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ABSTRACT

Graph neural networks (GNN) such as GCN, GAT, MoNet have achieved state-
of-the-art results on semi-supervised learning on graphs. However, when the
number of labeled nodes is very small, the performances of GNNs downgrade
dramatically. Self-training has proved to be effective for resolving this issue,
however, the performance of self-trained GCN is still inferior to that of G2G and
DGI for many settings. Moreover, additional model complexity make it more
difficult to tune the hyper-parameters and do model selection. We argue that the
power of self-training is still not fully explored for the node classification task. In
this paper, we propose a unified end-to-end self-training framework called Dynamic
Self-traning, which generalizes and simplifies prior work. A simple instantiation
of the framework based on GCN is provided and empirical results show that our
framework outperforms all previous methods including GNNs, embedding based
method and self-trained GCNs by a noticeable margin. Moreover, compared with
standard self-training, hyper-parameter tuning for our framework is easier.

1 INTRODUCTION

Graphs or networks can be used to model any interactions between entities such as social interactions
(Facebook, Twitter), biological networks (protein-protein interaction), and citation networks. There
has been an increasing research interest in deep learning on graph structured data, e.g., (Bruna et al.,
2014; Defferrard et al., 2016; Monti et al., 2017; Kipf & Welling, 2017; Hamilton et al., 2017;
Velickovic et al., 2018; Tang et al., 2015; Perozzi et al., 2014).

Semi-supervised node classification on graphs is a fundamental learning task with many applications.
Classic methods rely on some underly diffusion process to propagate label information. Recently,
network embedding approaches have demonstrate outstanding performance on node classification
(Tang et al., 2015; Grover & Leskovec, 2016; Bojchevski & Günnemann, 2018). This approach
first learns a lower-dimensional embedding for each node in an unsupervised manner, and then the
embeddings are used to train a supervised classifier for node classification, e.g., logistic regression
or multi-layer perceptron (MLP). Graph neural networks (GNN) are semi-supervised models and
have achieved state-of-the-art performance on many benchmark data sets (Monti et al., 2017; Kipf &
Welling, 2017; Velickovic et al., 2018). GNNs generalize convolution to graph structured data and
typically have a clear advantage when the number of training examples is reasonably large. However,
when there are very few labeled nodes, GNNs is outperformed by embedding based method (as
shown by our experimental results), e.g., G2G from (Bojchevski & Günnemann, 2018) and DGI from
(Veličković et al., 2019).

To overcome this limitation of GCNs (Kipf & Welling, 2017), Li et al. (Li et al., 2018) propose
to apply self-training and co-training techniques (Scudder, 1965). The idea of these techniques
is to augment the original training set by adding in some unlabeled examples together with their
label predictions. Such “pseudo-label” information is either from the base model trained on the
original training set (self-training) or another learning algorithm (co-training). The results from
(Li et al., 2018) demonstrate the effectiveness of co-training and self-training. However, among
the four variants implemented in (Li et al., 2018), there is not a single one that achieves the best
performance across different settings; and from our experiments, G2G and DGI outperforms all the
four variants when the number of labels from each class is less than 10. There are clear restrictions in
prior self-training approaches. First, the pseudo-label set is incremental only, i.e., after an unlabeled
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example is added to the training set, it will never be deleted and its pseudo-label will never change
even if its prediction and/or the corresponding margin has changed drastically. Secondly, all the
pseudo-labels are considered equal, although they may have very different classification margins.
Furthermore, it introduces extra hyper-parameters such as the number of unlabeled nodes to be added
into the training set and the total number of self-training iterations. The performance gain is sensitive
to such parameters and their optimal values may differ for different data sets and label rates (Buchnik
& Cohen, 2018).

To fully understand and explore the power of self-training on the node classification task, we propose
a novel self-training framework, named Dynamic Self-training, which is general, flexible, and easy
to use. We provide a simple instantiation of the framework based on GCN (Kipf & Welling, 2017)
and empirically show that it outperforms state-of-art methods including GNNs, self-trained GCN
(Li et al., 2018), and embedding based methods. Our framework has the following distinguishing
features compared with (Li et al., 2018; Buchnik & Cohen, 2018).

