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ABSTRACT

The Actor-Critic framework of multi-agent reinforcement learning(MARL) is gath-1

ering more attention nowadays. Centralized training with decentralized execution2

allows the policies to use extra information to ease the training while enhancing3

overall performance. In such a framework, the quality of critic profoundly impacts4

the final average rewards. Thus we present a method, called Scholastic-Actor-5

Critic(SMAC), that involves a more powerful critic to maintain efficiency in ample6

knowledge acquisition. The headmaster critic is designed to group agents with7

proper size and proper timing, while other critics update simultaneously at the8

decision time. The learning rule includes additional terms account for the impact9

of other agents within a group. Our method receives higher payouts compared to10

other state-of-the-art methods and is robust against the explosion of dimension11

during training. We apply our method to the Coin Game, the Cooperative Trea-12

sure Collection(CTC) (Lerer & Peysakhovich, 2017) and a dynamic battle game,13

MAgent(Zheng et al., 2018). Experiment results are all satisfying.14

1 INTRODUCTION15

MARL(Multi-Agent Reinforcement Learning) is gathering more attention in deep learning researches.16

Artificial agents thus perform better to interact both with other agents and humans in complex partially17

competitive or sequential dilemma occasions. MARL is a big topic with fully cooperative settings,18

competitive settings and mixed settings. It is still challenging to make decisions with inadequate19

information in applications, such as playing games, advertising and self-driving cars.20

The ability to maintain cooperation and competition in a variety of complicated situations is essential21

in MARL. Early works focus on improving policy or value constructing methods (Foerster et al.,22

2018b) (Silver et al., 2016) (Sukhbaatar et al., 2017)(Gupta et al., 2017), promoting more effectively23

opponent modeling methods (He et al., 2016)(Foerster et al., 2018a)(Metz et al., 2016)(Tesauro, 2004)24

and enhancing communication between opponents (Foerster et al., 2017) (Lerer & Peysakhovich,25

2017) (Das et al., 2017) (Foerster et al., 2016) (Mordatch & Abbeel, 2018) (Sukhbaatar et al., 2016)26

(Lauer & Riedmiller, 2000) (Matignon et al., 2007) (Omidshafiei et al., 2017).27

In cooperative-and-competitive settings, Iterated Prisoners’ Dilemma is a traditional problem, in28

which selfish actions usually lead to an overall bad result. At this time, cooperation maximizes social29

welfare, which leads to an average best outcome. In this setting, the measurement is the total of30

rewards of all agents, while randomly initialized agents usually pursue independent gradient descent31

on the specific value function. Lerer & Peysakhovich (2017) and Leibo et al. (2017) point out that32

reciprocity among agents results in a higher average reward. Peng et al. (2017) and Evans & Gao33

(2016) find that even in strongly adversarial settings, reciprocity shows its nontrivial value.34

In traditional Q methods, each agent’s policy changes over time, resulting in a non-stationary35

environment. In a non-stationary environment, agents are not able to make good use of naive36

experience replay. Recent years Lowe et al. (2017) propose the actor-critic framework(also called37

MADDPG), which combines offline and online learning, which enhances the ability for multi-agent38

learning. Then, (Yang et al., 2018)(MF-MARL), Iqbal & Sha (2018)(MAAC) and Jiang & Lu (2018)39

explore policy and communication optimizations within the Actor-Critic framework.40

We here propose the Scholastic-Multi-Actor-Critic method(SMAC), which aims to improve the ability41

of the critic. We want to train a more powerful critic, the headmaster critic that enables actors to42
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communicate more efficiently during training. The SMAC learns to control when and how an agent43

receives information from others. That is, the access of observations of an agent depends on the44

critic. This optional additional term when applied to a group of agents, leads to extra reciprocity and45

cooperation. The policy gradient is consistent with prior works presented by Sandholm and Crites46

Sandholm & Crites (1996) and Foerster et al. (2018a).47

Our approach enables high dimensional settings. We deploy experiments on the Coin Game4.1.1, the48

Cooperative Treasure Collection4.1.2 and the MAgent(Zheng et al., 2018). Our algorithm leads to49

the overall highest average return on these games. All agents using our method achieve the stable50

equilibrium with less training resources.51

2 RELATED WORKS52

As mentioned above, interactions between agents can either be cooperative, competitive or usually53

both. Model-free reinforcement learning algorithms in this domain could be concluded to value-based54

methods, policy-based methods and actor-critic methods.55

MADDPG (Lowe et al., 2017) combines offline and online learning that enhances the ability of56

multi-agent learning. It allows the policies to use extra information to ease the training. The critic is57

enlarged with extra information about the policies of other agents, while each actor only has access58

to local information. Local actors are used at the execution phase after training.59

