
Under review as a conference paper at ICLR 2020

Fantastic Generalization Measures
and Where to Find Them

Anonymous authors
Paper under double-blind review

Abstract

Generalization of deep networks has been of great interest in recent years,
resulting in a number of theoretical bounds and empirically motivated mea-
sures. However, most papers proposing such measures only study a small
set of models, leaving open the question of whether the conclusion drawn
from those experiments would generalize to other settings. We present
the first large scale study of generalization bounds and measures in deep
networks. We train over two thousand convolutional networks with system-
atic changes in important hyper-parameters. Hoping to uncover potentially
causal relationships between each measure and generalization, we run care-
fully controlled experiments and use a modified form of rank correlation
coefficient to compare different measures overall in individual experiment
categories. We analyze the results and show surprising failures of some
measures as well as promising measures for further research.

1 Introduction

Deep neural networks have seen tremendous success in a number of applications, but why
these models generalize is still a mystery (Zhang et al., 2016; Recht et al., 2019; Zhang et al.,
2019). It is crucial to better understand the reason behind the generalization of modern
deep learning models; such an understanding has multiple benefits, including providing
guarantees for safety critical scenarios and the design of better models.
A number of papers have attempted to understand the phenomenon of generalization of deep
learning models from a theoretical perspective e.g. (Neyshabur et al., 2015b; Bartlett et al.,
2017; Neyshabur et al., 2018a; Li et al., 2018; Arora et al., 2018; Long & Sedghi, 2019).
The most direct and principled approach for studying generalization in deep learning is
to prove generalization bounds. Unfortunately, finding tight bounds has proven to be an
arduous undertaking. An alternative to capture generalization is to define a measure (e.g.
sharpness) that, given two models, would be able to predict which of them has a smaller
generalization gap. This measure is allowed to depend on general properties of the data in
the training set but is not allowed to have access to a validation set. Various measures are
often featured as the major components of generalization bounds. Other works have directly
proposed empirical measures that focus on certain properties of deep networks, without any
attempt at deriving bounds (Keskar et al., 2016; Liang et al., 2017).
However, the empirical evaluation of these bounds and measures is usually limited to a few
models, often on toy problems. A measure can only be considered reliable as a predictor of
generalization gap if it is tested extensively on many models at a realistic problem size. To
close this gap, we carefully selected a number of generalization bounds from the literature
which leverage a diverse range of complexity measures. We further selected a variety of
measures that have empirically shown the promise of being related to improved generaliza-
tion, such as sharpness (Keskar et al., 2016), Fisher-Rao norm (Liang et al., 2017) and path
norms (Neyshabur et al., 2017). These measures are based on the norms of the network
(such as weights), flatness of the loss landscape, or related to the optimization function
(such as cross-entropy loss value).
In this study, we trained a large number of models on the CIFAR-10 dataset (Krizhevsky
et al., 2014), by carefully varying empirically important hyperparameters. We also selected

1

Under review as a conference paper at ICLR 2020

multiple optimization algorithms and looked at different stopping criteria for training conver-
gence. Details of all our measures and hyperparameter selections are provided in Appendix
C. For any such model, we considered more than 38 bounds and measures. The key findings
that arise from our large scale study are summarized below:

1. It is very easy for complexity measures to capture spurious correlations that do
not reflect more causal insights about generalization; to mitigate this problem, we
propose a more rigorous approach for studying them.

2. Many norm-based measures not only perform poorly, but negatively correlate with
generalization particularly when the optimization procedure injects stochasticity.

3. PAC-bayesian (McAllester, 1999) and sharpness (Keskar et al., 2016) based mea-
sures perform the best overall and seem to be promising candidates for further
research.

4. Measures related to the optimization procedures can be predictive of generalization
through all hyperparameter categories.

2 Related Work

The generalization bounds that we consider in this work belong to a few different fami-
lies: PAC-Bayes (McAllester, 1999; Dziugaite & Roy, 2017; Neyshabur et al., 2017); VC-
dimension (Vapnik & Chervonenkis, 1971); and norm-based bounds (Neyshabur et al.,
2015b; Bartlett et al., 2017; Neyshabur et al., 2018a). Notably, Dziugaite & Roy (2017)
was the first work to compute non-vacuous generalization bound on simplified MNIST. The
measures from prior literature that we consider are sharpness (Keskar et al., 2016); Fisher-
Rao norm (Liang et al., 2017); distance of trained weights from initialization (Nagarajan &
Kolter, 2019) and path norm (Neyshabur et al., 2015a).
A few papers have explored a large scale study of generalization in deep networks. Jiang et al.
(2018) studied the role of margin as a predictor of the generalization gap. However, they
used a significantly more restricted set of models (e.g. no depth variations), the experiments
were not controlled for potential undesired correlation (e.g. the models can have vastly
different training error) and the measure contains parameter that must be learned from a
set of models. Our work focuses on measures that can be computed on a single model and
compares a large number of bounds and measures across a much wider range of models
in a more controlled fashion. Neyshabur et al. (2017) perform a small scale study of the
generalization of PAC-Bayes, sharpness and a few different norms. In contrast, we study
thousands of models to arrive at a more robust conclusion.

3 Notation

We denote a probability distribution as A , set as A, tensor as A, vector as a, and scalar
as a or α. Let D denote the data distributions over inputs and their labels, and let κ
denote number of classes. We use , for equality by definition. We denote by S a given
dataset, consisting of m i.i.d tuples {(X1, y1), . . . , (Xm, ym)} drawn from D where Xi ∈ X
is the input data and yi ∈ {1, . . . , κ} the corresponding class label. We denote a feedforward
neural network by fw : X → Rκ, its weight parameters by w, and the the number of weights
by ω , dim(w). No activation function is applied at the output (i.e. logits). Denote the
weight tensor of the ith layer of the network by Wi, so that w = vec(W1, . . . ,Wd), where
d is the depth of the network. Furthermore, denote by fw(X)[j] the j-th output of the
function fw(X).
Let R be the set of binary relations, and I : R → {0, 1} be the indicator function that
is 1 if its input is true and zero otherwise. Let L be the 1-0 classification loss over the
data distribution D : L(fw) , E(X,y)∼D

[
I
(
fw(X)[y] ≤ maxj 6=y fw(X)[j]

)]
and let L̂ be the

empirical estimate of 1-0 loss over S: L̂(fw) , 1
m

∑m
i=1 I

(
fw(X)[yi] ≤ maxj 6=yi

fw(X)[j]
)

We refer to L(fw) − L̂(fw) as the generalization error. For any input X, we define the

2

Under review as a conference paper at ICLR 2020

sample dependent margin1 as γ(X) ,
(
fw(X)

)
[y] − maxi 6=y fw(X)i. Moreover, we define

the overall margin γ as the 10th percentile (a robust surrogate for the minimum) of γ(X)
over the entire training set S. More notation used for derivation is located in Appendix B.

4 Generalization: What is the goal and how to evaluate?

Generalization is arguably the most fundamental and yet mysterious aspect of machine
learning. The core question in generalization is what causes the pair of a model and an op-
timization algorithm to generalize well beyond the training set. There are many hypotheses
concerning this question, but what is the right way to compare these hypotheses? Here we
briefly discuss some potential approaches to compare different hypotheses:

• Generalization Bounds: Proving generalization bounds is very useful to establish
the causal relationship between a complexity measure and the generalization er-
ror. However, almost all existing bounds are vacuous on current deep models and
datasets and therefore, one cannot rely on their proof as an evidence on the causal
relationship between a complexity measure and generalization currently2.

• Regularizing the Measure: One may evaluate a complexity measure by adding it as
a regularizer and directly optimizing it, but this could fail due to two reasons. The
complexity measure could change the loss landscape in non-trivial ways and make
the optimization more difficult. In such cases, if the optimization fails to optimize
the measure, no conclusion can be made about the causality. Another perhaps
more critical problem is the existence of implicit regularization of the optimization
algorithm. This makes it hard to run a controlled experiment since one cannot
simply turn off the implicit regularization; therefore, if optimizing a measure does
not improve generalization it could be simply due to the fact that it is regularizing
the model in the same way as the optimization is regularizing it implicitly.

• Correlation with Generalization: Evaluating measures based on correlation with
generalization is interesting but potentially dangerous. To check the correlation, we
should vary architectures and optimization algorithms to produce a set of models.
If the set is generated in an artificial way and is not representative of the typi-
cal setting, the conclusions might be deceiving and might not generalize to typical
cases. One such example is training with different portions of random labels which
artificially changes the dataset. Another pitfall is drawing conclusion from changing
one or two hyper-parameters (e.g changing the width or batch-size and checking if a
measure would correlate with generalization). In these cases, the hyper-parameter
could be the true cause of both change in the measure and change in the general-
ization but the measure itself has no causal relationship with generalization.

While acknowledging all limitations of a correlation analysis, we try to improve the proce-
dure and capture some of the causal effects as much as possible through careful design of
experiments and metrics. To this end, we can try to partially capture this causal effect by
changing some hyper-parameters and keeping the rest fixed and see if the measure can still
correlate with generalization; with this controlled experiment, we are able to partially cap-
ture the causal relationship. Further, to evaluate the effectiveness of a measure, it is crucial
to test it on models with a wide range of variations, and each model must be sufficiently
trained, if not to complete convergence. For practical reasons, they must also reach this
stage within a reasonable time budget.

4.1 Training Models across Hyperparameter Space

In order to create models with different generalization behavior, we consider various types
of hyperparameters, which are known or believed to influence generalization (e.g. batch

1This work only concerns with the output margins, but generally margin can be defined at any
layer of a deep network (Elsayed et al., 2018).

2Please see Dziugaite & Roy (2017) for an example of non-vacuous generalization bound and
related discussions.

