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ABSTRACT

The goal of imitation learning (IL) is to learn a good policy from high-quality
demonstrations. However, the quality of demonstrations in reality can be diverse,
since it is easier and cheaper to collect demonstrations from a mix of experts and
amateurs. IL in such situations can be challenging, especially when the level
of demonstrators’ expertise is unknown. We propose a new IL paradigm called
Variational Imitation Learning with Diverse-quality demonstrations (VILD), where
we explicitly model the level of demonstrators’ expertise with a probabilistic
graphical model and estimate it along with a reward function. We show that a naive
estimation approach is not suitable to large state and action spaces, and fix this
issue by using a variational approach that can be easily implemented using existing
reinforcement-learning methods. Experiments on continuous-control benchmarks
demonstrate that VILD outperforms state-of-the-art methods. Our work enables
scalable and data-efficient IL under more realistic settings than before.

1 INTRODUCTION

The goal of sequential decision making is to learn a policy that makes good decisions (Puterman,
1994). As an important branch of sequential decision making, imitation learning (IL) (Schaal, 1999)
aims to learn such a policy from demonstrations (i.e., sequences of decisions) collected from experts.
However, high-quality demonstrations can be difficult to obtain in reality, since such experts may not
always be available and sometimes are too costly (Osa et al., 2018). This is especially true when the
quality of decisions depends on specific domain-knowledge not typically available to amateurs; e.g.,
in applications such as robot control (Osa et al., 2018) and autonomous driving (Silver et al., 2012).

In practice, demonstrations are often diverse in quality, since it is cheaper to collect demonstrations
from mixed demonstrators, containing both experts and amateurs (Audiffren et al., 2015). Unfortu-
nately, IL in such settings tends to perform poorly, since low-quality demonstrations often negatively
affect the performance of IL methods (Shiarlis et al., 2016). For example, amateurs’ demonstrations
for robotics can be cheaply collected via a robot simulation (Mandlekar et al., 2018), but such
demonstrations may cause damages to the robot which is catastrophic in the real-world (Shiarlis
et al., 2016). Similarly, demonstrations for autonomous driving can be collected from drivers in
public roads (Fridman et al., 2017), which may contain traffic-accident demonstrations. Learning a
self-driving car from these low-quality demonstrations may cause traffic accidents.

When the level of demonstrators’ expertise is known, multi-modal IL (MM-IL) can be used to learn a
good policy with diverse-quality demonstrations (Li et al., 2017; Hausman et al., 2017; Wang et al.,
2017). Specifically, MM-IL aims to learn a multi-modal policy, where each mode of the policy
represents the decision making of each demonstrator. When knowing the level of demonstrators’
expertise, good policies can be obtained by selecting modes that correspond to the decision making
of high-expertise demonstrators. However, in practice, it is difficult to truly determine the level
of demonstrators’ expertise beforehand. Without knowing the level of expertise, it is difficult to
distinguish the decision making of experts and amateurs, and learning a good policy is challenging.

To overcome the issue of MM-IL, pioneer works have proposed to estimate the quality of each
demonstration using auxiliary information from experts (Audiffren et al., 2015; Wu et al., 2019;
Brown et al., 2019). Specifically, Audiffren et al. (2015) inferred the demonstration quality using
similarities between diverse-quality demonstrations and high-quality demonstrations, where the latter

1



Under review as a conference paper at ICLR 2020

are collected in a small number from experts. In contrast, Wu et al. (2019) proposed to estimate the
demonstration quality using a small number of demonstrations with confidence scores. Namely, the
score value given by an expert is proportion to the demonstration quality. Similarly, the demonstration
quality can be estimated by ranked demonstrations, where ranking from an expert is evaluated due
to the relative quality (Brown et al., 2019). To sum up, these methods rely on auxiliary information
from experts, namely high-quality demonstrations, confidence scores, and ranking. In practice, these
pieces of information can be scarce or noisy, which leads to a poor performance of these methods.

In this paper, we consider a novel but realistic setting of IL where only diverse-quality demonstrations
are available. Meanwhile, the level of demonstrators’ expertise and auxiliary information from
experts are fully absent. To tackle this challenging setting, we propose a new learning paradigm
called variational imitation learning with diverse-quality demonstrations (VILD). The central idea of
VILD is to model the level of demonstrators’ expertise via a probabilistic graphical model, and learn
it along with a reward function that represents an intention of expert’s decision making. To scale
up our model for large state and action spaces, we leverage the variational approach (Jordan et al.,
1999), which can be implemented using reinforcement learning (RL) for flexibility (Sutton & Barto,
1998). To further improve data-efficiency of VILD when learning the reward function, we utilize
importance sampling (IS) to re-weight a sampling distribution according to the estimated level of
demonstrators’ expertise. Experiments on continuous-control benchmarks demonstrate that: 1) VILD
is robust against diverse-quality demonstrations and outperforms existing methods significantly. 2)
VILD with IS is data-efficient, since it learns the policy using a less number of transition samples.

2 IL FROM DIVERSE-QUALITY DEMONSTRATIONS AND ITS CHALLENGE

Before delving into our main contribution, we first give the minimum background about RL and IL.
Then, we formulate a new setting in IL called diverse-quality demonstrations, discuss its challenge,
and reveal the deficiency of existing methods.

Reinforcement learning. Reinforcement learning (RL) (Sutton & Barto, 1998) aims to learn an
optimal policy of a sequential decision making problem, which is often mathematically formulated
as a Markov decision process (MDP) (Puterman, 1994). We consider a finite-horizon MDP with
continuous state and action spaces defined by a tuple M “ pS,A, pps1|s,aq, p1ps1q, rps,aqq with a
state st P S Ď Rds , an action at P A Ď Rda , an initial state density p1ps1q, a transition probability
density ppst`1|st,atq, and a reward function r : S ˆ A ÞÑ R, where the subscript t P t1, . . . , T u
denotes the time step. A sequence of states and actions, ps1:T ,a1:T q, is called a trajectory. A decision
making of an agent is determined by a policy πpat|stq, which is a conditional probability density of
action given state. RL seeks for an optimal policy π‹pat|stqwhich maximizes the expected cumulative
reward: Epπps1:T ,a1:T qrΣ

T
t“1rpst,atqs, where pπps1:T ,a1:T q “ p1ps1qΠ

T
t“1ppst`1|st,atqπpat|stq is

a trajectory probability density induced by π. RL has shown great successes recently, especially when
combined with deep neural networks (Silver et al., 2017). However, a major limitation of RL is that it
relies on the reward function which may be unavailable in practice (Schaal, 1999).

Imitation learning. To address the above limitation of RL, imitation learning (IL) was pro-
posed (Schaal, 1999). Without using the reward function, IL aims to learn the optimal policy
from demonstrations that encode information about the optimal policy. A common assumption in
most IL methods is that, demonstrations are collected by K ě 1 demonstrators who execute actions
at drawn from π‹pat|stq for every states st. A graphical model describing this data collection process
is depicted in Figure 1(a), where a random variable k P t1, . . . ,Ku denotes each demonstrator’s
identification number and ppkq denotes the probability of collecting a demonstration from the k-th
demonstrator. Under this assumption, demonstrations tps1:T ,a1:T , kqnu

N
n“1 (i.e., observed random

variables in Figure 1(a)) are called expert demonstrations and are regarded to be drawn independently
from a probability density p‹ps1:T ,a1:T qppkq “ ppkqp1ps1qΠ

T
t“1ppst`1|st,atqπ

‹pat|stq. We note
that k does not affect the trajectory density p‹ps1:T ,a1:T q and can be omitted. We assume a common
assumption that p1ps1q and ppst`1|st,atq are unknown but we can sample states from them.

IL has shown great successes in benchmark settings (Ho & Ermon, 2016; Fu et al., 2018; Peng et al.,
2019). However, practical applications of IL in the real-world is relatively few (Schroecker et al.,
2019). One of the main reasons is that most IL methods aim to learn with expert demonstrations. In
practice, such demonstrations are often too costly to obtain due to a limited number of experts, and
even when we obtain them, the number of demonstrations is often too few to accurately learn the
optimal policy (Audiffren et al., 2015; Wu et al., 2019; Brown et al., 2019).
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(b) Diverse-quality demonstrations.

Figure 1: Graphical models describe expert demonstrations and diverse-quality demonstrations.
Shaded and unshaded nodes indicate observed and unobserved random variables, respectively. Plate
notations indicate that the sampling process is repeated for N times. st P S is a state with transition
densities ppst`1|st,atq, at P A is an action with density π‹pat|stq, ut P A is a noisy action with
density pput|st,at, kq, and k P t1, . . . ,Ku is an identification number with distribution ppkq.