COMA(Counterfactual Multi-Agent Policy Gradients) raised by Foerster et al. (2018b) is aimed60

to solve multi-agent credit assignment in cooperative settings. Before, each agent trains with his61

own critic so that the information sharing between them is insufficient, resulting in poor cooperation62

between agents. Therefore, the centralized critic firstly introduced in COMA to give a preliminary63

solution to this problem.64

MF-MARL, the Mean Field Multi-Agent Reinforcement method developed by Yang et al. (2018) try65

to model opponents by the use of Mean Field Theory under Q-learning and Actor-Critic methods. It66

uses numerical techniques that greatly reduce the cost of modeling opponents.67

Somewhat like COMA(Foerster et al., 2018b), MAAC (Iqbal & Sha, 2018)(Multi-Actor-Attention-68

Critic) considers to make full use of information and takes the attention mechanism within the69

centralized critic network. The experiment result shows that as the scale is growing, this method70

demonstrates its great effect. However, the requirement of computing is too high. On the other hand,71

ATOC (Jiang & Lu, 2018)(Learning Attentional Communication) decides to find a good communica-72

tion group for the initiator agents by attention methods, too. Nevertheless, the determination of the73

initiator is very vague, and as the decisive role, if the initial selection is not appropriate, the entire74

model will collapse.75

3 METHODS76

3.1 BACKGROUND77

3.1.1 STOCHASTIC GAME AND DEEP Q-NETWORKS78

A multi-agent stochastic game G is formulated by a tuple G = 〈S,A, P,O,R, n, γ〉. S denotes the79

state space, the configurations for all agents. Each agent takes ai ∈ A at every time step, forming80

joint actions a ∈ A ≡ An. To choose actions, each agent uses a policy πθi : Oi × Ai, which81

produces the next state according to the state transition function. P (s′|s,a) : S ×A× S → [0, 1]82

denotes transition probabilities of states, and oi ∈ O denotes observations. The reward function83

ri(s,a) : S × A → R specify rewards and γ ∈ [0, 1) is the discount factor, and for each agent,84

Rit =
∑∞
l=0 γ

lrit+l. Policy gradient methods update an agent’s policy, parameterised by θi.85

Provided and initial state s, the value function of agent i under the joint policy π could be formulated86

as:87

vjπ(s) = vj(s;π) =

∞∑
t=0

γtEπ,p
[
rjt |s0 = s, π

]
(1)
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We define the Q-function within the framework of N-agent games based on the Bellman equation in88

(1) such that the Q-function Qiπ for agent i under policy π could be recursively formulated as89

Qπ(s, a) = Es′ [r(s, a) + γEa′∼π [Qπ (s′, a′)]] (2)
, and deep Q-networks learn the action-value function Q∗ by minimizing the loss in (3):90

L(θ) = Es,a,r,s′
[
(Q∗(s, a|θ)− y)

2
]
, (3)

and91

y = r + γmax
a′

Q
∗

(s′, a′) (4)

where Q
∗

is the target Q function and its parameters update periodically with the most recent92

θ, which stabilize the learning. Besides, the experience replay buffer D = (s, a, r, s′) also used93

to stabilization. However, because agents are independently updating their policies as learning94

progresses, the environment appears non-stationary from the view of any one agent, violating Markov95

assumptions required for convergence of Q-learning. Foerster et al. (2017)’s approach point out,96

another difficulty is that the experience replay buffer cannot be used in such a setting since in general.97

3.1.2 POLICY GRADIENTS98

Policy gradient techniques (Sutton et al., 2000) aims to estimate the gradient of an agent’s expected99

returns with respect to the parameters of its policy. This gradient estimate takes the following form as100

(5):101

∇θJ (πθ) = Ea∼πθ

[
∇θ log (πθ (at|st))

∞∑
t′=t

γt
′−trt′ (st′ , at′)

]
(5)

3.1.3 ACTOR-CRITIC METHODS102

The term
∑∞
t′=t γ

t′−trt′ (st′ , at′) in the policy gradient estimator leads to high variance, as returns103

can vary drastically between training episodes. The Actor-critic method (Konda & Tsitsiklis, 2000)104

aims to ameliorate this issue by using a function to approximate the expected returns. Moreover, it105

replacs the original return term in the policy gradient estimator with this function. Siven a state and106

action, an agent under actor-critic methods learns a function to estimate expected discounted returns107

as: Qψ (st, at) = E
[∑∞

t′=t γ
t−trt′ (st′ , at′)