3

Under review as a conference paper at ICLR 2020

size, dropout rate, etc.). Formally, denote each hyperparameter by θi taking values from
the set Θi, for i = 1, . . . , n and n denoting the total number of hyperparameter types3.
For each element θ , (θ1, θ2, . . . , θn) ∈ Θ, where Θ , Θ1 × Θ2 × · · · × Θn, we train the
architecture with hyperparameters θ until the training loss (cross entropy value) reaches a
given threshold ε. Please see the Appendix A.2 for a discussion on the choice of the stopping
criterion. Doing this for each hyper-parameter configuration θ ∈ Θ, we obtain a total of
|Θ| models. Θ reflects our prior knowledge about what a reasonable hyperparameter setting
is and choosing what Θi’s represent and how many points are in each Θi can be seen as a
grid sampling from the hyperparameter space.

4.2 Kendall’s Correlation Coefficient

One way to evaluate the quality of a measure µ is through ranking. Given a set of models that
are trained with hyperparameters in the set Θ, their associated generalization gap {g(θ) |θ ∈
Θ} and their respective values of the measure, {µ(θ) |θ ∈ Θ}, our goal is to analyze how
consistent a measure (e.g. `2 norm) is with the empirically observed generalization. To this
end, we construct a set T , where each element of the set is associated with one of the trained
model. Each element has the form of a pair: complexity measure µ versus generalization
gap g 4.

T , ∪θ∈Θ
{ (

µ(θ), g(θ)
)}
. (1)

An ideal measure must be such that, for any pair of trained models, if µ(θ1) > µ(θ2), then
so is g(θ1) > g(θ2). We use Kendall’s rank coefficient τ to capture to what degree such
consistency holds among the elements of T .

τ(T) , 1
|T |(|T | − 1)

∑
(µ1,g1)∈T

∑
(µ2,g2)∈T \(µ1,g1)

sign(µ1 − µ2
)

sign(g1 − g2) (2)

Note that τ can only vary from 1 to −1, attaining these extreme values at perfect agreement
(two rankings are the same) and perfect disagreement (one ranking is the reverse of the other)
respectively. If complexity and generalization are independent, the coefficient becomes zero.
Note that τ is non-parametric and can be efficiently evaluated on S of any size.

4.3 Towards a More Causal Measure

While Kendall’s correlation coefficient is an effective tool widely used to measure relationship
between 2 rankings of a set of objects, we found that certain measures can achieve high τ
values in a trivial manner – i.e. the measure may strongly correlate with the generalization
performance without necessarily capturing the cause of generalization. We will analyze this
phenomenon in greater details in subsequent sections. To mitigate the effect of spurious
correlations, we propose a new quantity for quantifying the correlation between measures
and generalization that is based on a more controlled setting and hence can better capture
the causal nature. None of the existing complexity measures is perfect. However, they
might have different sensitivity and accuracy w.r.t. different hyperparameters. For example,
sharpness may do better than other measures when only a certain hyperparameter (say
batch size) changes. To understand such details, in addition to τ(T), we compute τ for
consistency within each hyperparameter axis Θi, and then average the coefficient across the
entire hyperparameter space. Formally, we define:

mi , |Θ1 × · · · ×Θi−1 ×Θi+1 × · · · ×Θn| (3)

ψi ,
1
mi

∑
θ1∈Θ1

· · ·
∑

θi−1∈Θi−1

∑
θi+1∈Θi+1

· · ·
∑

θn∈Θn

τ (∪θi∈Θi
{
(
c(θ), g(θ)

)
}) (4)

The inner τ measures the ranking correlation between the generalization and the measure
for a small group of models where the only difference among them is the variation along

3In our analysis we use n = 7 hyperparameters: batchsize, dropout probability, learning rate,
network depth, weight decay coefficient, network width, optimizer.

4generalization gap is defined as difference of train and test accuracy

4

Under review as a conference paper at ICLR 2020

a single hyperparameter axis Θi. Then average the value across all combinations of the
other hyperparameter axis. Intuitively, if a measure is good at predicting the effect of
hyperparameter Θi over the model distribution, then its corresponding ψi should be high.
Then, we compute the ψi’s average across all hyperparamter axis:

Ψ ,
1
n

n∑
i=1

ψi (5)

If a measure achieves a high Ψ on a given model distribution Θ, then it should achieve
high individual ψ across all hyperparameters. A measure that excels at predicting changes
in a single hyperparameter but fails at the other hyperparameters will not do well on this
measure. On the other hand, if the measure performs well, it means that the measure can
reliably rank the generalization for each of the hyper-parameter changes.
A thought experiment to illustrate why Ψ captures a better causal nature of the general-
ization is as follows: suppose there exists a measure that perfectly captures the depth of the
network while producing random prediction if 2 networks have the same depth, this measure
would do reasonably well in terms of τ but much worse in terms of Ψ. In the experiments
we consider in the following sections, we found that such a measure would achieve overall
τ = 0.362 but Ψ = 0.11.
Finally, we acknowledge this this measure is only a small step towards the difficult problem
of capturing the causal relationship between complexity measures and generalization in
empirical settings, and we hope this encourages future work in this direction.

5 Generating a family of trained models

We choose 7 common hyperparameters related to optimization and architecture design, with
3 choices for each hyperparameter, to generate 37 = 2187 models. We trained these models
to convergence to cross entropy 0.01 over the training set and removed any model that
was not able to achieve this cross-entropy5; this is different from the DEMOGEN dataset
(Jiang et al., 2018) where the models are not trained to the same cross-entropy. Putting
the stopping criterion on the training loss rather than the number of epochs is crucial since
otherwise one can simply use cross-entropy loss value to predict generalization. Please see
Appendix Section A.2 for a discussion on the choice of stopping criterion. To achieve this
goal, we tried a wide range of hyperparameters to choose ensure that models trained using
combination of these choices have vastly different generalization behaviors while being able
to fit the training set. Our base model is inspired by the Network-in-Network (NiN, Gao et al.
(2011)) models and the hyperparameter categories we test on are: weight decay coefficient
(weight decay), width of the layer (width), mini-batch size (batchsize), learning rate
(learning rate), dropout probability (dropout), depth of the architecture (depth) and the
choice of the optimization algorithms (opt). We select 3 choices for each hyperparameter,
but different optimization algorithms can affect other hyperparameters such as learning rate
or weight regularization. Please refer to Appendix A.3 for the details on the models, and
Appendix A.1 for the reasoning behind the design choices.
Figure 1 shows some summarizing statistics of the models in this study. On the left we
show the number of models that achieve above 99% training accuracy for every individual
hyperparameter choice. Since we have 2187 models in total, the maximum number of model
for each category is 718; the majority of the models were able to reach this threshold. In the
middle we show the distribution of the cross-entropy value over the entire training set. While
we want the models to be at exactly 0.01 cross-entropy, in practice it is computationally
prohibitive to constantly evaluate the loss over the entire training set; further, to enable
reasonable temporal granularity, we estimate the training loss with 100 randomly sampled
minibatch. These computational compromises result in long-tailed distribution of training
loss centered at 0.01. As shown in Table 1, even such minuscule range of cross-entropy
difference could lead to positive correlation with generalization, highlighting the importance
of training loss as a stopping criterion. On the right, we show the distribution of the

5In our analysis, less than 5 percent of the models do not reach this threshold.

5

Under review as a conference paper at ICLR 2020

generalization gap. We see that while all the models’ training accuracy is above 0.99, there
is a wide range of generalization gap which is ideal for evaluating complexity measures.

Figure 1: Left: Number of models with training accuracy above 0.99 for each category. Middle:
Distribution of training cross-entropy; distribution of training error can be found in Fig. 2. Right:
Distribution of generalization gap.

6 Baselines

An important baseline we consider is how does a measure compare against an oracle who ob-
serves noisy generalization gap. This baseline accounts for the potential noise in the training
procedure and gives an anchor for gauging the difficulty of each hyper-parameter category.
Formally, given a set of hyper-parameters Θ′ we define oracle ε to be the expectation of τ
or Ψ where the measure is {g(θ) + N (0, ε2) |θ ∈ Θ′}. We report the performance of the
noisy oracle in Table 1 for ε ∈ {0.01, 0.02, 0.05, 0.1}.
To understand how our hyperparameter choices affect the optimization, we give each hyper-
parameter category a canonical order which is believed by the community to have correlation
with generalization (e.g. larger learning rate generalizes better) and measure their τ . The
exact canonical ordering can be found in Appendix A.4. Note that each canonical ordering
that only be predictive for its own category since its corresponding hyperparameter is re-
mained fixed in any other category. As a result, the Ψ metric for each canonical ordering is
1
7 of its performance on the related category.
We next look at of the most well-known complexity measures in machine learning is the
VC-Dimension. Bartlett et al. (2019) proves bounds on the VC dimension of piece-wise
linear networks with potential weight sharing. In Appendix C.1, we extend their result
to include pooling layers and multi-class classification. We report two measure based on
VC-dimension bounds or and parameter counting. These measures could only be predica-
tive when the architecture changes which only happens in depth and width category. We
observe that in both categories VC-dimension and number of parameters are negatively
correlated with generalization gap which confirms the widely known empirical observation
that overparametrization improves generalization in deep learning.
Finally, we report the measures that only look at the output of the network. In particular,
we look at the cross-entropy loss, margin γ and the entropy of the output. All three measures
are closely related to each other. In fact, the results in Table 1 also reflects this similarity.
The results confirm the general understanding that larger margin, lower cross-entropy and
higher entropy would lead to better generalization and their performance is slightly worse
than oracle 0.1. Please see Appendix C.1.1 for definitions and more discussions on these
measures.