1. We augment the training set and recalculate the pseudo-labels after each epoch. So the
number self-training iterations is the same as the number of epochs and the pseudo-label
assigned to an unlabeled example may change during the training process.

2. In stead of inserting a fixed number of new pseudo-labels with highest margin in each
iteration, we use a threshold-based rule, i.e., insert an unlabeled node if and only if its
classification margin is above the threshold.

3. The pseudo-label set is dynamic. When the margin of an unlabeled node is above the
threshold, we activate it by adding it to the loss function, but if the margin of this node
becomes lower than the threshold in a later epoch, we will deactivate it.

4. We assign a (dynamic) personalized weight to each active pseudo-label proportional to its
current classification margin. The total pseudo-label loss is thus the weighted sum of losses
corresponds to all pseudo-labels.

2 PRELIMINARIES

2.1 GRAPH NOTATION AND PROBLEM DEFINITION

In the problem, we are given an undirected graph with node attributes G = (V,E,X), where V is
the vertex set, E is the edge set. Here, X is the feature matrix, the i-th row of which, denoted as
xi, is the feature vector of node i. We assume each node belongs to exactly one class and use yi to
denote the class label of the i-th node. The aim is to design learning algorithms to predict the labels
of all nodes based on the labels of a small set of training nodes provided in the beginning. We use
Nk(i) to denote the set of nodes whose distance to node i is at most k. L ⊂ V is the set of labeled
nodes and U = V \ L is the set of unlabeled nodes.

2.2 GRAPH CONVOLUTIONAL NETWORKS

GCN introduced in (Kipf & Welling, 2017) is a graph neural network model for semi-supervised
classification. GCN learns the representations of each node by iteratively aggregating the embeddings
of its neighbors. Specifically, GCN consists of L > 0 layers each with the same propagation rule
defined as follows. In the l-th layer, the hidden representations H(l−1) are averaged among one-hop
neighbors as:

H(l) = σ(D̃−
1
2 ÃD̃−

1
2H(l−1)W (l)). (1)

Here, Ã = A+ In is the adjacency matrix of G after adding self-loops (In is the identity matrix), D̃
is a diagonal matrix with D̃ii =

∑
j Ãij , W (l) is a trainable weight matrix of the l-th layer, and σ is

a nonlinear activation function; H(l) ∈ Rn×dl denotes hidden feature matrix of the l-th layer and
H(0) = X and fi = H

(L)
i represents the output of i-th node.

We use l(yi, fi) to denote the classification loss of node i, which is typically the cross entropy
function. Thus, loss function used by GCN is of the form:

L =
∑
i∈L

l(yi, fi) (2)
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For a k-layer GCN, the receptive field of each training example is its order-k neighborhood. When
there are only few training samples, we need to increase the number of layers in order to cover most
of the unlabeled nodes. However, deeper GCN will cause the problem of over-smoothing, i.e., critical
features of the vertices may be smoothed through the iterative averaging process, which makes nodes
from different class indistinguishable (Xu et al., 2018; Li et al., 2018).

2.3 SELF TRAINING

Recently (Li et al., 2018) apply self-training to overcome these limitations of GCNs. Self-training
is a natural and general approach to semi-supervised learning, which is particularly well-motivated
in the context of node classification (Buchnik & Cohen, 2018; Li et al., 2018). Assume we have a
base model/algorithm for the learning problem, which takes as input a set of labeled examples and
makes predictions for other examples. Typically, for each unlabeled node, the base algorithm will
also return an associated margin or confidence score. The self-training framework trains and applies
the base model in rounds, where at the end of each round, the highest-confidence predictions are
converted to become new labeled examples in the next round of training and prediction. Thus, the
receptive fields of all the labeled nodes increases and will eventually cover the entire graph, which
resolve the issue of GCNs without adding more layers.