New setting in IL: Diverse-quality demonstrations. To improve practicality of IL, we consider
a new learning paradigm called IL with diverse-quality demonstrations, where demonstrations are
collected from demonstrators with different level of expertise. Compared to expert demonstrations,
diverse-quality demonstrations can be collected more cheaply, e.g., via crowdsourcing (Mandlekar
et al., 2018). The graphical model in Figure 1(b) depicts the process of collecting such demonstrations
from K ą 1 demonstrators. Formally, we select the k-th demonstrator according to a distribution
ppkq. After selecting k, for each time step t, the k-th demonstrator observes state st and samples
action at using π‹pat|stq. However, the demonstrator may not execute at in the MDP if this
demonstrator is not expertised. Instead, he/she may sample an action ut P A with another probability
density pput|st,at, kq and execute it. Then, the next state st`1 is observed with a probability density
ppst`1|st,utq, and the demonstrator continues making decision until time step T . We repeat this
process for N times to collect diverse-quality demonstrations Dd “ tps1:T ,u1:T , kqnu

N
n“1. These

demonstrations are regarded to be drawn independently from a probability density

pdps1:T ,u1:T |kqppkq “ ppkqpps1q
T
ź

t“1

p1pst`1|st,utq

ż

A
π‹pat|stqpput|st,at, kqdat. (1)

We refer to pput|st,at, kq as a noisy policy of the k-th demonstrator, since it is used to execute a
noisy action ut. Our goal is to learn the optimal policy π‹ using diverse-quality demonstrations Dd.

The deficiency of existing methods. We conjecture that existing IL methods are not suitable to
learn with diverse-quality demonstrations according to pd. Specifically, these methods always treat
observed demonstrations as if they were drawn from p‹. By comparing p‹ and pd, we can see that ex-
isting methods would learn πput|stq such that πput|stq « ΣKk“1ppkq

ş

A π
‹pat|stqpput|st,at, kqdat.

In other words, they learn a policy that averages over decisions of all demonstrators. This would be
problematic when amateurs are present, as averaged decisions of all demonstrators would be highly
different from those of all experts. Worse yet, state distributions of amateurs and experts tend to be
highly different, which often leads to the unstable learning: The learned policy oscillated between
well-performed policy and poorly-performed policy. For these reasons, we believe that existing
methods tend to learn a policy that achieves average performances, and are not suitable for handling
the setting of diverse-quality demonstrations.

3 VILD: A ROBUST METHOD FOR DIVERSE-QUALITY DEMONSTRATIONS

This section presents VILD, namely a robust method for tackling the challenge from diverse-quality
demonstrations. Specifically, we build a probabilistic model that explicitly describes the level of
demonstrators’ expertise and a reward function (Section 3.1), and estimate its parameters by a
variational approach (Section 3.2), which can be implemented easily by RL (Section 3.3). We also
improve data-efficiency by using importance sampling (Section 3.4). Mathematical derivations are
provided in Appendix A.

3



Under review as a conference paper at ICLR 2020

3.1 MODELING DIVERSE-QUALITY DEMONSTRATIONS

This section describes a model which enables estimating the level of demonstrators’ expertise. We
first describe a naive model, whose parameters can be estimated trivially via supervised learning, but
suffers from the issue of compounding error. Then, we describe our proposed model, which avoids
the issue of the naive model by learning a reward function.

Naive model. Based on pd, one of the simplest models to handle diverse-quality demonstrations is
pθ,ωps1:T ,u1:T , kq “ ppkqpps1qΠ

T
t“1ppst`1|st,utq

ş

A πθpat|stqpωput|st,at, kqdat, where πθ and
pω are learned to estimate the optimal policy and the noisy policy, respectively. The parameters θ
and ω can be learned by minimizing the Kullback-Leibler (KL) divergence from the data distribution
to the model. This naive model can be regarded as an extension of a model proposed by Raykar et al.
(2010) for handling diverse-quality data in supervised learning.

The main advantage of this naive model is that its parameters can be estimated trivially via supervised
learning. However, this native model suffers from the issue of compounding error (Ross & Bagnell,
2010) and tends to perform poorly. Specifically, supervised-learning methods assume that data
distributions during training and testing are identical. However, data distributions during training and
testing are different in IL, since data distributions depend on policies (Puterman, 1994). A discrepancy
of data distributions causes compounding errors during testing, where prediction errors increase
further in future predictions. Due to this issue, supervised-learning methods often perform poorly
in IL (Ross & Bagnell, 2010). The issue becomes even worse with diverse-quality demonstrations,
since data distributions of different demonstrators tend to be highly different. For these reasons, this
naive model is not suitable for our setting.

Proposed model. To avoid the issue of compounding error, our method utilizes the inverse RL (IRL)
approach (Ng & Russell, 2000), where we aim to learn a reward function from diverse-quality
demonstrations1. IL problems can be solved by a combination of IRL and RL, where we learn a
reward function by IRL and then learn a policy from the reward function by RL. This combination
avoids the issue of compounding error, since the policy is learned by RL which generalizes to states
not presented in demonstrations (Ho & Ermon, 2016).

Specifically, our proposed model is based on a model of maximum entropy IRL (MaxEnt-
IRL) (Ziebart et al., 2010). Briefly speaking, MaxEnt-IRL learns a reward function from expert
demonstrations by using a model pφps1:T ,a1:T q 9 pps1qΠ

T
t“1p1pst`1|st,atq expprφpst,atqq. Based

on this model, we propose to learn the reward function and the level of expertise by a model

pφ,ωps1:T ,u1:T , kq 9 ppkqp1ps1q
T
ź

t“1

ppst`1|st,utq

ż

A
exp prφpst,atqq pωput|st,at, kqdat, (2)

where φ and ω are parameters. We denote a normalization term of this model by Zφ,ω . By comparing
the proposed model pφ,ω to the data distribution pd, the reward parameter φ should be learned so
that the cumulative reward is proportion to a joint probability density of actions given by the optimal
policy, i.e., exppΣTt“1rφpst,atqq 9 ΠT

t“1π
‹pat|stq. In other words, the cumulative reward is large

for trajectories induced by the optimal policy. Therefore, the optimal policy can be learned by
maximizing the cumulative reward. Meanwhile, the density pωput|st,at, kq is learned to estimate
the noisy policy pput|st,at, kq. In the remainder, we refer to ω as an expertise parameter.

To learn parameters of this model, we propose to minimize the KL divergence from the
data distribution to the model: minφ,ω KLppdps1:T ,u1:T |kqppkq||pφ,ωps1:T ,u1:T , kqq. By
rearranging terms and ignoring constant terms, minimizing this KL divergence is equiv-
alent to solving an optimization problem maxφ,ω fpφ,ωq ´ gpφ,ωq, where fpφ,ωq “

Epdps1:T ,u1:T |kqppkqrΣ
T
t“1 logp

ş

A expprφpst,atqqpωput|st,at, kqdatqs and gpφ,ωq “ logZφ,ω. To
solve this optimization, we need to compute the integrals over both state space S and action space A.
Computing these integrals is feasible for small state and action spaces, but is infeasible for large state
and action spaces. To scale up our model to MDPs with large state and action spaces, we leverage a
variational approach in the followings.

1We emphasize that IRL is different from RL; IRL learns a reward function from demonstrations, whereas
RL learns an optimal policy from a known reward function.
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3.2 VARIATIONAL APPROACH FOR PARAMETER ESTIMATION

The central idea of the variational approach is to lower-bound an integral by the Jensen inequality and
a variational distribution (Jordan et al., 1999). The main benefit of the variational approach is that the
integral can be indirectly computed via the lower-bound, given an optimal variational distribution.
However, finding the optimal distribution often requires solving a sub-optimization problem.

Before we proceed, notice that fpφ,ωq ´ gpφ,ωq is not a joint concave function of the integrals,
and this prohibits using the Jensen inequality. However, we can separately lower-bound f and g
by the Jensen inequality, since they are concave functions of their corresponding integrals. Specifi-
cally, let lφ,ωpst,at,ut, kq “ rφpst,atq ` log pωput|st,at, kq. By using a variational distribution
qψpat|st,ut, kq with parameter ψ, we obtain an inequality fpφ,ωq ě Fpφ,ω,ψq, where

Fpφ,ω,ψq “ Epdps1:T ,u1:T |kqppkq

”

řT
t“1Eqψpat|st,ut,kq rlφ,ωpst,at,ut, kqs `Htpqψq

ı

, (3)

and Htpqψq “ ´Eqψpat|st,ut,kq rlog qψpat|st,ut, kqs. It is trivial to verify that the equality
fpφ,ωq “ maxψ Fpφ,ω,ψq holds (Jordan et al., 1999), where the maximizer ψ‹ of the lower-
bound yields qψ‹pat|st,ut, kq 9 expplφ,ωpst,at,ut, kqq. Therefore, the function fpφ,ωq can be
substituted by maxψ Fpφ,ω,ψq. Meanwhile, by using a variational distribution qθpat,ut|st, kq
with parameter θ, we obtain an inequality gpφ,ωq ě Gpφ,ω,θq, where

Gpφ,ω,θq “ E
rqθps1:T ,u1:T ,a1:T ,kq

”

řT
t“1lφ,ωpst,at,ut, kq ´ log qθpat,ut|st, kq

ı

, (4)

and rqθps1:T ,u1:T ,a1:T , kq “ ppkqp1ps1qΠ
T
t“1ppst`1|st,utqqθpat,ut|st, kq. The lower-bound G

resembles an objective function of maximum entropy RL (MaxEnt-RL) (Ziebart et al., 2010). By
using the optimality results of MaxEnt-RL (Haarnoja et al., 2018), we have an equality gpφ,ωq “
maxθ Gpφ,ω,θq. Therefore, the function gpφ,ωq can be substituted by maxθ Gpφ,ω,θq.
By using these lower-bounds, we have that maxφ,ω fpφ,ωq ´ gpφ,ωq “ maxφ,ω,ψ Fpφ,ω,ψq ´
maxθ Gpφ,ω,θq “ maxφ,ω,ψ minθ Fpφ,ω,ψq ´ Gpφ,ω,θq. Solving the max-min problem is
often feasible even for large state and action spaces, since Fpφ,ω,ψq and Gpφ,ω,θq are defined
as an expectation and can be optimized straightforwardly. Nevertheless, in practice, we represent
the variational distributions by parameterized functions, and iteratively solve the sub-optimization
(w.r.t. ψ and θ) by stochastic optimization methods. However, in this scenario, the equalities
fpφ,ωq “ maxψ Fpφ,ω,ψq and gpφ,ωq “ maxθ Gpφ,ω,θq may not hold for two reasons.
First, the optimal variational distributions may not be in the space of our parameterized functions.
Second, stochastic optimization methods may yield local solutions. Nonetheless, when the variational
distributions are represented by deep neural networks, the obtained variational distributions are often
reasonably accurate and the equalities approximately hold (Ranganath et al., 2014).