]
, it updates by minimizing the regression loss of:108

LQ(ψ) = Es,a,r,s′
[
(Qψ(s, a)− y)

2
]

(6)

where109

y = r(s, a) + γEa′∼π(s′)
[
Qψ (s′, a′)

]
(7)

in which Qψ is the target Q-value function. A recent approache(Haarnoja et al., 2018) applies a110

soft value function by modifying the policy gradient to incorporate an entropy term to encourage111

exploration and avoid converging to non-optimal deterministic policies. It could be formulated as:112

∇θJ (πθ) = Ea∼πθ [∇θ log (πθ(a|s)) (α log (πθ(a|s))−Qψ(s, a) + b(s))] (8)
where b(s) is a state-dependent baseline. The loss function for temporal difference learning is also113

revised with a new target, that is:114

y = r(s, a) + γEa′∼π(s′)
[
Qψ (s′, a′)− α log (πθ (a′|s′))

]
(9)

3.2 SCHOLASTIC-ACTOR-CRITIC115

Our method obeys the same paradigm of training critics centrally and executing learned policies116

distributedly. That is proposed to overcome the challenge of non-stationary environments. The main117

idea behind our approach is group discussion, which encourages agents to emulate those better than118

themselves with high efficiency. We design a more powerful critic, the headmaster critic, to learn119

how to group agents and determine when to communicate, that has the same effect of the attention120

mechanism. The additional critic has a global perspective of all agents and focuses on agents with121

highest and lowest rewards. Accounting for the impacts from opponents, observations and actions122

incorporate information into the estimation of each agent’s value function in the same group.123
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3.2.1 ASSIGNMENT OF GROUPS124

Expand the setting of MAAC(Iqbal & Sha, 2018), we introduce a headmaster critic to assign125

communication groups. The critic randomly selects n collections with random size s and changes126

every k epchos. After selecting n collections, we take the average contirbutions from each group(super127

agent, sa), and apply the following loss function:128

LQ(ψ) =

N∑
i=1

E(o,sa,r,o′)∼D

[(
Qψi (o, sa)− yi

)2]
(10)

where129

yi = ri + γEsa′∼πθ(o′)
[
Qψi (o′, sa′)

]
(11)

The action-value Qψi (o, sa) function estimates outcomes in group i from 1 to n, which receives130

observations and actions of agents. To avoid the degradation, we set threshold for n as n/2 and s as131

s > 1.132

3.2.2 CIRTICS IN GROUPS133

Critics within the same group updated together to minimize a joint regression loss function:134

LQ(ψ) =

N∑
i=1

E(o,a,r,o′)∼D

[(
Qψi (o, a)− yi

)2]
(12)

Note that Qψi (o, a),the action-value estimate for agent i, receives observations and actions for partial135

agents. Where,136

yi = ri + γEa′∼πθ(o′)
[
Qψi (o′, a′)− α log

(
πθi (a′i|o′i)

)
+ Γ

]
(13)

137

Γ = ω log
(
πθi (a′i|o′others)

)
+ σ log

(
πθi (a′i|o′others)

)
(14)

in which ψ and θ are the parameters of the target critics and target policies, respectively.138

3.2.3 AGENTS IN GROUPS139

To calculate the Q-value function Qψi (o, a) for agent i, the critic receives the observations o =140

(o1, . . . , oN ) and actions a = (a1, . . . , aN ) for all agents in a group. Then other agents’ contributions141

could be formulated as 15. where gi is a two-layer MLP(multi-layer perceptron) embedding function142

and fi is a softmax function. It could be formulated as:143

Qψi (o, a) = fi (gi (oi, ai)) (15)

As shown in Foerster et al. (2018b), an advantage function using a baseline that only marginalizes out144

the actions of the given agent from Q. It helps in credit assigning. In other words, by comparing the145

value of specific actions to an average action, an agent could learn whether the action he made would146

cause an increase in expected return. Thus the individual policies are updated with the following147

gradient:148

∇θiJ (πθ) = Ea∼πθ

[
∇θi log (πθi (ai|oi))

(
α log (πθi (ai|oi))−Qψi (o, a) + b (o, aothers)

)]
(16)

Ai(o, a) = Qψi (o, a)− b (o, aothers)
)

b (o, aothers) = Eai∼πi(oi)
[
Qψi (o, (ai, aothers))

] (17)
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b(o, a) is the multi-agent baseline that used to calculate the advantage function.149

We implement a more general and flexible form of a multi-agent baseline. We do not apply a global150

reward, but naturally decompose an agent’s encoding observations and the average of encodings of151

other agents.152

Eai∼πi(oi)
[
Qψi (o, (ai, aothers))