3 OUR METHOD

3.1 A GENERALIZED SELF-TRAINING FRAMEWORK

Algorithm 1: Dynamic Self-training Framework

1 Generate initial parameter θ0 for model f(·, ·), and the initial confidence score vector SV .
2 for each epoch t = 1, 2, ..., T do
3 Compute prediction fV ← f(G, θt−1)
4 Update confidence score SV ← UC(fV ).
5 Update model parameter by confidence score. θt ← UP(fV , SV , f)
6 if stopping criteria is met then
7 Break
8 end
9 end

Sun et al. (Sun et al., 2019) proposed Multi-stage Training Framework as generalization for self-
training method in (Li et al., 2018). Inspired by this, we propose a more generalized end-to-end
self-training framework named Dynamic Self-training Framework shown in algorithm 1. Instead of
operating on data split, we maintain a confidence score in each iteration. There is no specified stages
over here, we update the confidence value for each unlabeled node after every epoch.

Consider the original model f(·, ·) as a forward predicting function with backward trainable parame-
ters. The graph data G and the trainable parameters θt is the input of this function, and the output of
this model is collected into fV ∈ Rn×C , where fv denotes the output vector (before assigned with
label) of node v ∈ V , and C = dL is the number of classes. Then we construct the confidence score
vector SV ∈ Rn by model output fv in a function UC, which can be instantiated in many forms. For
example, Algorithm 2 illustrates how multi-stage self-training GCN implement this part. Finally
we update the model parameters using a specified algorithm such as gradient descent, where the
confidence score vector plays a role. The confidence score usually participates in parameter updating
process in an end-to-end way. An example of this part can be seen in section 3.3.

3.2 PSEUDO LABEL METHOD

Define the pseudo label ỹi ∈ RdL of i-th node which satisfies :

ỹij =

{
1 if j = argmaxj′ fij′

0 otherwise
(3)

3



Under review as a conference paper at ICLR 2020

Algorithm 2: Update confidence score for Multi-stage Self-training GCN
1 if the stage is currently switched then
2 for each class k do
3 Find the top m vertices v in fV and v ∈ U
4 Change the value of v in SV to 1
5 end
6 return SV

7 end

(Lee, 2013) introduced pseudo label version for these kinds of semi-supervised losses:

L =
∑
i∈L

l(yi, fi) + λ
∑
i∈U

l(ỹi, fi), (4)

where λ = n
n′ γ, n = |L|, n′ = |U|, γ ∈ R is a hyper-parameter and the added term

∑
i∈U l(ỹi, fi) is

named pseudo label. λ measures how much the pseudo label term influence the training process.

3.3 SOFT LABEL CONFIDENCE

In multi-stage self-training methods, a node just has two states: in training set or not in, which
corresponds to a binary-valued confidence ∈{0, 1}. And in most cases, if a node is added in training
set, it will be kept there. This simple setting hinders learning in some cases. For one thing, if the
classifier put a wrongly labeled node into training set, which is of high possibility in preliminary
training epochs, it will persistently learn wrong knowledge from this node. Worse still, another
wrongly adding is more possible. Finally this chained feedbacks may contribute to a terrible classifier.
For another thing, origin node and added node in training set contributes uniform influence to
optimizer, while explicitly distinguishing them in training may be better. To resolve these problems,
we introduce a mechanism named Soft Label Confidence as the confidence updating component in
algorithm 1, which computes an exact confidence value for each node, and nothing in training set is
persistent except from the ground truth labels. Based on the pseudo label loss (4), we propose the
loss wrapped by soft label confidence:

L =
∑
i∈L

l(yi, fi) + λ
∑
i∈U

α(fi)l(ỹi, fi). (5)

Here α is a function mapping from RdL to R, defined as confidence function. There are other possible
choices for α, in our method we adopt the form of threshold:

α(fi) =
1

n′ci
max(RELU(fi − β · 1)), (6)

Here β ∈ (0, 1) is a hyper-parameter as threshold, n′ci denotes the number of nodes whose pseudo
label belongs to class ci, ci is the class which i-th node’s pseudo label belongs to and 1 is the sum
of all unit vectors ui, i.e., 1 =

∑dL

i=1 ui. We introduce n′ci here to balance the categories of pseudo
labels, because pseudo labels could be initially extremely unbalanced and lead to a terrible classifier
in practice.