3.3 MODEL SPECIFICATION

In practice, we are required to specify models for qθ and pω. We propose to use qθpat,ut|st, kq “
qθpat|stqN put|at,Σq and pωput|st,at, kq “ N put|at,Cωpkqq. As shown below, the choice for
qθpat,ut|st, kq enables us to solve the sub-optimization w.r.t. θ by using RL with reward function rφ.
Meanwhile, the choice for pωput|st,at, kq incorporates our prior assumption that the noisy policy
tends to Gaussian, which is a reasonable assumption for actual human motor behavior (van Beers
et al., 2004). Under these model specifications, solving maxφ,ω,ψ minθ Fpφ,ω,ψq ´ Gpφ,ω,θq is
equivalent to solving maxφ,ω,ψ minθHpφ,ω,ψ,θq, where

Hpφ,ω,ψ,θq“Epdps1:T ,u1:T |kqppkq

”

řT
t“1Eqψpat|st,ut,kq

”

rφpst,atq´
1
2}ut ´ at}

2
C´1
ω pkq

ı

`Htpqψq
ı

´ E
rqθps1:T ,a1:T q

”

řT
t“1rφpst,atq´log qθpat|stq

ı

`
T

2
Eppkq

“

TrpC´1
ω pkqΣq

‰

. (5)

Here, rqθps1:T ,a1:T q “ p1ps1qΠ
T
t“1

ş

A ppst`1|st,utqN put|at,Σqdutqθpat|stq is a noisy trajectory
density induced by a policy qθpat|stq, where N put|at,Σq can be regarded as an approximation of
the noisy policy in Figure 1(b). Minimizing H w.r.t. θ resembles solving a MaxEnt-RL problem with
a reward function rφpst,atq, except that trajectories are collected according to the noisy trajectory
density. In other words, this minimization problem can be solved using RL, and qθpat|stq can be
regarded as an approximation of the optimal policy. The hyper-parameter Σ determines the quality
of this approximation: smaller value of Σ gives a better approximation. Therefore, by choosing
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a reasonably small value of Σ, solving the max-min problem in Eq. (5) yields a reward function
rφpst,atq and a policy qθpat|stq. This policy imitates the optimal policy, which is the goal of IL.

The model specification for pω incorporates our prior assumption about the noisy policy. Namely,
pωput|st,at, kq “ N put|at,Cωpkqq assumes that the noisy policy tends to Gaussian, where Cωpkq
gives an estimated expertise of the k-th demonstrator: High-expertise demonstrators have small
Cωpkq and vice-versa for low-expertise demonstrators. Note that VILD is not restricted to this choice.
Different choices of pω incorporate different prior assumptions. For example, a Laplace distribution
incorporates a prior assumption about demonstrators who tend to execute outlier actions (Murphy,
2013). In such a case, the squared error in H is replaced by the absolute error (see Appendix A.3).

It should be mentioned that qψpat|st,ut, kq maximizes the immediate reward and minimizes the
weighted squared error between ut and at. The trade-off between the reward and squared-error
is determined by Cωpkq. Specifically, for demonstrators with a small Cωpkq (i.e., high-expertise
demonstrators), the squared error has a large magnitude and qψ tends to minimize the squared error.
Meanwhile, for demonstrators with a large value of Cωpkq (i.e., low-expertise demonstrators), the
squared error has a small magnitude and qψ tends to maximize the immediate reward.

We implement VILD with deep neural networks where we iteratively update φ, ω, and ψ by
stochastic gradient methods, and update θ by policy gradient methods. A pseudo-code of VILD and
implementation details are given in Appendix B. In our implementation, we include a regularization
term Lpωq “ TEppkqrlog |C´1

ω pkq|s{2, to penalize large value of Cωpkq. Without this regularization,
Cωpkq can be overly large which makes learning degenerate. We note that H already includes such a
penalty via the trace term: EppkqrTrpC´1

ω pkqΣqs. However, the strength of this penalty tends to be
too small, since we choose Σ to be small.

3.4 IMPORTANCE SAMPLING FOR REWARD LEARNING

To improve the convergence rate of VILD when updating φ, we use importance sampling (IS). Specifi-
cally, by analyzing the gradient ∇φH “ ∇φtEpdps1:T ,u1:T |kqppkqrΣ

T
t“1Eqψpat|st,ut,kqrrφpst,atqss ´

E
rqθps1:T ,a1:T qrΣ

T
t“1rφpst,atqsu, we can see that the reward function is updated to maximize the

expected cumulative reward obtained by demonstrators and qψ , while minimizing the expected cumu-
lative reward obtained by qθ. However, low-quality demonstrations often yield low reward values.
For this reason, stochastic gradients estimated by these demonstrations tend to be uninformative,
which leads to slow convergence and poor data-efficiency.

To avoid estimating such uninformative gradients, we use IS to estimate gradients using high-quality
demonstrations which are sampled with high probability. Briefly, IS is a technique for estimat-
ing an expectation over a distribution by using samples from a different distribution (Robert &
Casella, 2005). For VILD, we propose to sample k from a distribution p̃pkq 9 }vecpC´1

ω pkqq}1.
This distribution assigns high probabilities to demonstrators with high estimated level of ex-
pertise (i.e., demonstrators with a small Cωpkq). With this distribution, the estimated gradi-
ents tend to be more informative which leads to a faster convergence. To reduce a sampling
bias, we use a truncated importance weight: wpkq “ minpppkq{p̃pkq, 1q (Ionides, 2008), which
leads to an IS gradient: ∇φHIS “ ∇φtEpdps1:T ,u1:T |kqp̃pkqrwpkqΣ

T
t“1Eqψpat|st,ut,kqrrφpst,atqss ´

E
rqθps1:T ,a1:T qrΣ

T
t“1rφpst,atqsu. Computing wpkq requires ppkq, which can be estimated accurately

since k is a discrete random variable. For simplicity, we assume that ppkq is a uniform distribution.

4 RELATED WORK

In this section, we will discuss a related area of supervised learning with diverse-quality data. Besides,
we will discuss existing IL methods that use the variational approach.

Supervised learning with diverse-quality data. In supervised learning, diverse-quality data has
been extensively studied, e.g. learning with noisy labels (Angluin & Laird, 1988). This task assumes
that human labelers may assign incorrect labels to training inputs. With such labelers, the obtained
dataset consists of high-quality data with correct labels and low-quality data with incorrect labels. To
handle this setting, many methods were proposed (Natarajan et al., 2013; Han et al., 2018). The most
related methods are probabilistic models, which aim to infer correct labels and the level of labelers’
expertise (Raykar et al., 2010; Khetan et al., 2018). Specifically, Raykar et al. (2010) proposed a
method based on a two-coin model which enables estimating the correct labels and level of expertise.
Recently, Khetan et al. (2018) proposed a method based on weighted loss functions, where the weight
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is determined by the estimated labels and level of expertise. Methods for supervised learning with
diverse-quality data can be leveraged to learn a policy in our setting. However, they tend to perform
poorly due to the issue of compounding error, as discussed previously in Section 3.1.

Variational approach in IL. The variational approach has been previously utilized in IL to perform
MM-IL and reduce over-fitting. Specifically, MM-IL aims to learn a multi-modal policy from diverse
demonstrations collected by many experts (Li et al., 2017), where each mode of the policy represents
decision making of each expert2. A multi-modal policy is commonly represented by a context-
dependent policy, where each context represents each mode of the policy. The variational approach
has been used to learn such contexts, i.e., by learning a variational auto-encoder (Wang et al., 2017)
and maximizing a variational lower-bound of mutual information (Li et al., 2017; Hausman et al.,
2017). Meanwhile, variational information bottleneck (VIB) (Alemi et al., 2017) has been used to
reduce over-fitting in IL (Peng et al., 2019). Specifically, VIB aims to compress information flow by
minimizing a variational bound of mutual information. This compression filters irrelevant signals,
which leads to less over-fitting. Unlike these existing works, we utilize the variational approach to
aid computing integrals in large state-action spaces, but not for learning a variational auto-encoder or
optimizing a variational bound of mutual information.