]
=
∑
a′i∈Ai

π (a′i|oi)Qi (o, (a′i, aothers)) (18)

As shown above, we output the value for every action and add an observation-encoder as Ei = gi (oi).153

For each agent, using these encodings in place of the Ei = gi (oi, ai) described above, and modify fi154

such that it outputs a value for each possible action. We can estimate the expectation by sampling155

actions from our policy and averaging their Q-values. So we do not need to add any parameters in the156

case of continuous policies.157

4 EXPERIMENTS158

4.1 SETUP159

We operate our algorithms in various settings, including the Coin Game 4.1.1, Cooperative Treasure160

Collection(CTC) (Lerer & Peysakhovich, 2017) 4.1.2 and MAgent(Zheng et al., 2018) (a cooperative-161

competitive battle game in the Open-source MAgent system) that tests capabilities of our approach162

and baselines. The three games we raised, from simple to complex, are all facing iterated prisoners163

dilemmas(Luce & Raiffa, 1958). For each setting, we study the scalability of different methods as the164

number of agents grows and evaluate their ability to attend to information relevant to rewards.165

4.1.1 COIN GAME166

The Coin Game is a higher dimensional alternative of IPD (iterated prisoners dilemma), which167

is convenient to make comparisons to previous works. As shown in 1, two agents with red and168

blue colors are tasked to collect coins which are either red or blue on the grids. A new coin with169

random color appears randomly after the last one is picked up. Agents move to a coin’s position and170

both receive a point after picking it up while the agent with a different color loses 2 points. When171

they only pick up coins with their own color, the total return is maximized. While players usually172

pick up different ones. Therefore the maximum achievable collective return is approximately 50 in173

expectation if neither agent chooses to defect and both agents collect all coins of their own color. In174

this game we define niceness as n (st, at) to be part of the measurement. If an agent takes action ait,175

picks up a coin which penalizes the other players, n (st, at) = −1. We use recent defections as the176

measure of niceness N(T ) =
∑t
i=1 λ

t−in (si, ai) at time T .177

4.1.2 COOPERATIVE TREASURE COLLECTION178

Cooperative Treasure Collection(CTC), as shown in 1, is a variant of Coin Game in which agents179

play roles as hunter or bank. ”Hunter”s are tasked to collect the treasure of any color and deposit180

them into the corresponding colored bank. The ”Bank”s are tasked to gather as much treasure as181

possible from the ”Hunter”s simply. Agents could see each others’ positions and concern their own.182

”Hunter”s receive a global reward for the successful collection of treasure, and all agents receive a183

global reward of the depositing amount. ”Hunter”s will additionally penalized for colliding with each184

other. As such, the task contains a mixture of shared and individual rewards. It requires different185

”modes of attention” which depends on the agent’s state and other agents’ potential actions that affects186

its rewards.187

4.1.3 MAGENT188

The mixed cooperative-competitive battle game, MAgent(Zheng et al., 2018),is a more complex189

multi-player environment. Agents are devided into armies, and required to take a series of actions190

while exact discounted reward cannot be assessed. Each army consists of homogeneous agents, and191

the goal of them is to get more rewards by collaborating with teammates to defeat all opponents.192
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Figure 1: The Coin Game and the Cooperative Treasure Collection Game

Table 1: The average rewards compared to other methods with growing of the scale in the convergent
training stages.
Game Agents MADDPG+SAC MARL MAAC ATOC Ours(SMAC)

CTC

8 -3.9 3.4 -4.7 3.1 2.8
16 17.6 11.7 0.8 1.5 3.4
32 32.1 14.8 10.1 13.0 13.2
64 41.2 18.9 23.3 24.2 24.5

128 77.3 29.5 64.1 65.8 78.1

MAgent

8 - 3.4 4.9 -2.7 0.8
16 - 14.7 27.9 26.5 27.0
32 - 32.5 29.5 28.6 30.7
64 - 34.8 35.4 39.1 41.5

128 - 35.6 56.1 40.6 57.7

*Note that the number of agents for each group in MAgent is half of the total. And all values are
normalized into 0 to 100.