Although α(fi) is computed relevant to fi thus it is a function of network’s weights, we will also
block the flow of gradient through α(fi) as following reasons: Firstly, confidence function is non-
differentiable in most cases. Secondly, if we permit the gradient flowing through α(fi) it is possible to
exist a solution that soft labels satisfy max(fi) < β, ∀i ∈ V , which does no good to self-supervised
training. So we use the following way to compute the gradient:

∂L

∂W l
s,t

=
∑
i∈L

∂l(yi, fi)

∂W l
s,t

+ λ
∑
i∈U

α(fi)
∂l(ỹi, fi)

∂W l
s,t

(7)

4 RELATED WORK

Graph Convolutional Network The work of GNNs seeks generalizations of the convolution
operator to graph structured data. One way to do this is to apply convolution in the spectral domain,
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where the eigenvectors of the graph Laplacian are considered as the Fourier basis (Bruna et al.,
2014; Henaff et al., 2015; Defferrard et al., 2016; Kipf & Welling, 2017). Such spectral methods
learns hidden layer representations that encode both graph structure and node features simultaneously.
Kipf and Welling (Kipf & Welling, 2017) simplify previous spectral techniques by restricting the
propagation to a 1-hop neighborhood in each layer. (Chen et al., 2018) propose fast GCNs, which
improves the training speed of the original GCN. GAT of (Velickovic et al., 2018) allows for assigning
different importances to nodes of the same neighborhood via attention mechanisms. (Xu et al., 2018)
introduce JK networks, which adjust the influence radii of each node adaptively. Another direction
that generalizes convolutions to graph structured data, namely non-spectral approaches, define
convolutions directly in the spatial domain (Duvenaud et al., 2015; Atwood & Towsley, 2016; Monti
et al., 2017). Such methods are easier to be adapted to do inductive learning (Hamilton et al., 2017;
Velickovic et al., 2018; Bojchevski & Günnemann, 2018). However, few-shot learning remains a
challenge for this class of methods.

Label Propagation Unlike GNNs, which propagate node representations, the classic Label Propa-
gation (LP) method (Zhu et al., 2003) iteratively propagates (soft) labels. More specifically, in each
iteration, each unlabeled node obtains a new soft label that is the aggregation of the soft labels from
the previous iteration of its neighbors. The key to LP is to design an effective propagation rule; for
some propagation rules, the algorithm may not converge and/or the accuracy may not improve over
iterations. Thus, one often needs to specify a stopping criteria and a validation set for model selection.
LP can also be used as the base algorithm in the self-training framework.

Self-training Self-training is a natural and general approach to semi-supervised learning (Scudder,
1965) and has been widely used in the NLP literature. Self-training is used by (Yarowsky, 1995;
Hearst, 1991) for word sense disambiguation. (Riloff et al., 1999) used self-training in the form of
bootstrapping for information extraction and later for learning subjective nouns. (Riloff et al., 2003)
with (Nigam et al., 2000) using EM for text classification. Self-training has been used for object
recognition (Rosenberg et al., 2005; Zhou et al., 2012). (McClosky et al., 2006; 2008; Huang &
Harper, 2009; Sagae, 2010) shows how effective can self-training be in parsing. (Wang et al., 2007;
Huang et al., 2009; Qi et al., 2009) introduce self-training techniques to part of speech tagging, and
(Kozareva et al., 2005; Liu et al., 2013a) adopt self-training in named entity recognition. (Van Asch &
Daelemans, 2016; Drury et al., 2011; Liu et al., 2013b) used self-training in sentiment classification.
Recently, self-training has also been successfully applied on node classification. Li et al. (Li et al.,
2018) study self-training GCNs; Buchnik and Cohen (Buchnik & Cohen, 2018) mainly consider
the effect self-training for diffusion-based techniques. In pseudo-label method of (Lee, 2013), for
unlabeled data, their pseudo-labels are recalculated every weights update. However, they don’t assign
weight to each unlabeled data.