7 Surprising Failure of some Norm/margin-based Measures

In machine learning, a long standing measure for quantifying the complexity of a function,
and therefore generalization, is using various norms of the given function. Some of the norms

6

Under review as a conference paper at ICLR 2020

batchsize dropout learning rate depth optimizer weight decay width overall τ Ψ
vc dim 15 0.000 0.000 0.000 -0.909 0.000 0.000 -0.171 -0.251 -0.154

params 16 0.000 0.000 0.000 -0.909 0.000 0.000 -0.171 -0.175 -0.154
1/γ 18 0.312 -0.593 0.234 0.758 0.223 -0.211 0.125 0.124 0.121

-entropy 19 0.346 -0.529 0.251 0.632 0.220 -0.157 0.104 0.148 0.124
cross-entropy 17 0.440 -0.402 0.140 0.390 0.149 0.232 0.080 0.149 0.147

oracle 0.01 0.590 0.850 0.706 0.902 0.550 0.630 0.509 0.850 0.677
oracle 0.02 0.380 0.657 0.536 0.717 0.374 0.388 0.360 0.714 0.487
oracle 0.05 0.172 0.375 0.305 0.384 0.165 0.184 0.204 0.438 0.256
oracle 0.1 0.095 0.183 0.212 0.245 0.136 0.117 0.104 0.262 0.156

canonical ordering 0.652 0.969 0.733 0.909 -0.055 0.735 0.171 N/A N/A

Table 1: Numerical results for Baselines and Oracular measures

can be directly optimized to improve the generalization. For example, `2 regularization on
the parameters of a model can be seen as imposing an isotropic Gaussian prior over the
parameters in maximum a posteriori estimation. We choose several representative norms
or measures based on norms and compute our correlation coefficient between the measures
and the generalization gap of the model.
We study the following measures and their variants (Table 2): spectral bound, Frobenius
distance from initialization, `2 Frobenius norm of the parameters, Fisher-Rao metric and
path norm.

batchsize dropout learning rate depth optimizer weight decay width overall τ Ψ
Frob distance 36 -0.317 -0.833 -0.718 0.526 -0.214 -0.669 -0.166 -0.263 -0.341
Spectral orig 22 -0.355 -0.745 -0.683 -0.909 -0.150 -0.047 -0.256 -0.534 -0.449

Parameter norm 38 0.236 -0.516 0.174 0.330 0.187 0.124 -0.170 0.073 0.052
Path norm 40 0.252 0.270 0.049 0.934 0.153 0.338 0.178 0.373 0.311
Fisher-Rao 41 0.396 0.147 0.240 -0.553 0.120 0.551 0.177 0.078 0.154

oracle 0.02 0.380 0.657 0.536 0.717 0.374 0.388 0.360 0.714 0.487

Table 2: Numerical results for selected Norm/Margin-based Measures

Spectral bound: The most surprising observation here is that the spectral complexity is
strongly negatively correlated with generalization, and negatively correlated with changes
within every hyper-parameters category. Most notably, it has strong negative correlation
with the depth of the network, which may suggest that the largest singular values are not
sufficient to capture the capacity of the model. To better understand the reason behind
this observation, we investigate using different components of the spectral complexity as
the measure. An interesting observation is that the Frobenius distance to initialization
is negatively correlated, but the Frobenius norm of the parameters is slightly positively
correlated with generalization, which contradicts some theories suggesting solutions closer
to initialization should generalize better. A tempting hypothesis is that weight decay favors
solution closer to the origin, but we did an ablation study on only models with 0 weight decay
and found that the distance from initialization still correlates negatively with generalization.
These observations correspond to choosing different reference matrices W0

i for the bound:
the distance corresponds to using the initialization as the reference matrices while the Frobe-
nius norm of the parameters corresponds to using the origin as the reference. Since the
Frobenius norm of the parameters shows better correlation, we use zero reference matrices
in the spectral bound. This improved both τ and Ψ, albeit still negative. In addition, we
extensively investigate the effect of different terms of the Spectral bound to isolate the effect;
however, the results do not improve. These experiments can be found in the Appendix C.2.
Path norm: While path-norm is a proper norm in the function space but not in parameter
space, we observe that it is positively correlated with generalization in all hyper-parameter
types and achieves comparable τ (0.373) and Ψ (0.311).
Fisher-Rao metric: The Fisher-Rao metric is a lower bound (Liang et al., 2017) on the
path norm that has been recently shown to capture generalization. We observed that it
overall shows worse correlation than the path norm; in particular, it is negatively correlated
(τ = −0.553) with the depth of the network while contrast with path norm which properly
captures the effect of depth on generalization. A more interesting observation is that the
Fisher-Rao metric achieves a positive Ψ = 0.154 but its τ = 0.078 is essentially at chance.

7

Under review as a conference paper at ICLR 2020

This may suggest that the metric can capture a single hyper-parameter change but is not
able to capture the interactions between different hyper-parameter categories.
Effect of Randomness: Dropout and batch size (first 2 columns of Table 2) directly intro-
duce randomness into the training dynamic. For batch size, we observed that the Frobenius
displacement and spectral complexity both correlate negatively with the changes in batch
size while the Frobenius norm of the parameters correlates positively with generalization.
On the other hand, when changes happen to the magnitude dropout probability, we observed
that all of the proper norms are negatively correlated with the generalization changes. Since
increasing dropout usually reduces the generalization gap, this implies that increasing the
dropout probability may be at least partially responsible for the growth in these norms.
This is unexpected since increasing norm in principle implies higher model capacity which
is usually more prone to overfitting.

8 Success of Sharpness-based Measures

A natural category of generalization measures is centered around the concept of
“sharpness” of the local minima, capturing the sensitivity of the empirical risk (i.e. the loss
over the entire training set) to perturbations in model parameters. Such notion of stabil-
ity under perturbation is captured elegantly by the PAC-Bayesian framework (McAllester,
1999) which has provided promising insights for studying generalization of deep neural
networks (Dziugaite & Roy, 2017; Neyshabur et al., 2017; 2018a). In this sections, we
investigate PAC-Bayesian generalization bounds and several of its variants which rely on
different priors and different notions of sharpness (Table 3).
In order to evaluate a PAC-Bayesian bound, one needs to come up with a prior distribution
over the parameters that is chosen in advance before observing the training set. Then,
given any posterior distribution on the parameters which could depend on the training
set, a PAC-Bayesian bound (Theorem 42) states that the expected generalization error of
the parameters generated from the posterior can be bounded by the KL-divergence of the
prior and posterior. The posterior distribution can be seen as adding perturbation on final
parameters. Dziugaite & Roy (2017) shows contrary to other generalization bounds, it is
possible to find to calculate non-vacuous PAC-Bayesian bounds by optimizing the bound
over a large set of Gaussian posteriors. Neyshabur et al. (2017) demonstrates that PAC-
Bayesian bounds where prior and posterior are isotropic Gaussian distributions are good
measure of generalization on small scale experiments (e.q. 43).
PAC-Bayesian framework captures sharpness in the expected sense since we add randomly
generated perturbations to the parameters. Another possible notion of sharpness is the
worst-case sharpness where we search for the direction that changes the loss the most. This
is motivated by (Keskar et al., 2016) where they observe that this notion would correlate to
generalization in the case of different batch sizes. We can use PAC-Bayesian framework to
give generalization bounds for this worst-case perturbations as well. We refer to this worst
case bound as the sharpness bound (eq. 46). The main component in both PAC-Bayes and
worst-case sharpness bounds is the ratio of norm of parameters to the magnitude of the
perturbation where the magnitude is chosen to be the largest number so that the training
error of the perturbed model is at most 0.1. While mathematically, the sharpness bound
should always yield higher complexity than the Pac-Bayes bound, we observed that the
former has higher correlation both in terms of τ and Ψ. In addition, we measured inverse
of perturbation magnitude as a measure removing the norm in the numerator to compare
it with the bound and did not observe a significant difference.

8.1 Magnitude-aware Perturbation Bounds

Perturbing the parameters without taking their magnitude into account can cause many of
them to switch signs. Therefore, one cannot apply large perturbations to the model without
changing the loss significantly. One possible modification to improve the perturbations is
to choose the perturbation magnitude based on the magnitude of the parameter. In that
case, it is guaranteed that if the magnitude of perturbation is less than magnitude of the

8

Under review as a conference paper at ICLR 2020

batchsize dropout learning rate depth optimizer weight decay width overall τ Ψ
sharpness 48 0.542 -0.359 0.716 0.816 0.297 0.591 0.185 0.400 0.398
pacbayes 45 0.526 -0.076 0.705 0.546 0.341 0.564 -0.086 0.293 0.360

sharpness mag 56 0.401 -0.514 0.321 -0.909 0.181 0.281 -0.171 -0.158 -0.059
pacbayes mag 53 0.532 -0.480 0.508 0.902 0.188 0.155 0.186 0.410 0.284
1/σ sharpness 50 0.532 -0.326 0.711 0.776 0.296 0.592 0.263 0.399 0.406
1/σ pacbayes 49 0.501 -0.033 0.744 0.200 0.346 0.609 0.056 0.303 0.346

1/α′ sharpness mag 58 0.570 0.148 0.762 0.824 0.297 0.741 0.269 0.484 0.516
1/σ′ pacbayes mag 57 0.490 -0.215 0.505 0.896 0.186 0.147 0.195 0.365 0.315

oracle 0.02 0.380 0.657 0.536 0.717 0.374 0.388 0.360 0.714 0.487

Table 3: Numerical results for selected sharpness-based Measures; all the measure use the
origin as the reference and mag refers to magnitude-aware version of the measure.

parameter, then the sign of the parameter does not change. Following Keskar et al. (2016),
we pick the magnitude of the perturbation with respect to the magnitude of parameters.
We formalize this notion of importance based on magnitude and derive two alternative
generalization bounds for expected sharpness (eq. 51) and worst case sharpness (eq. 54)
that include the magnitude of the parameters into the prior. Formally, we design α′ and
σ′ to be the ratio of parameter magnitude to the perturbation magnitude in sharpness and
PAC-Bayes bounds respectively. While this change did not improve upon the original PAC-
Bayesian measures, we observed that simply looking at 1/α′ has surprising predictive power
in terms of the generalization which surpasses the performance of oracle 0.02. This measure
is very close to what was originally suggested in Keskar et al. (2016).