5 EXPERIMENTS

In this section, we experimentally evaluate the performance of VILD (with and without IS) in
continuous-control benchmark tasks (Brockman et al., 2016). Performance is evaluated using a
cumulative ground-truth reward along trajectories (i.e., higher is better) (Ho & Ermon, 2016), which
is computed using 10 test trajectories generated by learned policies (i.e., qθpat|stq). We repeat
experiments for 5 trials with different random seeds and report the mean and standard error.

Baselines & data generation. We compare VILD against GAIL (Ho & Ermon, 2016), AIRL (Fu
et al., 2018), VAIL (Peng et al., 2019), MaxEnt-IRL (Ziebart et al., 2010), and InfoGAIL (Li
et al., 2017). These are online IL methods which collect transition samples to learn policies. We
use trust region policy optimization (TRPO) (Schulman et al., 2015) to update policies, except
for the Humanoid task where we use soft actor-critic (SAC) (Haarnoja et al., 2018). To generate
demonstrations from π‹ (pre-trained by TRPO) according to Figure 1(b), we use two types of noisy
policy pput|at, st, kq: Gaussian noisy policy: N put|at, σ2

kIq and time-signal-dependent (TSD) noisy
policy: N put|at,diagpbkptq ˆ }at}1{daqq, where bkptq is sampled from a noise process. We use 10
demonstrators with different σk and noise processes for bkptq. Notice that for TSD, the noise variance
depends on time and magnitude of actions. This characteristic of TSD has been observed in human
motor control (van Beers et al., 2004). More details of data generation are given in Appendix C.

Results against online IL methods. Figure 2 shows learning curves of VILD and existing methods
against the number of transition samples in HalfCheetah and Ant3, whereas Table 1 reports the
performance achieved in the last 100 iterations. Clearly, VILD with IS overall outperforms existing
methods in terms of both data-efficiency and final performance, i.e., VILD with IS learns better
policies using less numbers of transition samples. VILD without IS tends to outperform existing
methods in terms of the final performance. However, it is less data-efficient when compared to VILD
with IS, except on Humanoid with the Gaussian noisy policy, where VILD without IS tends to perform
better than VILD with IS. We conjecture that this is because IS slightly biases gradient estimation,
which may have a negative effect on the performance. Nonetheless, the overall good performance of
VILD with IS suggests that it is an effective method to handle diverse-quality demonstrations.

On the contrary, existing methods perform poorly as expected, except on the Humanoid task. For
the Humanoid task, VILD tends to perform the best in terms of the mean performance. Nonetheless,
all methods except GAIL achieve statistically comparable performance according to t-test. This is
perhaps because amateurs in this task perform relatively well compared to amateurs in other tasks, as
seen from demonstrators’ performance given in Table 2 and 3 (Appendix C). Since amateurs perform
relatively well, demonstrations from these amateurs do not severely affect the performance of IL
methods in this task when compared to the other tasks.

2We emphasize that diverse demonstrations are different from diverse-quality demonstrations. Diverse
demonstrations are collected by experts who execute equally good policies, while diverse-quality demonstrations
are collected by mixed demonstrators; The former consists of demonstrations that are equally high-quality but
diverse in behavior, while the latter consists of demonstrations that are diverse in both quality and behavior.

3Learning curves of other tasks are given in Figure 4 in Appendix D.
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(a) Gaussian noisy policy.
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(b) TSD noisy policy.

Figure 2: Performance averaged over 5 trials in terms of the mean and standard error. Demonstrations
are generated by 10 demonstrators using (a) Gaussian and (b) TSD noisy policies. Horizontal dotted
lines indicate performance of k “ 1, 3, 5, 7, 10 demonstrators. IS denotes importance sampling.

Table 1: Performance in the last 100 iterations in terms of the mean and standard error of cumulative
rewards over 5 trials (higher is better). Boldfaces indicate best and comparable methods according to
t-test with significance level 0.01. (G) denotes Gaussian noisy policy and (TSD) denotes time-signal-
dependent noisy policy. The performance of VAIL is similar to that of GAIL and is omitted.

Task VILD (IS) VILD (w/o IS) AIRL GAIL MaxEnt-IRL InfoGAIL
HalfCheetah (G) 4559 (43) 1848 (429) 341 (177) 551 (23) 1192 (245) 1244 (210)
HalfCheetah (TSD) 4394 (136) 1159 (594) -304 (51) 318 (134) 177 (132) 2664 (779)
Ant (G) 3719 (65) 1426 (81) 1417 (184) 209 (30) 731 (93) 675 (36)
Ant (TSD) 3396 (64) 1072 (134) 1357 (59) 97 (161) 775 (135) 1076 (140)
Walker2d (G) 3470 (300) 2132 (64) 1534 (99) 1410 (115) 1795 (172) 1668 (82)
Walker2d (TSD) 3115 (130) 1244 (132) 578 (47) 834 (84) 752 (112) 1041 (36)
Humanoid (G) 3781 (557) 4840 (56) 4274 (93) 284 (24) 3038 (731) 4047 (653)
Humanoid (TSD) 4600 (97) 3610 (448) 4212 (121) 203 (31) 4132 (651) 3962 (635)

We found that InfoGAIL, which learns a context-dependent policy, can achieve good performance
when the policy is conditioned on specific contexts. However, its performance is quite poor on
average when using contexts from a uniform prior. These results support our conjecture that MM-IL
methods are not suitable for our setting where the level of demonstrators’ expertise is absent.

It can be seen that VILD without IS performs better for the Gaussian noisy policy when compared
to the TSD noisy policy. This is because the model of VILD is correctly specified for the Gaussian
noisy policy, but the model is incorrectly specified for the TSD noisy policy; misspecified model
indeed leads to the reduction in performance. Nonetheless, VILD with IS still performs well for both
types of noisy policy. This is perhaps because negative effects of a misspecified model are not too
severe for learning expertise parameters, which are required to compute rppkq.

We also conduct the following evaluations. Due to space limitation, figures are given in Appendix D.

Results against offline IL methods. We compare VILD against offline IL methods based on
supervised learning, namely behavior cloning (BC) (Pomerleau, 1988), Co-Teaching which is based on
a method for learning with noisy labels (Han et al., 2018), and BC from diverse-quality demonstrations
(BC-D) which optimizes the naive model described in Section 3.1. Results in Figure 5 show that these
methods perform worse than VILD overall; BC performs the worst since it severely suffers from both
the compounding error and low-quality demonstrations. Compared to BC, BC-D and Co-teaching are
quite robust against low-quality demonstrations, but they still perform worse than VILD with IS.

Accuracy of estimated expertise parameter. To evaluate accuracy of estimated expertise parame-
ter, we compare the ground-truth value of σk under the Gaussian noisy policy against the learned
covariance Cωpkq. Figure 6 shows that VILD learns an accurate ranking of demonstrators’ exper-
tise. The values of these parameters are also quite accurate compared to the ground-truth, except
for demonstrators with low-level of expertise. A reason for this phenomena is that low-quality
demonstrations are highly dissimilar, which makes learning the expertise more challenging.
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6 CONCLUSION AND FUTURE WORK

In this paper, we explored a practical setting in IL where demonstrations have diverse-quality. We
showed the deficiency of existing methods, and proposed a robust method called VILD, which
learns both the reward function and the level of demonstrators’ expertise by using the variational
approach. Empirical results demonstrated that our work enables scalable and data-efficient IL under
this practical setting. In future, we will explore other approaches to efficiently estimate parameters of
the proposed model except the variational approach.
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A DERIVATIONS

This section derives the lower-bounds of fpφ,ωq and gpφ,ωq presented in the paper. We also derive the
objective function Hpφ,ω,ψ,θq of VILD.