As for the self-training algorithm itself, (Chen et al., 2011) shows that selecting highly confident
instances with a pre-defined threshold may not perform well. (McClosky et al., 2006) produce a ranked
list of n-best predicted parses and selected the best one. (Rosenberg et al., 2005) shows that a training
data selection metric that is defined independently of the detector greatly outperforms a selection
metric based on the detection confidence generated by the detector. (Zhou et al., 2012) suggests that
selecting more informative unlabelled data using a guided search algorithm can significantly improve
performance over standard self-training framework. Most recently, (Levatić et al., 2017) proposed
proposed an algorithm to automatically select appropriate threshold.

Network Embedding Node classification is also one of the main applications of network embed-
ding methods, which learns a lower-dimensional representation for each node in an unsupervised
manner, followed by a supervised classifier layer for node classification (Perozzi et al., 2014; Tang
et al., 2015; Grover & Leskovec, 2016; Wang et al., 2016; Bojchevski & Günnemann, 2018). A recent
work of (Bojchevski & Günnemann, 2018) proposes Graph2Gauss. This method embeds each node
as a Gaussian distribution according to a novel ranking similarity based on the shortest path distances
between nodes. A distribution embedding naturally captures the uncertainty about the representation.
DGI (Veličković et al., 2019) is an embedding method based on GCNs, the unsupervised objective of
which is to maximize mutual information. The work of Embedding approaches achieve competitive
performance in node classification tasks, while the learned representations also prove to be extremely
useful for other downstream applications.
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5 EVALUATION

5.1 DATASET

We conduct the evaluation on four benchmark citation datasets: Cora, Citeseer, Pubmed (Sen et al.,
2008), and Core-full (Bojchevski & Günnemann, 2018). Each of three datasets is undirected graph
with node feature. Each node is a document and the edges denote the citation relationship; the feature
of a node is the bag-of-words representation of the document. The number of layers in GCN is
two by default, and thus the receptive field of each labeled node is its order-2 neighborhood. We
measure the fraction of nodes which is covered by the 2-hop neighbors of all labeled nodes, i.e.,
|
⋃

s∈S N2(s)|/|V |, where S is the set of labeled nodes randomly sampled from V . Here we report
the 2-hop coverage ratio on the four datasets when the label rates are 1% and 0.5% respectively. We
summarize the information of datasets in table 1.

Table 1: Summary of datasets

Cora Citeseer Pubmed Cora-full

# of Nodes 2708 3327 19717 18703
# of Edges 5429 4732 44338 81124

# of Features 1433 3703 500 8710
# of Classes 7 6 3 67

Coverage(0.5%) 14.78% 6.64% 21.58% 27.19%
Coverage(1%) 24.78% 12.14% 34.6% 47.42%

5.2 EXPERIMENT SETTINGS

We evaluate models on semi-supervised node classification tasks with varying label rates. Instead
evaluating on a fixed data split as in (Kipf & Welling, 2017; Velickovic et al., 2018), we mainly
consider random splits as (Li et al., 2018) does. In detail, for a given label rate, we randomly generate
100 different splits on each dataset. In each split, there is a labeled set with prespecified size for
training, and in this set each class contains the same number of labeled nodes. As in (Li et al., 2018),
we don’t use a validation set, and all the remaining nodes will be used for testing. For the simplicity,
we will refer to a task in the form of dataset-l, where l is the number of labeled nodes per class. For
example, Cora-1 denotes the classification task on dataset Cora with one seed per class.

5.3 IMPLEMENTATION DETAILS

For all the models(Perozzi et al., 2014; Tang et al., 2015; Grover & Leskovec, 2016; Wang et al.,
2016; Bojchevski & Günnemann, 2018; Velickovic et al., 2018; Monti et al., 2017) except for GCN
based methods, settings of hyper-parameters are the same as suggested in original papers. All GCN
based methods including GCN, Self-training GCN, Co-training GCN, Intersection GCN, Union GCN,
and DSGCN share the same setting of hyper-parameter following (Shchur et al., 2018): one hidden
layer with 64 units, dropout rate 0.8, Adam optimizer (Kingma & Ba, 2015) with learning rate 10−2,
a L2 regularization with weight 10−3. We train other GCN based methods for a fixed epochs of 200,
while DSGCN is trained for 600 epochs in few-label tasks such as 1, 3, 5, 10 tasks. Because 20 or 50
labels per class implies ample supervised information, we train DSGCN for 200 epochs in these tasks.
The four variants of (Li et al., 2018): Self-training GCN, Co-training GCN, Intersection GCN and
Union GCN follow original self-training settings in (Li et al., 2018). For DSGCN, we use a threshold
of 0.6 when the number of labels per class is below 3, and set the threshold to 0.75 for label rate
above 3 but below 10. Otherwise, the threshold is 0.9 by default.