8.2 Finding σ

In case of models with extremely small loss, the perturbed loss should roughly increase
monotonically w.r.t the perturbation scale. Leveraging this observation, we design algo-
rithms for computing the perturbation scale σ such that the first term on the RHS is as
close to a fixed value as possible for all models. In our experiments, we choose the deviation
to be 0.1 which translates to 10% training error. These search algorithms are paramount
to compare measures between different models. We provide the detailed algorithms in the
Appendix D. To improve upon our algorithms, one could try a computational approach
similar to Dziugaite & Roy (2017) to obtain a numerically better bound which may result
in stronger correlation; however, due to practical computational constraints, we could not
do so for the large number of models we consider.

9 Potential of Optimization-based Measures

Optimization is an indispensable component of deep learning. Numerous optimizers have
been proposed for more stable training and faster convergence. How the optimization scheme
and speed of optimization influence generalization of a model has been a topic of contention
among the deep learning community (Merity et al., 2017; Hardt et al., 2015). We study 3
representative optimizers Momentum SGD, Adam, and RMSProp with different initial learning
rates in our experiments to thoroughly evaluate this phenomenon. We also consider other
optimization related measures that are believed to correlate with generalization. These
include (Table 4):

1. Number of iterations required to reach cross-entropy equals 0.1
2. Number of iterations required going from cross-entropy equals 0.1 to cross-entropy

equals 0.01
3. Variance of the gradients after only seeing the entire dataset once (1 epoch)
4. Variance of the gradients when the cross-entropy is approximately 0.01

The number of iterations roughly characterizes the speed of optimization, which has been
argued to correlate with generalization. For the models we consider, we observed that the
initial phase (step to reach cross-entropy value of 0.1) of the optimization is negatively corre-
lated with the speed of optimization for both τ and Ψ. This would suggest that the difficulty
of optimization during the initial phase optimization benefits the final generalization. On

9

Under review as a conference paper at ICLR 2020

batchsize dropout learning rate depth optimizer weight decay width overall τ Ψ
step to 0.1 59 -0.664 -0.861 -0.255 0.440 -0.030 -0.628 0.043 -0.264 -0.279

step 0.1 to 0.01 60 -0.151 -0.069 -0.014 0.114 0.072 -0.046 -0.021 -0.088 -0.016
grad noise 1 epoch 61 0.071 0.378 0.376 -0.517 0.121 0.221 0.037 0.070 0.098

grad noise final 62 0.452 0.119 0.427 0.141 0.245 0.432 0.230 0.311 0.292
oracle 0.02 0.380 0.657 0.536 0.717 0.374 0.388 0.360 0.714 0.487

Table 4: Optimization-Based Measures

the other hand, the speed of optimization going from cross-entropy 0.1 to cross-entropy 0.01
does not seem to be correlated with the generalization of the final solution. On the other
hand, the speed of optimization is not an explicit capacity measure so either positive or
negative correlation could potentially be informative.
On the other hand, the variance of the gradients characterizes the smoothness of the loss
surface. Towards the end of the training, the variance of the gradients also captures a
particular type of “flatness” of the local minima. This measure is surprisingly predictive of
the generalization both in terms of τ and Ψ, and more importantly, is positively correlated
across every category of hyper-parameter. To the best of our knowledge, this is the first
time this phenomenon has been observed. The connection between variance of the gradient
and generalization is perhaps natural since much of the recent advancement in deep learning
such as residual network (He et al., 2016) or batch normalization have enabled using larger
learning rates to train neural networks. Stability with higher learning rates implies smaller
noises in the minibatch gradient. We hope that our work encourages future works in other
possible measures based on optimization and during training.

10 Conclusion

We conducted large scale experiments to test the correlation of different measures with the
generalization of deep models and propose a framework to better disentangle the cause of
correlation from spurious correlation. We confirmed the effectiveness of the PAC-Bayesian
bounds through our experiments and corroborate it as a promising direction for cracking the
generalization puzzle. Further, we provide an extension to existing PAC-Bayesian bounds
that consider the importance of each parameter. We also found that several measures
related to optimization are surprisingly predictive of generalization and worthy of further
investigation. On the other hand, several surprising failures about the norm-based measures
were uncovered. In particular, we found that regularization that introduces randomness
into the optimization can increase various norm of the models and spectral complexity
related norm-based measures are unable to capture generalization – in fact, most of them
are negatively correlated. Our experiments demonstrate that the study of generalization
measure can be misleading when the number of models studied is small and the metric of
quantifying the relationship is not carefully chosen. We hope this work will incentivize more
rigorous treatment of generalization measures in future work.
To the best of our knowledge, this work is one of the most comprehensive study of gen-
eralization to date, but there are a few short-comings. Due to computational constraints,
we were only able to study 7 most common hyperparameter categories and relatively small
architectures, which do not reflect the models used in production. Indeed, if more hyper-
parameters are considered, one could expect to better capture the causal relationship. We
also only studied models trained on a single dataset (CIFAR-10), only classification models
and only convolutional networks. Future work will aim to address these limitations.

References
Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds

for deep nets via a compression approach. arXiv preprint arXiv:1802.05296, 2018.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3(Nov):463–482,
2002.

10

Under review as a conference paper at ICLR 2020

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin
bounds for neural networks. In Advances in Neural Information Processing Systems, pp.
6240–6249, 2017.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-
dimension and pseudodimension bounds for piecewise linear neural networks. Journal
of Machine Learning Research, 20(63):1–17, 2019. URL http://jmlr.org/papers/v20/
17-612.html.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can
generalize for deep nets. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1019–1028. JMLR. org, 2017.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than train-
ing data. arXiv preprint arXiv:1703.11008, 2017.

Gamaleldin Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio.
Large margin deep networks for classification. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information
Processing Systems 31, pp. 842–852. Curran Associates, Inc., 2018. URL http://papers.
nips.cc/paper/7364-large-margin-deep-networks-for-classification.pdf.

Jianxi Gao, Sergey V Buldyrev, Shlomo Havlin, and H Eugene Stanley. Robustness of a
network of networks. Physical Review Letters, 107(19):195701, 2011.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity
of neural networks. arXiv preprint arXiv:1712.06541, 2017.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability
of stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.
org/abs/1502.03167.

Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the general-
ization gap in deep networks with margin distributions. arXiv preprint arXiv:1810.00113,
2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. arXiv preprint arXiv:1609.04836, 2016.

Aryeh Kontorovich. Dudley-pollard packing theorem. http://aiweb.techfak.
uni-bielefeld.de/content/bworld-robot-control-software/, 2016.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online:
http://www. cs. toronto. edu/kriz/cifar. html, 55, 2014.

Xingguo Li, Junwei Lu, Zhaoran Wang, Jarvis Haupt, and Tuo Zhao. On tighter gener-
alization bound for deep neural networks: Cnns, resnets, and beyond. arXiv preprint
arXiv:1806.05159, 2018.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric,
geometry, and complexity of neural networks. arXiv preprint arXiv:1711.01530, 2017.

Philip M Long and Hanie Sedghi. Size-free generalization bounds for convolutional neural
networks. arXiv preprint arXiv:1905.12600, 2019.

11

http://jmlr.org/papers/v20/17-612.html
http://jmlr.org/papers/v20/17-612.html
http://papers.nips.cc/paper/7364-large-margin-deep-networks-for-classification.pdf
http://papers.nips.cc/paper/7364-large-margin-deep-networks-for-classification.pdf
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/

Under review as a conference paper at ICLR 2020

David A McAllester. Pac-bayesian model averaging. In COLT, volume 99, pp. 164–170.
Citeseer, 1999.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing
lstm language models. arXiv preprint arXiv:1708.02182, 2017.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learn-
ing. adaptive computation and machine learning. MIT Press, 31:32, 2012.

Vaishnavh Nagarajan and J Zico Kolter. Generalization in deep networks: The role of
distance from initialization. arXiv preprint arXiv:1901.01672, 2019.

Behnam Neyshabur, Ruslan R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized
optimization in deep neural networks. In Advances in Neural Information Processing
Systems, pp. 2422–2430, 2015a.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in
neural networks. In Conference on Learning Theory, pp. 1376–1401, 2015b.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. In Advances in Neural Information Processing Systems,
pp. 5947–5956, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach
to spectrally-normalized margin bounds for neural networks. International Conference on
Learning Representations, 2018a.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro.
Towards understanding the role of over-parametrization in generalization of neural net-
works. arXiv preprint arXiv:1805.12076, 2018b.

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey Hinton. Reg-
ularizing neural networks by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548, 2017.

Konstantinos Pitas, Mike Davies, and Pierre Vandergheynst. Pac-bayesian margin bounds
for convolutional neural networks. arXiv preprint arXiv:1801.00171, 2017.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? arXiv preprint arXiv:1902.10811, 2019.

Hanie Sedghi, Vineet Gupta, and Philip M. Long. The singular values of convolutional
layers. CoRR, abs/1805.10408, 2018. URL http://arxiv.org/abs/1805.10408.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. In Theory of probability and its applications, pp.
11–30. Springer, 1971.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. In Advances in Neural
Information Processing Systems, pp. 4148–4158, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, and Yoram Singer. Identity crisis:
Memorization and generalization under extreme overparameterization. arXiv preprint
arXiv:1902.04698, 2019.