A.1 LOWER-BOUND OF f

Let lφ,ωpst,at,ut, kq “ rφpst,atq ` log pωput|st,at, kq, we have that fpφ,ωq “

Epdps1:T ,u1:T |kqppkq

”

řT
t“1 ftpφ,ωq

ı

, where ftpφ,ωq “ log
ş

A exp plφ,ωpst,at,ut, kqqdat. By us-
ing a variational distribution qψpat|st,ut, kq with parameter ψ, we can bound ftpφ,ωq from below by using
the Jensen inequality as follows:

ftpφ,ωq “ log

ˆ
ż

A
exp plφ,ωpst,at,ut, kqq

qψpat|st,ut, kq

qψpat|st,ut, kq
dat

˙

ě

ż

A
qψpat|st,ut, kq log

ˆ

exp plφ,ωpst,at,ut, kqq
1

qψpat|st,ut, kq

˙

dat

“ Eqψpat|st,ut,kq rlφ,ωpst,at,ut, kq ´ log qψpat|st,ut, kqs

“ Ftpφ,ω,ψq. (6)

Then, by using the linearity of expectation, we obtain the lower-bound of fpφ,ωq as follows:

fpφ,ωq ě Epdps1:T ,u1:T |kqppkq

”

řT
t“1Ftpφ,ω,ψq

ı

“ Epdps1:T ,u1:T |kqppkq

”

řT
t“1Eqψpat|st,ut,kq rlφ,ωpst,at,ut, kq ´ log qψpat|st,ut, kqs

ı

“ Fpφ,ω,ψq. (7)

To verify that fpφ,ωq “ maxψ Fpφ,ω,ψq, we maximize Ftpφ,ω,ψq w.r.t. qψ under the constraint that
qψ is a valid probability density, i.e., qψpat|st,ut, kq ą 0 and

ş

A qψpat|st,ut, kqdat “ 1. By setting the
derivative of Ftpφ,ω,ψq w.r.t. qψ to zero, we obtain

qψpat|st,ut, kq “ exp plφ,ωpst,at,ut, kq ´ 1q

“
exp plφ,ωpst,at,ut, kqq

ş

A exp plφ,ωpst,at,ut, kqqdat
,

where the last line follows from the constraint
ş

A qψpat|st,ut, kqdat “ 1. To show that this is indeed the
maximizer, we substitute qψ‹pat|st,ut, kq “ expplpst,at,ut,kqq

ş

A expplpst,at,ut,kqqdat
into Ftpφ,ω,ψq:

Ftpφ,ω,ψ‹q “ Eq‹
ψ
pat|st,ut,kq rlφ,ωpst,at,ut, kq ´ log qψ‹pat|st,ut, kqs

“ log

ˆ
ż

A
exp plφ,ωpst,at,ut, kqq dat

˙

.

This equality verifies that ftpφ,ωq “ maxψ Ftpφ,ω,ψq. Finally, by using the linearity of expectation, we
have that fpφ,ωq “ maxψ Fpφ,ω,ψq.
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A.2 LOWER-BOUND OF g

Next, we derive the lower-bound of gpφ,ωq presented in the paper. We first derive a trivial lower-bound using a
general variational distribution over trajectories and reveal its issues. Then, we derive a lower-bound presented
in the paper by using a structured variational distribution. Recall that the function gpφ,ωq “ logZφ,ω is

gpφ,ωq “ log

¨

˚

˝

K
ÿ

k“1

ppkq

ż

¨ ¨ ¨

ż

pSˆAˆAqT

p1ps1q
T
ź

t“1

ppst`1|st,utq exp plpst,at,ut, kqqds1:Tdu1:Tda1:T

˛

‹

‚

.

Lower-bound via a variational distribution A lower-bound of g can be obtained by using a variational
distribution sqβps1:T ,u1:T ,a1:T , kq with parameter β. We note that this variational distribution allows any
dependency between the random variables s1:T , u1:T , a1:T , and k. By using this distribution, we have a
lower-bound

gpφ,ωq “ log

˜

K
ÿ

k“1

ppkq

ż

¨ ¨ ¨

ż

pSˆAˆAqT

p1ps1q
T
ź

t“1

ppst`1|st,utq exp plφ,ωpst,at,ut, kqq

ˆ
sqβps1:T ,u1:T ,a1:T , kq

sqβps1:T ,u1:T ,a1:T , kq
ds1:Tdu1:Tda1:T

¸

ě E
sqβps1:T ,u1:T ,a1:T ,kq

«

log ppkqp1ps1q `
T
ÿ

t“1

tlog ppst`1|st,utq ` lφ,ωpst,at,ut, kqu

´ log sqβps1:T ,u1:T ,a1:T , kq

ff

“ sGpφ,ω,βq. (8)

The main issue of using this lower-bound is that, sGpφ,ω,βq can be computed or approximated only when we
have an access to the transition probability ppst`1|st,utq. In many practical tasks, the transition probability is
unknown and needs to be estimated. However, estimating the transition probability for large state and action
spaces is known to be highly challenging (Sutton & Barto, 1998). For these reasons, this lower-bound is not
suitable for our method.

Lower-bound via a structured variational distribution To avoid the above issue, we use the structure
variational approach (Hoffman & Blei, 2015), where the key idea is to pre-define conditional dependency to
ease computation. Specifically, we use a variational distribution qθpat,ut|st, kq with parameter θ and define
dependencies between states according to the transition probability of an MDP. With this variational distribution,
we lower-bound g as follows:

gpφ,ωq “ log

˜

K
ÿ

k“1

ppkq

ż

¨ ¨ ¨

ż

pSˆAˆAqT

p1ps1q
T
ź

t“1

ppst`1|st,utq exp plφ,ωpst,at,ut, kqq

ˆ
qθpat,ut|st, kq

qθpat,ut|st, kq
ds1:Tdu1:Tda1:T

¸

ě E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ log qθpat,ut|st, kq

ff

“ Gpφ,ω,θq, (9)

where rqθps1:T ,u1:T ,a1:T , kq “ ppkqp1ps1qΠ
T
t“1ppst`1|st,utqqθpat,ut|st, kq. The optimal variational distri-

bution qθ‹pat,ut|st, kq can be founded by maximizing Gpφ,ω,θq w.r.t. qθ . Solving this maximization problem
is identical to solving a maximum entropy RL (MaxEnt-RL) problem (Ziebart et al., 2010) for an MDP defined
by a tuple M “ pS ˆ N`,AˆA, pps1, |s,uqIk“k1 , p1ps1qppk1q, lφ,ωps,a,u, kqq. Specifically, this MDP is
defined with a state variable pst, ktq P S ˆ N, an action variable pat,utq P A ˆ A, a transition probability
density ppst`1, |st,utqIkt“kt`1 , an initial state density p1ps1qppk1q, and a reward function lφ,ωpst,at,ut, kq.
Here, Ia“b is the indicator function which equals to 1 if a “ b and 0 otherwise. By adopting the optimality
results of MaxEnt-RL (Ziebart et al., 2010; Haarnoja et al., 2018), we have gpφ,ωq “ maxθ Gpφ,ω,θq, where
the optimal variational distribution is

qθ‹pat,ut|st, kq “ exppQpst, k,at,utq ´ V pst, kqq. (10)
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The functions Q and V are soft-value functions defined as

Qpst, k,at,utq “ lφ,ωpst,at,ut, kq ` Eppst`1|st,utq rV pst`1, kqs , (11)

V pst, kq “ log

ĳ

AˆA

exp pQpst, k,at,utqq datdut. (12)

A.3 OBJECTIVE FUNCTION H OF VILD

This section derives the objective function Hpφ,ω,ψ,θq from Fpφ,ω,ψq ´ Gpφ,ω,θq. Specifically, we
substitute the models pωput|st,at, kq “ N put|at,Cωpkqq and qθpat,ut|st, kq “ qθpat|stqN put|at,Σq.
We also give an example when using a Laplace distribution for pωput|st,at, kq instead of the Gaussian
distribution.

First, we substitute qθpat,ut|st, kq “ qθpat|stqN put|at,Σq into G:

Gpφ,ω,θq “ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ logN put|at,Σq ´ log qθpat|stq

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq `
1

2
}ut ´ at}

2
Σ´1 ´ log qθpat|stq

ff

` c1,

where c1 is a constant corresponding to the log-normalization term of the Gaussian distribution. Next, by using
the re-parameterization trick, we rewrite rqθps1:T ,u1:T ,a1:T , kq as

rqθps1:T ,u1:T ,a1:T , kq “ ppkqp1ps1q
T
ź

t“1

p1pst`1|st,at `Σ1{2εtqN pεt|0, Iqqθpat|stq,

where we use ut “ at `Σ1{2εt with εt „ N pεt|0, Iq. With this, the expectation of ΣTt“1}ut ´ at}
2
Σ´1 over

rqθps1:T ,u1:T ,a1:T , kq can be written as

E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}ut ´ at}
2
Σ´1

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}at `Σ1{2εt ´ at}
2
Σ´1

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}Σ1{2εt}
2
Σ´1

ff

“ Tda,

which is a constant. Then, the quantity G can be expressed as

Gpφ,ω,θq “ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ log qθpat|stq

ff

` c1 ` Tda.

By ignoring the constant, the optimization problem maxφ,ω,ψ minθ Fpφ,ω,ψq ´ Gpφ,ω,θq is equivalent to

max
φ,ω,ψ

min
θ

Epdps1:T ,u1:T |kqppkq

«

T
ÿ

t“1

Eqψpat|st,ut,kq rlφ,ωpst,at,ut, kq ´ log qψpat|st,ut, kqs

ff

´ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ log qθpat|stq

ff

. (13)

Our next step is to substitute pωput|st,at, kq by our choice of model. First, let us consider a Gaussian
distribution pωput|st,at, kq “ N put|at,Cωpst, kqq, where the covariance depends on state. With this model,
the second term in Eq. (13) is given by

E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ log qθpat|stq

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

rφpst,atq ` logN put|at,Cωpst, kqq ´ log qθpat|stq

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

rφpst,atq ´
1

2
}ut ´ at}

2

C´1
ω pst,kq

´
1

2
log |Cωpst, kq| ´ log qθpat|stq

ff

` c2,
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where c2 “ ´
da
2

log 2π is a constant. By using the reparameterization trick, we write the expectation of
ΣTt“1}ut ´ at}

2

C´1
ω pst,kq

as follows:

E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}ut ´ at}
2

C´1
ω pst,kq

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}at `Σ1{2εt ´ at}
2

C´1
ω pst,kq

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

}Σ1{2εt}
2

C´1
ω pst,kq

ff

.

