the patch-size were varied with some values of
r. Fig. 17 shows the results with various patch-size settings for recovering a 99% missing image.
The patch sizes τ of (8,8) or (10,10) were appropriate for this case. Patch size is very important
because it depends on the variety of patch patterns. If patch size is too large, then patch variations
might expand and the structure of patch-manifold is complicated. By contrast, if patch size is too
small, then the information obtained from the embedded matrixH is limited and the reconstruction
becomes difficult in highly missing cases. The same problem might be occurred in all patch-based
image reconstruction methods (Buades et al., 2005; Dabov et al., 2007; Gu et al., 2014; Zhang
et al., 2014a). However, good patch sizes would be different for different images and types/levels
of corruption, and the estimation of good patch size is an open problem. Multi-scale approach (Yair
& Michaeli, 2018) may reduce a part of this issue but the patch-size is still fixed or tuned as a
hyper-parameter.

G.3 VOLUMETRIC/3D IMAGE/TENSOR COMPLETION

In this section, we show the results of MR-image/3D-tensor completion problem. The size of MR
image is (109,91,91). We randomly remove 50%, 70%, and 90% voxels of the original MR-image
and recover the missing MR-images by the proposed method and DIP. For DIP, we implemented the
3D version of default architecture in TensorFlow, but the number of filters of shallow layers were
slightly reduced because of the GPU memory constraint. For the proposed method, 3D patch-size
was set as τ = [4, 4, 4], the lowest dimension was r = 6, and noise level was σ = 0.05. Same
architecture shown in Fig. 12 was employed.

Fig. 18 shows reconstruction behavior of PSNR with final value of PSNR/SSIM in this experiment.
From the values of PSNR and SSIM, the proposed MMES outperformed DIP in low-rate missing
cases, and it is quite competitive in highly missing cases. The some degradation of DIP might be
occurred by the insufficiency of filter sizes since much more filter sizes would be required for 3D
ConvNet than 2D ConvNet. Moreover, computational times required for our MMES were signifi-
cantly shorter than that of DIP in this tensor completion problem.
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noise levels of denoising autoencoder
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Figure 16: Performance of reconstruction of color image of ‘Lena’ with 99% pixels missing for
various parameter setting.

(4,4), r=4 (6,6), r=8 (8,8), r=16 (10,10), r=32 (12,12), r=48 (16,16), r=64
PSNR      20.0915         20.6534          20.9763            21.2370         20.4509          19.2145

SSIM        0.5654            0.6372            0.6568              0.6626            0.6545            0.5827

Figure 17: Reconstruction of ‘Lena’ image for various patch sizes τ .

0 5 10 15
Computational time [h]

15

20

25

30

35

PS
N

R
 [d

B]

DIP(50%,31.58/.9475)

DIP(70%,29.76/.9298)

DIP(90%, 26.16 /.8613)

Proposed(50%, 33.38 / .9676 )

Proposed(70%, 30.57 /. 9448 )

Proposed(90%,25.95/ .8636 )

Methods (missing rate,PSNR/SSIM)

Figure 18: Results of MRI completion: Optimization behaviors of PSNR with final values of
PSNR/SSIM by DIP and proposed MMES.

19


	Introduction
	Related works
	Manifold Modeling in Embedded Space
	Definition of low-dimensional manifold
	Problem formulation
	Optimization algorithm

	Experiments
	Toy examples
	Color image completion, especially for extremely high number of missing pixels
	Color image superresolution

	Discussions and Conclusions
	Hankelization of one- and two-dimensional arrays
	Multiway-delay embedding for tensors
	Delay embedding using convolution

	Design of auto-encoder
	A special setting for color-image recovery
	Other details of image-inpainting experiments
	Other details of super-resolution experiments
	Other experimental results
	Optimization behavior
	Hyper-parameter sensitivity
	Volumetric/3D image/tensor completion