12

http://arxiv.org/abs/1805.10408

Under review as a conference paper at ICLR 2020

A Experiments

A.1 More training details

During our experiments, we found that Batch Normalization (Ioffe & Szegedy, 2015) is
crucial to reliably reach a low cross-entropy value for all models; since normalization is a
indispensable components of modern neural networks, we decide to use batch normalization
in all of our models. We remove batch normalization before computing any measure by fusing
the γ, β and moving statistics with the convolution operator that precedes the normalization.
This is important as Dinh et al. (2017) showed that common generalization measures such as
sharpness can be easily manipulated with re-parameterization. We also discovered that the
models trained with data augmentation often cannot fit the data (i.e. reach cross-entropy
0.01) completely. Since a model with data augmentation tends to consistently generalize
better than the models without data augmentation, measure that reflects the training error
(i.e. value of cross-entropy) will easily predict the ranking between two models even though
it has only learned that one model uses data augmentation (see the thought experiments
from the previous section). While certain hyperparameter configuration can reach cross-
entropy of 0.01 even with data augmentation, it greatly limits the space of models that
we can study. Hence, we make the design choice to not include data augmentation in the
models of this study. Note that from a theoretical perspective, data augmentation is also
challenging to analyze since the training samples generated from the procedure are no longer
identical and independently distributed. All values for all the measures we computed over
these models can be found in Table 5 in Appendix A.5.

A.2 The choice of stopping criterion

The choice of stopping criterion is very essential and could completely change the evaluation
and the resulting conclusions. In our experiments we noticed that if we pick the stopping
criterion based on number of iterations or number of epochs, then since some models optimize
faster than others, they end up fitting the training data more and in that case the cross-
entropy itself can be very predictive of generalization. To make it harder to distinguish
models based on their training performance, it makes more sense to choose the stopping
criterion based on the training error or training loss. We noticed that as expected, models
with the same cross-entropy usually have very similar training error so that suggests that
this choice is not very important. However, during the optimization the training error
behavior is noisier than cross-entropy and moreover, after the training error reaches zero, it
cannot distinguish models while the cross-entropy is still meaningful after fitting the data.
Therefore, we decided to use cross-entropy as the stopping criterion.

A.3 All Model Specification

As mentioned in the main text, the models we use resemble Network-in-Network (Gao et al.,
2011) which is a class of more parameter efficient convolution neural networks that achieve
reasonably competitive performance on modern image classification benchmarks. The model
consists blocks of modules that have 1 3 × 3 convolution with stride 2 followed by 2 1 × 1
convolution with stride 1. We refer to this single module as a NiN-block and construct
models of different size by stacking NiN-block. For simplicity, all NiN-block have the same
number of output channels cout. Dropout is applied at the end of every NiN-block. At the
end of the model, there is a 1 × 1 convolution reducing the channel number to the class
number (i.e. 10 for CIFAR-10) followed by a global average pooling to produce the output
logits.
For width, we choose from cout from 3 options: {2× 96, 4× 96, 8× 96}.
For depth, we choose from 3 options: {2×NiNblock, 4×NiNblock, 8×NiNblock}
For dropout, we choose from 3 options: {0.0, 0.25, 0.5}
For batch size, we choose from: {32, 64, 128}

13

Under review as a conference paper at ICLR 2020

Since each optimizer may require different learning rate and in some cases, different regu-
larization, we fine-tuned the hyper-parameters for each optimizer while keeping 3 options
for every hyper-parameter choices6.
Momentum SGD: We choose momentum of 0.9 and choose the initial learning rate η from
{0.1, 0.032, 0.01} and regularization coefficient λ from {0.0, 0.0001, 0.0005}. The learning
rate decay schedule is ×0.1 at iterations [60000, 90000].
Adam: We choose initial learning rate η from {0.001, 3.2e − 4, 1e − 4}, ε = 1e − 3 and
regularization coefficient λ from {0.0, 0.0001, 0.0005}. The learning rate decay schedule is
×0.1 at iterations [60000, 90000].
RMSProp: We choose initial learning rate η from {0.001, 3.2e−4, 1e−4} and regularization
coefficient λ from {0.0, 0.0001, 0.0003}. The learning rate decay schedule is ×0.1 at iterations
[60000, 90000].

A.4 Canonical Measures

Based on empirical observations made by the community as a whole, the canonical ordering
we give to each of the hyper-parameter categories are as follows:

1. Batchsize: smaller batchsize leads to smaller generalization gap
2. Depth: deeper network leads to smaller generalization gap
3. Width: wider network leads to smaller generalization gap
4. Dropout: The higher the dropout (≤ 0.5) the smaller the generalization gap
5. Weight decay: The higher the weight decay (smaller than the maximum for each

optimizer) the smaller the generalization gap
6. Learning rate: The higher the learning rate (smaller than the maximum for each

optimizer) the smaller the generalization gap
7. Optimizer: Generalization gap of Momentum SGD < Generalization gap of Adam <

Generalization gap of RMSProp

A.5 All results

Below we present all of the measures we computed and their respective τ and Ψ on the
2000+ models we trained and additional plots.

6While methods with adaptive methods generally require less tuning, in practice researchers
have observed performance gains from tuning the initial learning rate and learning rate decay.

14

Under review as a conference paper at ICLR 2020

ref batchsize dropout learning rate depth optimizer weight decay width overall τ Ψ
vc dim 15 0.000 0.000 0.000 −0.909 0.000 0.000 −0.171 −0.251 −0.154
params 16 0.000 0.000 0.000 −0.909 0.000 0.000 −0.171 −0.175 −0.154
sharpness 47 0.537 −0.523 0.449 0.826 0.221 0.233 −0.004 0.282 0.248
pacbayes 44 0.372 −0.457 0.042 0.644 0.179 −0.179 −0.142 0.064 0.066
sharpness-orig 48 0.542 −0.359 0.716 0.816 0.297 0.591 0.185 0.400 0.398
pacbayes-orig 45 0.526 −0.076 0.705 0.546 0.341 0.564 −0.086 0.293 0.360
frob-distance 36 −0.317 −0.833 −0.718 0.526 −0.214 −0.669 −0.166 −0.263 −0.341
spectral-init 21 0.231 −0.736 −0.177 −0.629 0.134 −0.292 −0.052 −0.403 −0.218
spectral-orig 22 0.246 −0.693 −0.076 −0.618 0.172 −0.238 −0.020 −0.349 −0.175
spectral-orig-main 24 0.246 −0.693 −0.076 −0.560 0.172 −0.238 0.015 −0.314 −0.230
fro/spec 29 0.316 −0.589 0.286 0.706 0.242 −0.181 0.110 0.123 0.127
prod-of-spec 28 −0.464 −0.724 −0.722 −0.909 −0.197 −0.142 −0.218 −0.559 −0.482
prod-of-spec/margin 27 −0.397 −0.754 −0.713 −0.909 −0.181 −0.147 −0.188 −0.566 −0.470
sum-of-spec 31 −0.464 −0.724 −0.722 0.909 −0.197 −0.142 −0.218 0.102 −0.223
sum-of-spec/margin 30 −0.395 −0.754 −0.714 0.909 −0.182 −0.149 −0.190 0.083 −0.211
spec-dist 37 −0.458 −0.838 −0.568 0.738 −0.319 −0.182 −0.171 −0.110 −0.257
prod-of-fro 33 0.440 −0.199 0.538 −0.909 0.321 0.731 −0.101 −0.297 0.117
prod-of-fro/margin 32 0.513 −0.291 0.579 −0.907 0.364 0.739 −0.088 −0.295 0.130
sum-of-fro 35 0.440 −0.199 0.538 0.913 0.321 0.731 −0.101 0.418 0.378
sum-of-fro/margin 34 0.513 −0.291 0.579 0.909 0.364 0.739 −0.088 0.407 0.389
1/margin 18 −0.312 0.593 −0.234 −0.758 −0.223 0.211 −0.125 −0.124 −0.121
neg-entropy 19 0.346 −0.529 0.251 0.632 0.220 −0.157 0.104 0.148 0.124
path-norm 40 0.252 0.270 0.049 0.934 0.153 0.338 0.178 0.373 0.311
path-norm/margin 39 0.363 0.017 0.148 0.922 0.230 0.280 0.173 0.374 0.305
param-norm 38 0.236 −0.516 0.174 0.330 0.187 0.124 −0.170 0.073 0.052
fisher-rao 41 0.396 0.147 0.240 −0.516 0.120 0.551 0.177 0.090 0.160
cross-entropy 17 0.440 −0.402 0.140 0.390 0.149 0.232 0.080 0.149 0.147
1/σ pacbayes 49 0.501 −0.033 0.744 0.200 0.346 0.609 0.056 0.303 0.346
1/σ sharpness 50 0.532 −0.326 0.711 0.776 0.296 0.592 0.263 0.399 0.406
num-step-0.1-to-0.01-loss 60 −0.151 −0.069 −0.014 0.114 0.072 −0.046 −0.021 −0.088 −0.016
num-step-to-0.1-loss 59 −0.664 −0.861 −0.255 0.440 −0.030 −0.628 0.043 −0.264 −0.279
1/α′ sharpness mag 58 0.570 0.148 0.762 0.824 0.297 0.741 0.269 0.484 0.516
1/σ′ pacbayes mag 57 0.490 −0.215 0.505 0.896 0.186 0.147 0.195 0.365 0.315
pac-sharpness-mag-init 55 −0.293 −0.841 −0.698 −0.909 −0.240 −0.631 −0.171 −0.225 −0.541
pac-sharpness-mag-orig 56 0.401 −0.514 0.321 −0.909 0.181 0.281 −0.171 −0.158 −0.059
pacbayes-mag-init 52 0.425 −0.658 −0.035 0.874 0.099 −0.407 0.069 0.175 0.052
pacbayes-mag-orig 53 0.532 −0.480 0.508 0.902 0.188 0.155 0.186 0.410 0.284
grad-noise-final 62 0.452 0.119 0.427 0.141 0.245 0.432 0.230 0.311 0.292
grad-noise-epoch-1 61 0.071 0.378 0.376 −0.517 0.121 0.221 0.037 0.070 0.098
oracle 0.01 0.579 0.885 0.736 0.920 0.529 0.622 0.502 0.851 0.682
oracle 0.02 0.414 0.673 0.548 0.742 0.346 0.447 0.316 0.726 0.498
oracle 0.05 0.123 0.350 0.305 0.401 0.132 0.201 0.142 0.456 0.236
oracle 0.1 0.069 0.227 0.132 0.223 0.086 0.121 0.093 0.241 0.136
canonical ordering −0.652 0.969 0.733 0.909 −0.055 0.735 0.171 0.005 0.402
canonical ordering depth −0.032 0.001 0.033 −0.909 −0.061 −0.020 0.024 −0.363 −0.138

Table 5: All measures (rows), hyperparameters (columns) and the rank-correlation coeffi-
cients that we measured.