Using this equality, the second term in Eq. (13) is given by

E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq ´
1

2

´

}Σ1{2εt}
2

C´1
ω pst,kq

` log |Cωpst, kq|
¯

ff

. (14)

Maximizing this quantity w.r.t. θ has an implication as follows: qθpat|stq maximizes the expected cu-
mulative reward while avoiding states that are difficult for demonstrators. Specifically, a large value of
Eppkq rlog |Cωpst, kq|s indicates that demonstrators have a low level of expertise for state st on average,
given by our estimated covariance. In other words, this state is difficult to accurately execute optimal actions
for all demonstrators on averages. Since the policy qθpat|stq should minimize Eppkq rlog |Cωpst, kq|s, the
policy should avoid states that are difficult for demonstrators. We expect that this property may improve
exploration-exploitation trade-off in IL. Nonetheless, we leave an investigation of this property for future work,
since this is not in the scope of the paper.

In this paper, we specify that the covariance does not depend on state: Cωpst, kq “ Cωpkq. This model
specification enables us to simplify Eq. (14) as follows:

E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq ´
1

2

´

}Σ1{2εt}
2

C´1
ω pkq

` log |Cωpkq|
¯

ff

“ E
rqθps1:T ,u1:T ,a1:T ,kq

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq

ff

´
T

2
EppkqN pε|0,Iq

”

}Σ1{2ε}2
C´1
ω pkq

` log |Cωpkq|
ı

“ E
rqθps1:T ,a1:T q

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq

ff

´
T

2
Eppkq

“

TrpC´1
ω pkqΣq ` log |Cωpkq|

‰

,

where rqθps1:T ,a1:T q “ p1ps1q
śT
t“1

ş

A ppst`1|st,utqN put|at,Σqdutqθpat|stq. The last line follows

from the quadratic form identity: EN pεt|0,Iq

”

}Σ1{2εt}
2

C´1
ω pkq

ı

“ TrpC´1
ω pkqΣq. Next, we substitute

pωput|st,at, kq “ N put|at,Cωpkqq into the first term of Eq. (13).

Epdps1:T ,u1:T |kqppkq

«

T
ÿ

t“1

Eqψpat|st,ut,kq rlφ,ωpst,at,ut, kq ´ log qψpat|st,ut, kqs

ff

“ Epdps1:T ,u1:T |kqppkq

«

T
ÿ

t“1

Eqψpat|st,ut,kq
”

rφpst,atq ´
1

2
}ut ´ at}

2

C´1
ω pkq

´
1

2
log |Cωpkq|

´ log qψpat|st,ut, kq
ı

ff

´ Tda log 2π{2. (15)

Lastly, by ignoring constants, Eq. (13) is equivalent to maxφ,ω,ψ minθHpφ,ω,ψ,θq, where

Hpφ,ω,ψ,θq “ Epdps1:T ,u1:T |kqppkq

«

T
ÿ

t“1

Eqψpat|st,ut,kq
„

rφpst,atq ´
1

2
}ut ´ at}

2

C´1
ω pkq

´ log qψpat|st,ut, kq



ff

´ E
rqθps1:T ,a1:T q

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq

ff

`
T

2
Eppkq

“

TrpC´1
ω pkqΣq

‰

.

This concludes the derivation of VILD.

As mentioned, other distributions beside the Gaussian distribution can be used for pω . For instance, let us
consider a multivariate-independent Laplace distribution: pωput|st,at, kq “ Πda

d“1
1

2c
pdq
k

expp´}ut´at
ck

}1q,

where a division of vector by vector denotes element-wise division. The Laplace distribution has heavier tails
when compared to the Gaussian distribution, which makes the Laplace distribution more suitable for modeling
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demonstrators who tend to execute outlier actions. By using the Laplace distribution for pωput|st,at, kq, we
obtain an objective

HLap. “ Epdps1:T ,u1:T ,kq

«

T
ÿ

t“1

Eqψpat|st,ut,kq
„

rφpst,atq ´
∥∥∥ut ´ at

ck

∥∥∥
1
´ log qψpat|st,ut, kq



ff

´ E
rqθps1:T ,a1:T q

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq

ff

`
T
?

2
?
π

Eppkq
”

TrpC´1
ω pkqΣ

1{2
q

ı

.

We can see that differences between HLap and H are the absolute error and scaling of the trace term.

B IMPLEMENTATION DETAILS

We implement VILD using the PyTorch deep learning framework. For all function approximators, we use neural
networks with 2 hidden-layers of 100 tanh units, except for the Humanoid task where we use neural networks
with 2 hidden-layers of 100 relu units. We optimize parameters φ, ω, and ψ by Adam with step-size 3ˆ 10´4,
β1 “ 0.9, β2 “ 0.999 and mini-batch size 256. To optimize the policy parameter θ, we use trust region policy
optimization (TRPO) (Schulman et al., 2015) with batch size 1000, except on the Humanoid task where we use
soft actor-critic (SAC) (Haarnoja et al., 2018) with mini-batch size 256. Note that TRPO is an on-policy RL
method that uses only trajectories collected by the current policy, while SAC is an off-policy RL method that use
trajectories collected by previous policies. On-policy methods are generally more stable than off-policy methods,
while off-policy methods are generally more data-efficient (Gu et al., 2017). We use SAC for Humanoid mainly
due to its high data-efficiency. When SAC is used, we also use trajectories collected by previous policies to
approximate the expectation over the trajectory density q̃θps1:T ,a1:T q.

For the distribution pωput|st,at, kq “ N put|at,Cωpkqq, we use diagonal covariances Cωpkq “ diagpckq,
where ω “ tckuKk“1 and ck P Rda` are parameter vectors to be learned. For the distribution qψpat|st,ut, kq,
we use a Gaussian distribution with diagonal covariance, where the mean and logarithm of the standard deviation
are the outputs of neural networks. Since k is a discrete variable, we represent qψpat|st,ut, kq by neural
networks that have K output heads and take input vectors pst,utq; The k-th output head corresponds to (the
mean and log-standard-deviation of) qψpat|st,ut, kq. We also pre-train the mean function of qψpat|st,ut, kq,
by performing least-squares regression for 1000 gradient steps with target value ut. This pre-training is done
to obtain reasonable initial predictions. For the policy qθpat|stq, we use a Gaussian policy with diagonal
covariance, where the mean and logarithm of the standard deviation are outputs of neural networks. We use
Σ “ 10´8I in experiments.

To control exploration-exploitation trade-off, we use an entropy coefficient α “ 0.0001 in TRPO. In SAC, the
value of α is optimized so that the policy has a certain value of entropy, as described by Haarnoja et al. (2018).
Note that including α in VILD is equivalent to rescaling quantities in the model by α, i.e., expprφpst,atq{αq

and ppωput|st,at, kqq
1
α . A discount factor 0 ă γ ă 1 may be included similarly, and we use γ “ 0.99 in

experiments.

For all methods, we regularize the reward/discriminator function by the gradient penalty (Gulrajani et al., 2017)
with coefficient 10, since it was previously shown to improve performance of generative adversarial learning
methods. For methods that learn a reward function, namely VILD, AIRL, and MaxEnt-IRL, we apply a sigmoid
function to the output of a reward network to bound reward values. We found that without the bounds, reward
values of the agent can be highly negative in the early stage of learning, which makes RL methods prematurely
converge to poor policies. An explanation of this phenomenon is that, in MDPs with large state and action
spaces, distribution of demonstrations and distribution of agent’s trajectories are not overlapped in the early
stage of learning. In such a scenario, it is trivial to learn a reward function which tends to positive-infinity values
for demonstrations and negative-infinity values for agent’s trajectories. While the gradient penalty regularizer
slightly remedies this issue, we found that the regularizer alone is insufficient to prevent this scenario. Moreover,
for VILD, it is beneficial to bound the reward function to control a trade-off between the immediate reward and
the squared error when optimizing ψ.

A pseudo-code of VILD with IS is given in Algorithm 1, where the reward parameter is updated by IS gradient
in line 8. For VILD without IS, the reward parameter is instead updated by an estimate of ∇φHpφ,ω,ψ,θq.
The regularizer Lpωq “ TEppkqrlog |C´1

ω pkq|s{2 penalizes large value of Cωpkq. A source-code of our
implementation will be publicly available.

C EXPERIMENT DETAILS

In this section, we describe experimental settings and data generation. We also give brief reviews of methods
compared against VILD in the experiments.
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Algorithm 1 VILD: Variational Imitation Learning with Diverse-quality demonstrations

1: Input: Diverse-quality demonstrations Dd “ tps1:T ,u1:T , kqnu
N
n“1 and a replay buffer B “ ∅.

2: while Not converge do
3: while |B| ă B with batch size B do Ź Collect samples from rqθps1:T ,a1:T q

4: Sample at „ qθpat|stq and εt „ N pεt|0,Σq.
5: Execute at ` εt, observe s1t „ pps1t|st,at ` εtq, and include pst,at, s1tq into B
6: Update qψ by an estimate of ∇ψHpφ,ω,ψ,θq.
7: Update pω by an estimate of ∇ωHpφ,ω,ψ,θq `∇ωLpωq.
8: Update rφ by an estimate of ∇φHISpφ,ω,ψ,θq.
9: Update qθ by an RL method (e.g., TRPO or SAC) with reward function rφ.