Agents can take actions to either move to or attack others on nearby grids. Ideally, the agents are able193

to learn skills such as chasing to hunt, escaping from enemies or working with teammates.194

4.2 BASELINES195

We have compared our method to recently proposed state-of-art methods in the multi-agent learning196

field: (1)DDPG(Lillicrap et al., 2015), (2)MADDPG(Lowe et al., 2017), (3)MF-MARL(Yang et al.,197

2018), (4)MAAC(Iqbal & Sha, 2018) (5)ATOC(Jiang & Lu, 2018).198

As mentioned in MAAC(Iqbal & Sha, 2018), we do some modifications on some algorithms for exper-199

iments. Since deterministic policies are not possible, we use the Gumbel-Softmax reparametrization200

trick for learning in discrete action spaces for both MADDPG(Lowe et al., 2017) and DDPG(Lillicrap201

et al., 2015). The modified versions are referred to as MADDPG (Discrete) and DDPG (Discrete).202

For a detailed description of this reparametrization, we use a soft actor-critic method (Haarnoja et al.,203

2018) to optimize. We implement MADDPG with Soft Actor-Critic, named as MADDPG+SAC. Then204

the baselines are (1)DDPG (Discrete) (2)MADDPG (Discrete) (3)MADDPG+SAC (4)MF-MARL205

(5)ATOC.206

Hyperparameters are tuned based on performance and kept constant across all variants of critic207

architectures. All methods are re-implemented such that their approximate total number of parameters208

(across agents) is close to our approach. These models are trained with eight random seeds each.209
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(a) (b)

(c)

Figure 2: Results of our methods and others. In Coin Game(a) and CTC(b), methods involve
DDPG(Discrete)4.2, MADDPG(Discrete)4.2, MAAC(Iqbal & Sha (2018)) , MF-MARL(Iqbal & Sha
(2018)) and ATOC(Jiang & Lu, 2018). In MAgent(c)(Zheng et al., 2018), we compare our method to
MF-MARLYang et al. (2018), MAACIqbal & Sha (2018) and ATOC(Jiang & Lu, 2018).

4.3 RESULTS AND DISCUSSION210

We first compare the average rewards attained by all approaches. We normalized by the range211

of awards achieved in an environment, as the number of agents changes. The proposed approach212

(SMAC) is competitive with other state-of-the-art approaches as shown in 4.3. In the Coin Game,213

most algorithms show a pleasing result while the MARL method shows less poorly performance.214

MAAC is competitive with our approach in both the Coin Game and the CTC environment. On the215

other hand, DDPG(Discrete), MADDPG (Discrete), MADDPG+SAC and MARL don’t perform well216

on CTC. We infer that due to the simplicity of action modes and the limited scale of agents, it’s not217

hard for agents to learn tricks. Moreover, each agent’s local observation provides enough information218

to make a decent prediction of its expected rewards.219

However, agents within MAgent(Zheng et al., 2018) dynamics over time so that it’s not capable for220

DDPG(Discrete), MADDPG (Discrete), MADDPG+SAC break down. Thus we compare our method221

to MF-MARL(mean field-MARL,Yang et al. (2018), MAAC(Iqbal & Sha (2018)) and ATOC(Jiang222

& Lu, 2018). For all methods, rewards firstly are under zero, but along with the process of training,223

the reward gradually grows and finally stop in different levels. In this game, subgroups of agents224

are interacting and performing coordinated tasks with separate rewards while the components are225
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changing over time. Thus it exemplifies why dynamic attention can be beneficial. MAAC(Iqbal &226

Sha (2018) and ATOC(Jiang & Lu, 2018) take more iterations to reach a stationary state.227

Further, we explore the improvements with growing scale as shown in Table 1. DDPG(Discrete)228

and MADDPG(Discrete) could not handle a hige dimentional learning. MADDPG with SAC and229

MF-MARL(mean field-MARL,Yang et al. (2018) are barely satisfactory. But MAAC(Iqbal & Sha230

(2018)), ATOC(Jiang & Lu, 2018) and SMAC(ours) steadily performs when the number of agents231

increases. In future research, we will continue to improve the scalability when the number of agents232

further increases by sharing policies among agents and performing attention on sub-groups (of agents).233

We anticipate that in complicated scenarios, our method could work well.234

5 CONCLUSIONS235

We propose an algorithm, the SMAC(Scholastic-Actor-Critic) for training decentralized policies236

in multi-agent settings. We design a more powerful critic, the headmaster critic to learn how to237

group agents and when to communicate besides conventional ones. We also adapt useful advantage238

functions that avoid converging to non-optimal deterministic policies. We analyze the performance239

of the proposed approach compared the state-of-the-art methods on the Coin Game, CTC(Lerer &240

Peysakhovich, 2017), and MAgent(Zheng et al., 2018), concerning the number of agents. Thanks to241

the flexible setting, our results are promising in dynamic occasions with small training expenses. We242

intend to explore more to highly complex and dynamic environments.243
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