Figure 2: Distribution of training error on the trained models.

15

Under review as a conference paper at ICLR 2020

B Extended Notation

Given any margin value γ ≥ 0, we define the margin loss Lγ as follows:

Lγ(fw) , E(X,y)∼D

[
I
(
fw(X)[y] ≤ γ + max

j 6=y
fw(X)[j]

)]
(6)

and L̂γ is defined in an analogous manner on the training set. Further, for any vector v,
we denote by ‖v‖2 the `2 norm of v. For any tensor W, let ‖W‖F , ‖vec(W)‖. We also
denote ‖W‖2 as the spectral norm of the tensor W when used with a convolution operator.
For convolutional operators, we compute the true singular value with the method proposed
by Sedghi et al. (2018) through FFT.
We denote a tensor as A, vector as a, and scalar as A or a. For any 1 ≤ j ≤ k, consider
a k-th order tensor A and a j-th order tensor B where dimensions of B match the last j
dimensions of A. We then define the product operator ⊗j :

(A⊗j B)i1,...,ik−j
, 〈Ai1,...,ik−j

,B〉 , (7)
where i1, . . . , ik−j are indices. We also assume that the input images have dimension n× n
and there are κ classes. Given the number of input channels cin, number of output channels
cout, 2D square kernel with side length k, stride s, and padding p, we define the convolutional
layer convW,s,p as follows:

convW,s,p(X)i1,i2 , W⊗3patchs(i1−1)+1,s(i2−1)+1,k
(
padp(X)

)
∀1 ≤ i1, i2 ≤ b

n+ 2p− k
s

c
(8)

where W ∈ Rcout×cin×k×k is the convolutional parameter tensor, patchi,j,k(Z) is a k × k
patch of Z starting from the point (i, j), and padp is the padding operator which adds p
zeros to top, bottom, left and right of X:

padp(X)i1,i2,j =
{

Xi1,i2 p < i1, i2 ≤ n+ p

0 otherwise . (9)

We also define the max-pooling operator poolk,s,p as follows:

poolk,s,p(X)i1,i2,j = max(patchs(i1−1)+1,s(i2−1)+1
(
padp(X:,:,j)

)
) ∀1 ≤ i1, i2 ≤ b

n+ 2p− k
s

c
(10)

We denote by fW,s a convolutional network such that Wi ∈ Rci×ci−1×ki×ki is the convolu-
tion tensor and si is the convolutional stride at layer i. At Layer i, we assume the sequence
of convolution, ReLU and max-pooling where the max pooling has kernel k′i and stride s′i.
Lack of max-pooling in some layers can be achieved by setting k′i = s′i = 1. We consider
classification tasks and denote the number of classes by κ.

C Complexity Measures

In this section, we look at different complexity measures. When a measure µ is based on
a generalization bound, we chose it so that the following is true with probability 0.99 (we
choose the failure probability δ to be 0.01):

L ≤ L̂+
√
µ

m
(11)

We also definecolorredconsider? measures which do not provably bound the generalization
error and evaluate those.

16

Under review as a conference paper at ICLR 2020

Note that in almost all cases, the canonical ordering given based on some “common” assump-
tions are positively correlated with the generalization in terms of both τ and Ψ; however,
for optimizer, the correlation τ is close to 0. This implies that the choice of optimizer is
only essentially uncorrelated with the generalization gap in the range of models we consider.
This ordering helps validate many techniques used by the practioners.

C.1 VC-Dimension Based Measures

We start by restating the theorem in (Bartlett et al., 2019) which provides an upper bound
on the VC-dimension of any piece-wise linear network.

Theorem 1 (Bartlett et al. (2019)) Let F be the class of feed-forward networks with a
fixed computation graph of depth d and ReLU activations. Let ai and qi be the number of
activations and parameters in layer i. Then VC-dimension of F can be bounded as follows:

VC(F) ≤ d+
(

d∑
i=1

(d− i+ 1)qi

)
log2

8e
d∑
i=1

iai log2

4e
d∑
j=1

jaj

Theorem 2 Given a convolutional network f , for any δ > 0, with probability 1 − δ over
the the training set:

L ≤ L̂+ 4000

√
d log2 (6dn)3∑d

i=1 k
2
i cici−1

m
+
√

log(1/δ)
m

(12)

Proof We simplify the bound in Theorem 1 using a d′ to refer to the depth instead of d:

VC(F) ≤ d′ +

 d′∑
i=1

(d− i+ 1)qi

 log2

8e
d′∑
i=1

iai log2

4e
d′∑
j=1

jaj

≤ d′ +

 d′∑
i=1

(d′ − i+ 1)qi

 log2

8e
d′∑
i=1

iai

2

≤ d′ + 2 log2

8e
d′∑
i=1

iai

 d′∑
i=1

(d′ − i+ 1)qi

≤ 3d′ log2

8e
d′∑
i=1

iai

 d′∑
i=1

qi

In order to extend the above bound to a convolutional network, we need to present a pooling
layer with ReLU activations. First note that maximum of two inputs can be calculated using
two layers with ReLU and linear activations as max(x1, x2) = x1 + ReLU(x2 − x1). Now,
since max-pooling at layer i has kernel sizes k′i, we need d4 log2(k′i)e layers to present that
but given that the kernel size of the max-pooling layer is at most size of the image, we have

d4 log2(k′i)e ≤ d4 log2(n2)e ≤ d8 log2(n)e ≤ 9 log2(n)

Therefore, we have d′ ≤ 9d log2(n). The number of activations in any of these layers is at
most n2ci since there are at most n2 pairs of neighbor pixels in an n × n image with ci
channels. We ignore strides when calculating the upper bound since it only reduces number
of activations at a few layers and does not change the bound significantly. Using these

17

Under review as a conference paper at ICLR 2020

bounds ond′, ai and qi the equivalent network, we can bound the VC dimension as follows:

VC(F) ≤ 27d log2(n) log2
(
8e(9d log2(n))2n2) (9 log2(n))

d∑
i=1

k2
i ci−1(ci + 1)

≤ 729d log2(n)2 log2 (6dn)
d∑
i=1

k2
i ci−1(ci + 1)

≤ 729d log2 (6dn)3
d∑
i=1

k2
i ci−1(ci + 1)

For binary classifiers, generalization error can be in terms of Rademacher complexity (Mohri
et al., 2012) which in turn can be bounded by 72

√
VC/m(Kontorovich, 2016). Therefore,

we can get the following7 generalization bound:

L ≤ L̂+ 144
√
V C(F)
m

+
√

log(1/δ)
m

(13)

For multi-class classification, the generalization error can be similarly bounded by Graph
dimension which is an extension of VC-dimension. A simple approach get a bound on Graph
dimension is to consider all pairs of classes as binary classification problem which bounds
the graph dimension by κ2 V C(F). There, putting everything together, we get the following
generalization bound:

L ≤ L̂+ 4000κ

√
d log2 (6dn)3∑d

i=1 k
2
i ci−1(ci + 1)

m
+
√

log(1/δ)
m

(14)

Inspired by Theorem 2, we define the following V C-based measure for generalization:

µV C(fw) =

4000κ

√√√√d log2 (6dn)3
d∑
i=1

k2
i ci−1(ci + 1) +

√
log(1/δ)

2

(15)

Since some of the dependencies in the above measure are probably proof artifacts, we also
define another measure that is nothing but the number of parameters of the model:

µparam =
d∑
i=1

k2
i ci−1(ci + 1) (16)

C.1.1 Measures on the output of the network

While measures that can be calculated only based on the output of the network cannot reveal
complexity of the network, they can still be very informative for predicting generalization.
Therefore, we define a few measures that can be calculated solely based on the output of
the network.
We start by looking at the cross-entropy over the output. Even though we used a cross-
entropy based stopping criterion, the cross-entropy of the final models is not exactly the
same as the stopping criterion and it could be informative. Hence we define the following
measure:

µcross-entropy = 1
m

m∑
i=1

`(fw(Xi), yi) (17)

where ` is the cross entropy loss.
7The generalization gap is bounded by two times Rademacher Complexity, hence the constant

144.

18

Under review as a conference paper at ICLR 2020

Another useful and intuitive notion that appears in generalization bounds is margin. In
all measures that involve margin γ, we set the margin γ to be the 10-th percentile of the
margin values on the training set and therefore ensuring L̂γ ≤ 0.1. Even though margin
alone is not a sensible generalization measure and can be artificially increased by scaling up
the magnitude of the weights, it could still reveal information about training dynamics and
therefore be informative. We report the following measure based on the margin:

µ1/margin(fw) = 1
γ2 (18)

Finally, entropy of the output is another interesting measure and it has been shown that
regularizing it can improve generalization in deep learning (Pereyra et al., 2017). With
a fixed cross-entropy, increasing the entropy corresponds to distribute the uncertainty of
the predictions equally among the wrong labels which is connected to label smoothing and
increasing the margin. We define the following measure which is the negative entropy of the
output of the network:

µneg-entropy(fw) = 1
γ2

κ∑
j=1

pi[j] log(pi[j]) (19)

where pi[j] is the predicted probability of the class j for the input data Xi.