C.1 SETTINGS AND DATA GENERATION

We evaluate VILD on four continuous-control benchmark tasks from OpenAI gym platform (Brockman et al.,
2016) with the Mujoco physics simulator: HalfCheetah, Ant, Walker2d, and Humanoid. To obtain the optimal
policy for generating demonstrations, we use the ground-truth reward function of each task to pre-train π‹ with
TRPO. We generate diverse-quality demonstrations by using K “ 10 demonstrators according to the graphical
model in Figure 1(b). We consider two types of the noisy policy pput|st,at, kq: a Gaussian noisy policy and a
time-signal-dependent (TSD) noisy policy.

Gaussian noisy policy. We use a Gaussian noisy policy N put|at, σ2
kIq with a constant covariance. The

value of σk for each of the 10 demonstrators is 0.01, 0.05, 0.1, 0.25, 0.4, 0.6, 0.7, 0.8, 0.9 and 1.0, respectively.
Note that our model assumption on pω corresponds to this Gaussian noisy policy. Table 2 shows the performance
of demonstrators (in terms of cumulative ground-truth rewards) with this Gaussian noisy policy. A random policy
π0 is an initial policy neural network for learning; The network weights are initialized such that the magnitude
of actions is small. Note that this initialization scheme is a common practice in deep RL (Gu et al., 2017).
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Figure 3: Samples bkptq drawn
from noise processes used for the
TSD noisy policy.

TSD noisy policy. To make learning more challenging, we gener-
ate demonstrations according to a noise characteristic of human motor
control, where a magnitude of noises is proportion to a magnitude
of actions and increases with execution time (van Beers et al., 2004).
Specifically, we generate demonstrations using a Gaussian distribution
N put|at, diagpbkptq ˆ }at}1{daqq, where the covariance is propor-
tion to the magnitude of action and depends on time steps and ˆ
denotes an element-wise product. We call this policy time-signal-
dependent (TSD) noisy policy. Here, bkptq is a sample of a noise pro-
cess whose noise variance increases over time, as shown in Figure 3.
We obtain this noise process for the k-th demonstrator by reversing
Ornstein–Uhlenbeck (OU) processes with parameters θ “ 0.15 and
σ “ σk (Uhlenbeck & Ornstein, 1930)4. The value of σk for each
demonstrator is 0.01, 0.05, 0.1, 0.25, 0.4, 0.6, 0.7, 0.8, 0.9, and 1.0,
respectively. Table 3 shows the performance of demonstrators with
this TSD noisy policy. Learning from demonstrations generated by
TSD is challenging; The Gaussian model of pω cannot perfectly model
the TSD noisy policy, since the ground-truth variance is a function of
actions and time steps.

C.2 COMPARISON METHODS

Here, we briefly review methods compared against VILD in our experiments. We firstly review online IL
methods, which learn a policy by RL and require additional transition samples from MDPs.

MaxEnt-IRL. Maximum (causal) entropy IRL (MaxEnt-IRL) (Ziebart et al., 2010) is a well-known
IRL method. The original derivation of the method is based on the maximum entropy principle (Jaynes,
1957) but for causal interactions, and uses a linear-in-parameter reward function: rφpst,atq “ φJbpst,atq
with a basis function b. Here, we consider an alternative derivation which is applicable to non-
linear reward function (Finn et al., 2016). Briefly speaking, MaxEnt-IRL learns a reward parameter
by minimizing a KL divergence from a data distribution p‹ps1:T ,a1:T q to a model pφps1:T ,a1:T q “

4OU process is commonly used to generate time-correlated noises where the noise variance decays towards
zero. We reserve this process along the time axis, so that the noise variance grows over time.
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Table 2: Performance of a random policy π0,
the optimal policy π‹, and demonstrators with
the Gaussian noisy policy.

σk Cheetah Ant Walker Humanoid
(π0) -0.58 995 131 222
(π‹) 4624 4349 4963 5093
0.01 4311 3985 4434 4315
0.05 3978 3861 3486 5140
0.01 4019 3514 4651 5189
0.25 1853 536 4362 3628
0.40 1090 227 467 5220
0.6 567 -73 523 2593
0.7 267 -208 332 1744
0.8 -45 -979 283 735
0.9 -399 -328 255 538
1.0 -177 -203 249 361

Table 3: Performance of a random policy π0,
the optimal policy π‹, and demonstrators with
the TSD noisy policy.

σk Cheetah Ant Walker Humanoid
(π0) -0.58 995 131 222
(π‹) 4624 4349 4963 5093
0.01 4362 3758 4695 5130
0.05 4015 3623 4528 5099
0.01 3741 3368 2362 5195
0.25 1301 873 644 1675
0.40 -203 231 302 610
0.6 -230 -51 29 249
0.7 -249 -37 24 221
0.8 -416 -567 14 191
0.9 -389 -751 7 178
1.0 -424 -269 4 169

1
Zφ
p1ps1qΠ

T
t“1ppst`1|st,atq expprφpst,atq{αq, where Zφ is the normalization term. Minimizing this KL

divergence is equivalent to solving maxφ Ep‹ps1:T ,a1:T q

“

ΣTt“1rφpst,atq
‰

´ logZφ. To compute logZφ, we
can use the importance sampling approach (Finn et al., 2016) or the variational approache as done in VILD. The
latter leads to a max-min problem

max
φ

min
θ

Ep‹ps1:T ,a1:T q

”

řT
t“1rφpst,atq

ı

´ Eqθps1:T ,a1:T q

”

řT
t“1rφpst,atq ´ α log qθpat|stq

ı

,

where qθps1:T ,a1:T q “ p1ps1qΠ
T
t“1ppst`1|st,atqqθpat|stq. The policy qθpat|stq maximizes the learned

reward function and is the solution of IL.

As we mentioned, the proposed model in VILD is based on the model of MaxEnt-IRL. By comparing the
max-min problem of MaxEnt-IRL and the max-min problem of VILD, we can see that the main difference are
the variational distribution qψ and the noisy policy model pω . If we assume that qψ and pω are Dirac delta
functions: qψpat|st,ut, kq “ δat“ut and pωput|at, st, kq “ δut“at , then the max-min problem of VILD
reduces to the max-min problem of MaxEnt-IRL. In other words, if we assume that all demonstrators execute
the same optimal policy and have an equal level of expertise, then VILD reduces to MaxEnt-IRL.

GAIL. Generative adversarial IL (GAIL) (Ho & Ermon, 2016) performs occupancy measure matching via gen-
erative adversarial networks (GAN) to learn the optimal policy from expert demonstrations. Specifically, GAIL
finds a parameterized policy πθ such that the occupancy measure ρπθ ps,aq of πθ is similar to the occupancy
measure ρπ‹ps,aq of π‹. Here, ρπps,aq “ Epπps1:T ,a1:T q

rΣTt“0δpst ´ s,at ´ aqs is the state-action occu-
pancy measure of π and satisfies the equality Epπps1:T ,a1:T q

rΣTt“1rpst,atqs “
ť

SˆA ρπps,aqrps,aqdsda “

Eπ rrps,aqs. To measure the similarity, GAIL uses the Jensen-Shannon divergence, which is estimated and
minimized by the following generative-adversarial training objective:

min
θ

max
φ

Eρπ‹ rlogDφps,aqs ` Eρπθ rlogp1´Dφps,aqq ` α log πθpat|stqs ,

where Dφps,aq “
dφps,aq

dφps,aq`1
is called a discriminator. The minimization problem w.r.t. θ is achieved using RL

with a reward function ´ logp1´Dφps,aqq.

AIRL. Adversarial IRL (AIRL) (Fu et al., 2018) was proposed to overcome a limitation of GAIL regarding
reward function: GAIL does not learn the expert reward function, since GAIL has Dφps,aq “ 0.5 at the saddle
point for every states and actions. To overcome this limitation while taking advantage of generative-adversarial
training, AIRL learns a reward function by solving

max
φ

Ep‹ps1:T ,a1:T q

”

řT
t“1 logDφps,aq

ı

` Eqθps1:T ,a1:T q

”

řT
t“1 logp1´Dφps,aqq

ı

,

where Dφps,aq “
rφps,aq

rφps,aq`qθpa|sq
. The policy qθpat|stq is learned by RL with a reward function rφpst,atq.

Fu et al. (2018) showed that the gradient of this objective w.r.t. φ is equivalent to the gradient of MaxEnt-
IRL w.r.t. φ. The authors also proposed an approach to disentangle reward function, which leads to a better
performance in transfer learning settings. Nonetheless, this disentangle approach is general and can be applied
to other IRL methods, including MaxEnt-IRL and VILD. We do not evaluate AIRL with disentangle reward
function.

We note that, based on the relation between MaxEnt-IRL and VILD, we can extend VILD to use a
training procedure of AIRL. Specifically, by applying the same derivation from MaxEnt-IRL to AIRL
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by Fu et al. (2018), we can derive a variant of VILD which learns a reward parameter by solving
maxφ Epdps1:T ,u1:T |kqppkqrΣ

T
t“1Eqψpat|st,ut,kqrlogDφps,aqss ` E

rqθps1:T ,a1:T q
rΣTt“1 logp1 ´ Dφps,aqqs.