5.4 RESULT ANALYSIS

The numerical results are summarized in table 2 and table 3. The highest accuracy in each column is
highlighted in bold and the top 3 are underlined. We group all models into three categories: GNN
variants(GCN, GAT, MoNet), unsupervised embedding methods (DeepWalk, DGI, LINE, G2G) and
GCN with self-training (Co-training, Self-training, Union and Intersection, DSGCN).
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Table 2: Summary of results in terms of mean classification accuracy (in percent) over 100 random
splits in different tasks. Unsupervised approaches first learn a lower-dimensional embedding for each
node in an unsupervised manner, and then the embeddings are used to train a supervised classifier for
node classification. Here we use logistic regression as the classifier for unsupervised embeddings.

Citeseer Cora

# of Labels 1 3 5 10 20 50 1 3 5 10 20 50

LP 30.1 37.0 39.3 41.9 44.8 49.5 51.5 60.5 62.5 64.2 67.3 71.7
DeepWalk 28.3 34.7 38.1 42.0 45.6 50.7 40.4 53.8 59.4 65.4 69.9 74.2
LINE 28.0 34.7 38.0 43.1 48.5 54.6 49.4 62.6 63.4 71.1 74.0 76.5
G2G 45.1 56.4 60.3 63.1 65.7 68.2 54.5 68.1 70.9 73.8 75.8 77.0
DGI 46.1 59.2 64.1 67.6 68.7 72.3 55.3 70.9 72.6 76.4 77.9 78.7
GCN 36.4 50.3 57.5 63.2 68.8 72.2 42.4 61.6 68.4 75.1 80.2 83.5
GAT 32.8 48.6 54.9 60.8 68.2 71.5 41.8 61.7 71.1 76.0 79.6 83.4
MoNet 38.8 52.9 59.7 64.6 66.9 69.9 43.4 61.2 70.9 76.1 79.3 83.9

Co-training 36.7 49.0 55.0 60.7 65.9 70.0 53.1 65.7 70.2 73.8 78.7 82.5
Self-training 34.6 50.0 58.7 67.4 69.1 71.3 40.6 63.9 71.1 75.5 79.1 81.6
Union 37.2 50.8 55.9 64.4 67.5 70.6 50.1 67.3 72.5 76.2 79.8 82.4
Intersection 35.3 51.8 60.7 67.1 70.2 72.2 43.1 64.4 69.5 73.1 78.4 82.0
DSGCN 53.2 63.9 65.8 67.6 69.2 72.4 62.5 72.3 75.5 77.7 80.8 83.8

Table 3: Summary of results in terms of mean classification accuracy over 100 random splits in
different tasks. (in percent). GNN variants are excluded due to limited computation resources.

Pubmed Cora-full

# of Labels 1 3 5 10 20 50 1 3 5 10 20 50

LP 55.7 61.9 63.5 65.2 66.4 67.5 26.3 32.4 35.1 38.0 41.0 46.0
GCN 41.3 54.9 63.6 71.2 77.8 81.0 26.4 42.8 49.3 54.4 61.2 65.4

Co-training 55.1 64.7 69.0 73.5 77.9 80.5 28.3 38.1 42.8 48.5 53.8 62.2
Self-training 49.7 62.7 67.2 70.6 76.5 79.3 28.7 43.6 48.9 53.4 60.8 64.4
Union 55.1 65.4 69.7 74.0 78.5 80.9 29.2 43.3 48.4 52.9 59.2 62.2
Intersection 52.7 63.4 67.8 70.6 75.9 79.0 26.8 37.7 44.4 51.5 58.4 62.1
DSGCN 55.8 67.1 70.2 74.7 77.8 81.0 30.9 45.6 51.3 57.5 61.4 64.8