C.2 Norm/Margin Based Measures

Several generalization bounds have been proved for neural networks using margin and norm
notions. In this section, we go over several such measures. For fully connected networks,
Bartlett & Mendelson (2002) have shown a bound based on product of `1,∞ norm of the
layer weights times a 2d factor where `1,∞ is the maximum over hidden units of the `2 norm
of the incoming weights to the hidden unit. Neyshabur et al. (2015b) proved a bound based
on product of Frobenius norms of the layer weights times a 2d factor and Golowich et al.
(2017) was able to improve the factor to

√
d. Bartlett et al. (2017) proved a bound based

on product of spectral norm of the layer weights times sum over layers of ratio of Frobenius
norm to spectral norm of the layer weights and Neyshabur et al. (2018a) showed a similar
bound can be achieved in a simpler way using PAC-bayesian framework.

Spectral Norm Unfortunately, none of the above founds are directly applicable to con-
volutional networks. Pitas et al. (2017) built on Neyshabur et al. (2018a) and extended the
bound on the spectral norm to convolutional networks. The bound is very similar to the one
for fully connected networks by Bartlett et al. (2017). We next restate their generalization
bound for convolutional networks including the constants.

Theorem 3 (Pitas et al. (2017)) Let B an upper bound on the `2 norm of any point in
the input domain. For any B, γ, δ > 0, the following bound holds with probability 1− δ over
the training set:

L ≤ L̂γ +

√√√√(84B
∑d
i=1 ki

√
ci +

√
ln(4n2d)

)2∏d
i=1 ‖Wi‖22

∑d
j=1
‖Wj−W0

j‖2
F

‖Wj‖2
2

+ ln(mδ)

γ2m
(20)

Inspired by the above theorem, we define the following spectral measure:

µspec,init(fw) =

(
84B

∑d
i=1 ki

√
ci +

√
ln(4n2d)

)2∏d
i=1 ‖Wi‖22

∑d
j=1
‖Wj−W0

j‖2
F

‖Wj‖2
2

+ ln(mδ)

γ2

(21)
The generalization bound in Theorem 3 depends on reference tensors W0

i . We chose the
initial tensor as the reference in the above measure but another reasonable choice is the

19

Under review as a conference paper at ICLR 2020

origin which gives the following measures:

µspec-orig(fw) =

(
84B

∑d
i=1 ki

√
ci +

√
ln(4n2d)

)2∏d
i=1 ‖Wi‖22

∑d
j=1

‖Wj‖2
F

‖Wj‖2
2

+ ln(mδ)

γ2

(22)
Since some of the terms in the generalization bounds might be proof artifacts, we also
measure the main terms in the generalization bound:

µspec-init-main(fw) =

∏d
i=1 ‖Wi‖22

∑d
j=1
‖Wj−W0

j‖2
F

‖Wj‖2
2

γ2 (23)

µspec-orig-main(fw) =

∏d
i=1 ‖Wi‖22

∑d
j=1

‖Wj‖2
F

‖Wj‖2
2

γ2 (24)

We further look at the main two terms in the bound separately to be able to differentiate
their contributions.

µspec-init-main(fw) =

∏d
i=1 ‖Wi‖22

∑d
j=1
‖Wj−W0

j‖2
F

‖Wj‖2
2

γ2 (25)

µspec-orig-main(fw) =

∏d
i=1 ‖Wi‖22

∑d
j=1

‖Wj‖2
F

‖Wj‖2
2

γ2 (26)

µprod-of-spec/margin(fw) =
∏d
i=1 ‖Wi‖22
γ2 (27)

µprod-of-spec(fw) =
d∏
i=1
‖Wi‖22 (28)

µfro/spec(fw) =
d∑
i=1

‖Wi‖2F
‖Wi‖22

(29)

Finally, since product of spectral norms almost certainly increases with depth, we look at the
following measure which is equal to the sum over squared spectral norms after rebalancing
the layers to have the same spectral norms:

µsum-of-spec/margin(fw) = d

(∏d
i=1 ‖Wi‖22
γ2

)1/d

(30)

µsum-of-spec(fw) = d
(
‖Wi‖22

)1/d
(31)

Frobenius Norm The generalization bound given in Neyshabur et al. (2015b) is not
directly applicable to convolutional networks. However, Since for each layer i, we have
‖Wi‖2 ≤ k2

i ‖Wi‖F and therefore by Theorem 3, we can get an upper bound on the test
error based on product of Frobenius norms. Therefore, we define the following measure
based on the product of Frobenius norms:

µprod-of-fro/margin(fw) =
∏d
i=1 ‖Wi‖2F

γ2 (32)

µprod-of-fro(fw) =
d∏
i=1
‖Wi‖2F (33)

20

Under review as a conference paper at ICLR 2020

We also look at the following measure with correspond to sum of squared Frobenius norms
of the layers after rebalancing them to have the same norm:

µsum-of-fro/margin(fw) = d

(∏d
i=1 ‖Wi‖2F

γ2

)1/d

(34)

µsum-of-fro(fw) = d

(
d∏
i=1
‖Wi‖2F

)1/d

(35)

Finally, given recent evidence on the importance of distance to initialization (Dziugaite &
Roy, 2017; Nagarajan & Kolter, 2019; Neyshabur et al., 2018b), we calculate the following
measures:

µfrobenius-distance (fw) =
d∑
i=1

∥∥Wi −W0
i

∥∥2
F

(36)

µdist-spec-init(fw) =
d∑
i=1

∥∥Wi −W0
i

∥∥2
2 (37)

In case when the reference matrix W0
i = 0 for all weights, eq. 36 the Frobenius norm of the

parameters which also correspond to distance from the origin:

µparam-norm(fw) =
d∑
i=1
‖Wi‖2F (38)

Path-norm Path-norm was introduced in Neyshabur et al. (2015b) as an scale invariant
complexity measure for generalization and is shown to be a useful geometry for optimization
Neyshabur et al. (2015a). To calculate path-norm, we square the parameters of the network,
do a forward pass on an all-ones input and then take square root of sum of the network
outputs. We define the following measures based on the path-norm:

µpath-norm/margin(fw) =
∑
i f2

w
(1)[i]

γ2 (39)

µpath-norm(fw) =
∑
i

f2
w

(1) (40)

where w2 = w ◦w is the element-wise square operation on the parameters.

Fisher-Rao Norm Fisher-Rao metric was introduced in Liang et al. (2017) as a com-
plexity measure for neural networks. Liang et al. (2017) showed that Fisher-Rao norm is a
lower bound on the path-norm and it correlates in some cases. We define a measure based
on the Fisher-Rao matric of the network:

µFisher-Rao(fw) = (d+ 1)2

m

m∑
i=1
〈w,∇w`(fw(Xi)), yi〉2 (41)

where ` is the cross-entropy loss.

C.3 Flatness-based Measures

PAC-Bayesian framework (McAllester, 1999) allows us to study flatness of a solution and
connect it to generalization. Given a prior P is is chosen before observing the training
set and a posterior Q which is a distribution on the solutions of the learning algorithm
(and hence depends on the training set), we can bound the expected generalization error of
solutions generated from Q with high probability based on the KL divergence of P and Q.
The next theorem states a simplified version of PAC-Bayesian bounds.

21

Under review as a conference paper at ICLR 2020

Theorem 4 For any δ > 0, distribution D, prior P , with probability 1−δ over the training
set, for any posterior Q the following bound holds:

Ev∼Q [L(fv)] ≤ Ew∼Q

[
L̂(fv)

]
+

√
KL(Q||P) + log

(
m
δ

)
2(m− 1) (42)

If P and Q are Gaussian distributions with P = N (µP ,ΣP) amd Q = N (µQ,ΣQ), then
the KL-term can be written as follows:

KL(N (µQ,ΣQ)||N (µP ,ΣP)) = 1
2

[
tr
(
Σ−1
P ΣQ

)
+ (µQ − µP)>Σ−1

P (µQ − µP)− k + ln(det ΣP
det ΣQ

)
]
.

Setting Q = N (w, σ2I) and P = N (w0, σ2I) similar to Neyshabur et al. (2017), the KL

term will be simply ‖w−w0‖2
2

2σ2 . However, since σ belongs to prior, if we search to find a value
for σ, we need to adjust the bound to reflect that. Since we search over less than 20000
predefined values of σ in our experiments, we can use the union bound which changes the
logarithmic term to log(20000m/δ) and we get the following bound:

Eu∼N (u,σ2I) [L(fw+u)] ≤ Eu∼N (u,σ2I)

[
L̂(fw+u)

]
+

√
‖w−w0‖2

2
4σ2 + log(mσ) + 10

m− 1 (43)

Based on the above bound, we define the following measures using the origin and initializa-
tion as reference tensors:

µpac-bayes-init(fw) =
∥∥w−w0

∥∥2
2

4σ2 + log(m
σ

) + 10 (44)

µpac-bayes-orig(fw) =
‖w‖22
4σ2 + log(m

δ
) + 10 (45)

where σ is chosen to be the largest number such that Eu∼N (u,σ2I)

[
L̂(fw+u)

]
≤ 0.1.

The above framework captures flatness in the expected sense since we add Gaussian pertur-
bations to the parameters. Another notion of flatness is the worst-case flatness where we
search for the direction that changes the loss the most. This is motivated by (Keskar et al.,
2016) where they observe that this notion would correlate to generalization in the case of
different batch sizes. We can use PAC-Bayesian framework to give generalization bounds
for worst-case perturbations as well. The magnitude of a Gaussian variable with with vari-
ance σ2 is at most σ

√
2 log(2/δ) with probability 1 − δ/2. Applying a union bound on all

parameters, we get that with probability 1− δ/2 the magnitude of the Gaussian noise is at
most α = σ

√
2 log(2ω/δ) where ω is the number of parameters of the model. Therefore, we

can get the following generalization bound:

Eu∼N (u,σ2I) [L(fw+u)] ≤ max
|ui|≤α

L̂(fw+u) +

√
‖w−w0‖2

2 log(2ω/δ)
2α2 + log(2m

δ) + 10
m− 1 (46)

Inspired by the above bound, we define the following measures:

µsharpness-init(fw) =
∥∥w−w0

∥∥2
2 log(2ω)

4α2 + log(m
σ

) + 10 (47)

µsharpness-orig(fw) =
‖w‖22 log(2ω)

4α2 + log(m
δ

) + 10 (48)

where α is chosen to be the largest number such that max|ui|≤α L̂(fw+u) ≤ 0.1.
To understand the importance of the flatness parameters σ and α, we also define the fol-
lowing measures:

µpac-bayes-flatness(fw) = 1
σ2 (49)

µsharpness-flatness(fw) = 1
α2 (50)

where α and σ are computed as explained above.

22

Under review as a conference paper at ICLR 2020

Magnitude-aware Perturbation Bounds The magnitude of perturbation in (Keskar
et al., 2016) was chosen so that for each parameter the ratio of magnitude of perturbation
to the magnitude of the parameter is bounded by a constant α′8. Following a similar
approach, we can choose the posterior for parameter i in PAC-Bayesian framework to be
N (wi, σ′2|wi|2 + ε2). Now, substituting this in the Equation equation C.3 and solving for
the prior N (w0, σ2

P) that minimizes the KL term by setting the gradient with respect to
σP2 to zero, KL can be written as follows:

2KL(Q||P) = ω log
(
σ′2 + 1
ω

∥∥w−w0∥∥2
2 + ε2

)
−

ω∑
i=1

log
(
σ′2|wi − w0

i |2 + ε2
)

=
ω∑
i=1

log
(
ε2 + (σ′2 + 1)

∥∥w−w0
∥∥2

2 /ω

ε2 + σ′2|wi − w0
i |2

)
Therefore, the generalization bound can be written as follows

Eu [L(fw+u)] ≤ Eu

[
L̂(fw+u)

]
+

√√√√ 1
4
∑ω
i=1 log

(
ε2+(σ′2+1)‖w−w0‖2

2/ω

ε2+σ′2|wi−w0
i
|2

)
+ log(mδ) + 10

m− 1 (51)

where ui ∼ N (0, σ′2|wi| + ε2), ε = 1e − 3 and σ′ is chosen to be the largest number such
that Eu

[
L̂(fw+u)

]
≤ 0.1. We define the following measures based on the generalization

bound:

µpac-bayes-mag-init(fw) = 1
4

ω∑
i=1

log
(
ε2 + (σ′2 + 1)

∥∥w−w0
∥∥2

2 /ω

ε2 + σ′2|wi − w0
i |2

)
+ log(m

δ
) + 10 (52)

µpac-bayes-mag-orig(fw) = 1
4

ω∑
i=1

log
(
ε2 + (σ′2 + 1) ‖w‖22 /ω
ε2 + σ′2|wi − w0

i |2

)
+ log(m

δ
) + 10 (53)

We also follow similar arguments are before to get a similar bound on the worst-case sharp-
ness:

Eu [L(fw+u)] ≤ max
|ui|≤α′|wi|+ε

L̂(fw+u)+

√√√√ 1
4
∑ω
i=1 log

(
ε2+(α′2+4 log(2ω/δ))‖w−w0‖2

2/ω

ε2+α′2|wi−w0
i
|2

)
+ log(mδ) + 10

m− 1
(54)

We look at the following measures based on the above bound:

µpac-sharpness-mag-init(fw) = 1
4

ω∑
i=1

log
(
ε2 + (α′2 + 4 log(2ω/δ))

∥∥w−w0
∥∥2

2 /ω

ε2 + α′2|wi − w0
i |2

)
+ log(m

δ
) + 10

(55)

µpac-sharpness-mag-orig(fw) = 1
4

ω∑
i=1

log
(
ε2 + (α′2 + 4 log(2ω/δ)) ‖w‖22 /ω

ε2 + α′2|wi − w0
i |2

)
+ log(m

δ
) + 10

(56)

Finally, we look at measures that are only based the sharpness values computed above:

µpac-bayes-mag-flat(fw) = 1
σ′2

(57)

µsharpness-mag-flat(fw) = 1
α′2

(58)

where α and σ are computed as explained above.
8They actually used a slightly different version which is a combination of the two perturbation

bounds we calculated here. Here, for more clarity, we decomposed it into two separate perturbation
bounds.

23

Under review as a conference paper at ICLR 2020

C.4 Optimization-based Measures

There are mixed results about how the optimization speed is relevant to generalization. On
one hand we know that adding Batch Normalization or using shortcuts in residual architec-
tures help both optimization and generalization and Hardt et al. (2015) suggests that faster
optimization results in better generalization. On the other hand, there are empirical results
showing that adaptive optimization methods that are faster, usually generalize worse (Wil-
son et al., 2017). Here, we put these hypothesis into test by looking at the number of steps
to achieve cross entropy 0.1 and the number of steps needed to go from cross-entropy 0.1 to
0.01:

µ#steps-0.1-loss(fw) = #steps from initialization to 0.1 cross-entropy (59)
µ#steps-0.1-0.01-loss(fw) = #steps from 0.1 to 0.01 cross-entropy (60)

The above measures tell us if the speed of optimization at early or late stages can be
informative about generalization. We also define measures that look at the SGD gradient
noise after the first epoch and at the end of training at cross-entropy 0.01 to test the gradient
noise can be predictive of generalization:

µgrad-noise-epoch1(fw) = Var(X,y) S (∇w`(fw(X), y)) (61)
µgrad-noise-final(fw) = Var(X,y) S

(
∇w`(f1

w(X), y)
)

(62)

where w1 is the weight vector after the first epoch.

D Algorithms

We first lay out some common notations used in the pseudocode:

1. f : the architecture that takes parameter θ and input x and map to f(x; θ) which
is the predicted label of x

2. θ: parameters
3. M : Some kind of iteration; M1: binary search depth; M2: Monte Carlo Estimation

steps; M3: Iteration for estimating the loss
4. D = {(xi, yi)}ni=0 the dataset the model is trained on; B as a uniformly sampled

minibatch from the dataset.

Both search algorithm relies on the assumption that the loss increases monotonically with
the perturbation magnitude σ around the final weight. This assumption is quite mild and
in reality holds across almost all the models in this study.

Algorithm 1 EstimateAccuracy
1: Inputs: model f , parameter θ, dataset D , estimate iteration M
2: Initialize Accuracy = 0
3: for episode i = 1 to M do
4: B ∼ sample(D)
5: Accuracy += 1

|B|
∑
i δ(yi = f(Bi; θ))

6: end for
7: return Accuracy/M

Note that for finding the sharpness σ, we use the cross entropy as the differentiable surrogate
object instead of the 1-0 loss which is in general not differentiable. Using gradient ascent
brings another additional challenge that is for a converged model, the local gradient signal
is usually weak, making gradient ascent extremely inefficient. To speed up thie process,
we add a uniform noise with range being [−σnew/Nw, σnew/Nw] to lift the weight off the
flat minima where Nw is the number of parameters. This empirical greatly accelerates the
search.

24

Under review as a conference paper at ICLR 2020

Algorithm 2 Find σ for PAC-Bayesian Bound
1: Inputs: f , θ0, model accuracy `, target accuracy deviation d, Upper bound σmax, Lower

bound σmin, M1, M2, M3
2: Initialize
3: for episode i = 1 to M1 do
4: σnew = (σmax + σmin)/2
5: ˆ̀= 0
6: for step j = 0 to M2 do
7: θ ← θ0 +N (0, σ2

newI)
8: ˆ̀= ˆ̀+ EstimateAccuracy(f, θnew,D ,M3)
9: end for

10: ˆ̀= ˆ̀/M2
11: d̂ = |`− ˆ̀|
12: if d̂ < εd or σmax − σmin < εσ then
13: return σnew
14: end if
15: if d̂ > d then
16: σmax = σnew
17: else
18: σmin = σnew
19: end if
20: end for

Algorithm 3 Find σ for Sharpness Bound
1: Inputs: f , θ0, loss function L, model accuracy `, target accuracy deviation d, Upper

bound σmax, Lower bound σmin, M1, M2, M3, gradient steps M4
2: Initialize
3: for episode i = 1 to M1 do
4: σnew = (σmax + σmin)/2
5: ˆ̀=∞
6: for step j = 0 to M2 do
7: θ = θ0 + U(σnew/2)
8: for step k = 0 to M4 do
9: B ∼ sample(D)

10: θ = θ + η∇θ`(f,B, θ)
11: if ||θ|| > σnew then
12: θ = σnew · θ

||θ||
13: end if
14: end for
15: ˆ̀= min(ˆ̀,EstimateAccuracy(f, θnew,D ,M3))
16: end for
17: d̂ = |`− ˆ̀|
18: if d̂ < εd or σmax − σmin < εσ then
19: return σnew
20: end if
21: if d̂ > d then
22: σmax = σnew
23: else
24: σmin = σnew
25: end if
26: end for

Further, for magnitude aware version of the bounds, the overall algorithm stays the same
with the exception that now covariance matrices at line 7 of Algorithm 2 become as diagonal
matrix containing w2

i on the diagonal; similarly, for line 12 of Algorithm 3, the weight

25

Under review as a conference paper at ICLR 2020

clipping of each wi is conditioned on σnew|wi|, i.e. clipped to [−σnew|wi|, σnew|wi|]. Here
wi denotes the ith parameter of flattened w.

26