Comparison Between GNN Variants and Embedding Methods As unsupervised methods, G2G
and DGI outperform all GNN variants in very few labels cases, e.g., 1 and 3 per class on both
Cora and Citeseer. Observing that LP performs well in Cora-1 while other feature propagation
methods not, we can naturally conclude that in dataset with graph structure, concentrating more on
the unsupervised information (both strong manifold structure(Li et al., 2018) and feature patterns)
will improve semi-supervised model compared to just utilizing supervised information, in the case
of low label rate. When label rate goes higher, all GNN variants enjoy better accuracies compared
to unsupervised models. Hence we empirically verify the strong generalization ability of GNNs
when the supervised information is sufficient. Sun et al. (Sun et al., 2019) has demonstrated the
limitation of GCN in few labels case, and here we find that these convolution based methods suffer
from inefficient propagation of label information as well, which can be seen as the intrinsic drawbacks
of semi-supervised graph convolution based methods.

Comparison Between Self-training GCNs and All Other Models In all few-label tasks, self-
training strategies improve over GCN by a remarkable margin. Except for tasks with 50 labels per
class, the best accuracy is always obtained by self-training GCN. Even in extreme one-label case,
where unsupervised information is more vital, DSGCN outperforms G2G by a margin of 6.2% in
Cora and 9.2% in Citeseer. We conclude that self-training strategy is capable of utilizing unsupervised
information more effectively. Thus it significantly helps classification. Additionally, four naive self-
training GCNs implemented in (Li et al., 2018) are worse than GCN when label rate goes higher, e.g.,
Cora-50 and Cora-full-5, which manifests that inappropriate self-training strategies will sometimes
degrade the performance of the base model. Hence there is a trade-off: capturing unsupervised
signals, or learning supervised information well. However, DSGCN holds a good balance here. It
doesn’t show much decrease compared to GCN even in the worst case task, Cora-full-50, where the
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Figure 1: Test accuracies in training process. Models with different threshold are denoted with
different colors, which can be distinguished in legend. Specifically, threshold 1 represents that the
model is equal to original GCN.

accuracy only decreases by 0.6%; in all other cases it is always better than GCN. This demonstrates
that the dynamic self-training framework not only helps the original model to capture unsupervised
information, but also retains the learning ability when there are enough labels.

Comparison of Self-training GCNs By applying a simpler and more general self-training strategy,
DSGCN outperforms other self-training based GCNs with considerable margins in most cases. In
Citeseer-1, the margin even reaches 14.1% compared with the best strategy among Co-training, Self-
training, Union and Intersection. This empirically supports the advantage of DSGCN for tackling a
wide range of classification tasks over conventional self-training methods.

Effect of Threshold Here we discuss how the important hyper-parameter β influence the perfor-
mance of DSGCN. We train DSGCN with different threshold: 0.45, 0.6, 0.75, 0.9, 1.0 for 1000
epochs on dataset Cora and Citeseer for the same split with the same initialized weights. We conduct
these experiments on tasks with different seed numbers, the results are presented in figure 1. As
shown in figure 1, when labels are very few, DSGCN with a relatively lower threshold β demonstrate
a clear improvement in accuracy over the original GCN. Besides, GCN’s accuracy curve erratically
fluctuates while the curve of DSGCNwith a low threshold does not. Thus, we observe that the stability
of the base model is also improved by wrapping it into the dynamic self-training framework. When
more labels are provided, all models tend to be stable and a low threshold could harm the training
process.

6 CONCLUSION

In this paper, we firstly introduce a novel self-training framework. This framework generalizes and
simplifies prior work, providing customizable modules as extension for multi-stage self-training.
Then we instantiate this framework based on GCN and empirically compare this model with a number
of methods on different dataset splits. Result of experiments suggests that when labels are few, the
proposed DSGCN not only outperform all previous models with noticeable margins in accuracy but
also enjoy better stability in the training process. Overall, the Dynamic Self-training Framework
is powerful for few-label tasks on graph data, and provides a novel perspective on self-training
techniques.
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