We do not evaluate this variant of VILD in our experiment.

VAIL. Variational adversarial IL (VAIL) (Peng et al., 2019) improves upon GAIL by using variational
information bottleneck (VIB) (Alemi et al., 2017). VIB aims to compress information flow by minimizing
a variational bound of mutual information. This compression filters irrelevant signals, which leads to less
over-fitting. To achieve this in GAIL, VAIL learns the discriminator Dφ by an optimization problem

min
φ,E

max
βě0

Eρπ‹
“

EEpz|s,aq r´ logDφpzqs
‰

` Eρπθ
“

EEpz|s,aq r´ logp1´Dφpzqqs
‰

` βEpρπ‹`ρπθ q{2 rKLpEpz|s,aq|ppzqq ´ Ics ,

where z is an encode vector, Epz|s,aq is an encoder, ppzq is a prior distribution of z, Ic is the target value of
mutual information, and β ą 0 is a Lagrange multiplier. With this discriminator, the policy πθpat|stq is learned
by RL with a reward function ´ logp1´DφpEEpz|s,aq rzsqq.

It might be expected that the compression may make VAIL robust against diverse-quality demonstrations, since
irrelevant signals in low-quality demonstrations are filtered out via the encoder. However, we find that this is
not the case, and VAIL does not improve much upon GAIL in our experiments. This is perhaps because VAIL
compress information from both demonstrators and agent’s trajectories. Meanwhile in our setting, irrelevant
signals are generated only by demonstrators. Therefore, the information bottleneck may also filter out relevant
signals in agent’s trajectories, which lead to poor performances.

InfoGAIL. Information maximizing GAIL (InfoGAIL) (Li et al., 2017) is an extension of GAIL for learning
a multi-modal policy in MM-IL. The key idea of InfoGAIL is to introduce a context variable z to the GAIL
formulation and learn a context-dependent policy πθpa|s, zq, where each context represents each mode of the
multi-modal policy. To ensure that the context is not ignored during learning, InfoGAIL regularizes GAIL’s
objective so that a mutual information between contexts and state-action variables is maximized. This mutual
information is indirectly maximized via maximizing a variational lower-bound of mutual information. By doing
so, InfoGAIL solves a min-max problem

min
θ,Q

max
φ

Eρπ‹ rlogDφps,aqs ` Eρπθ rlogp1´Dφps,aqq ` α log πθpa|s, zqs ` λLpπθ, Qq,

where Lpπθ, Qq “ Eppzqπθpa|s,zq rlogQpz|s,aq ´ log ppzqs is a lower-bound of mutual information,Qpz|s,aq
is an encoder neural network, and ppzq is a prior distribution of contexts. In our experiment, the number of
context z is set to be the number of demonstrators K. As discussed in Section 1, when knowing the level of
demonstrators’ expertise, we may choose contexts that correspond to high-expertise demonstrator. In other
words, we may hand-craft the prior distribution ppzq so that a probability of contexts is proportion to the level of
demonstrators’ expertise. Nonetheless, for fair comparison, we do not use the oracle knowledge about the level
of demonstrators’ expertise, and set ppzq to be a uniform distribution. For the Humanoid task in our experiment,
we use the Wasserstein-distance variant of InfoGAIL, since the Jensen-Shannon-divergence variant of InfoGAIL
does not perform well in this task.

Next, we review offline IL methods. These methods learn a policy based on supervised learning and do not
require additional transition samples from MDPs.

BC. Behavior cloning (BC) (Pomerleau, 1988) is perhaps the simplest IL method. BC treats an IL problem as
a standard supervised learning problem and ignores dependency between states distributions and policy. For
continuous action space, BC solves a least-square regression problem to learn a parameter θ of a deterministic
policy πθpstq:

min
θ

Ep‹ps1:T ,a1:T q

”

řT
t“1}at ´ πθpstq}

2
2

ı

.

BC-D. BC with Diverse-quality demonstrations (BC-D) is a simple extension of BC for handling diverse-
quality demonstrations. This method is based on the naive model in Section 3.1, and we consider it mainly
for evaluation purpose. BC-D uses supervised learning to learn a policy parameter θ and expertise parameter
ω of a model pθ,ωps1:T ,u1:T , kq “ ppkqpps1qΣ

T
t“1ppst`1|st,utq

ş

A πθpat|stqpωput|st,at, kqdat. To learn
the parameters, we minimize the KL divergence from data distribution to the model. By using the variational
approach to handle integration over the action space, BC-D solves an optimization problem

max
θ,ω,ν

Epdps1:T ,u1:T |kqppkq

”

řT
t“1Eqν pat|st,ut,kq

”

log πθpat|stqpωput|st,at,kq
qν pat|st,ut,kq

ıı

,

where qνpat|st,ut, kq is a variational distribution with parameters ν. We note that the model
pθ,ωps1:T ,u1:T , kq of BC-D can be regarded as a regression-extension of the two-coin model proposed
by Raykar et al. (2010) for classification with noisy labels.
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Co-teaching. Co-teaching (Han et al., 2018) is the state-of-the-art method to perform classification with
noisy labels. This method trains two neural networks such that mini-batch samples are exchanged under a small
loss criteria. We extend this method to learn a policy by least-square regression. Specifically, let πθ1pstq and
πθ2pstq be two neural networks representing policies, and ∇θLpθ,Bq “ ∇θΣps,aqPB}a´πθpsq}

2
2 be gradients

of a least-square loss estimated by using a mini-batch B. The parameters θ1 and θ2 are updated by iterates:

θ1 Ð θ1 ´ η∇θ1Lpθ1,Bθ2q, θ2 Ð θ2 ´ η∇θ2Lpθ2,Bθ1q.

The mini-batch Bθ2 for updating θ1 is obtained such that Bθ2 incurs small loss when using prediction from πθ2 ,
i.e., Bθ2 “ argminB1 Lpθ2,B1q. Similarly, the mini-batch Bθ1 for updating θ2 is obtained such that Bθ1 incurs
small loss when using prediction from πθ1 . For evaluating the performance, we use the policy network πθ1 .

D ADDITIONAL EXPERIMENTAL RESULTS

Results against online IL methods. Figure 4 shows the learning curves of VILD and existing online IL
methods against the number of transition samples. It can be seen that for both types of noisy policy, VILD with
and without IS outperform existing methods overall, except on the Humanoid tasks where most methods achieve
comparable performance.

Results against offline IL methods. Figure 5 shows learning curves of offline IL methods, namely BC,
BC-D, and Co-teaching. For comparison, the figure also shows the final performance of VILD with and without
IS, according to Table 1. We can see that these offline methods do not perform well, especially on the high-
dimensional Humanoid task. The poor performance of these methods is due to the issues of compounding error
and low-quality demonstrations. Specifically, BC performs the worst, since it suffers from both issues. Still, BC
may learn well in the early stage of learning, but its performance sharply degrades, as seen in Ant and Walker2d.
This phenomena can be explained as an empirical effect of memorization in deep neural networks (Arpit et al.,
2017). Namely, deep neural networks learn to remember samples with simple patterns first (i.e., high-quality
demonstrations from experts), but as learning progresses the networks overfit to samples with difficult patterns
(i.e., low-quality demonstrations from amateurs). Co-teaching is the-state-of-the-art method to avoid this effect,
and we can see that it performs significantly better than BC. Meanwhile, BC-D, which learns the policy and
level of demonstrators’ expertise, also performs better than BC and is comparable to Co-teaching. Nonetheless,
the performance of Co-teaching and BC-D is still much worse than VILD with IS.

Accuracy of estimated expertise parameter. Figure 6 shows the estimated parameters ω “ tckuKk“1 of
N put|at, diagpckqq and the ground-truth variance tσ2

ku
K
k“1 of the Gaussian noisy policy N put|at, σ2

kIq. The
results show that VILD learns an accurate ranking of the variance compared to the ground-truth. The values of
these parameters are also quite accurate compared to the ground truth, except for demonstrators with low-levels
of expertise. A possible reason for this phenomena is that low-quality demonstrations are highly dissimilar,
which makes learning the expertise more challenging. We can also see that the difference between expertise
parameters of VILD with IS and VILD without IS is small and negligible.
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(a) Performance of online IL methods when demonstrations are generated using Gaussian noisy policy.
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(b) Performance of online IL methods when demonstrations are generated using TSD noisy policy.

Figure 4: Performance averaged over 5 trials of online IL methods against the number of transition
samples. Horizontal dotted lines indicate performance of k “ 1, 3, 5, 7, 10 demonstrators.
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(a) Performance of offline IL methods when demonstrations are generated using Gaussian noisy policy.
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(b) Performance of offline IL methods when demonstrations are generated using TSD noisy policy.

Figure 5: Performance averaged over 5 trials of offline IL methods against the number of gradient
update steps. For VILD with and without IS, we report the final performance in Table 1.
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Figure 6: Expertise parameters ω “ tckuKk“1 learned by VILD and the ground-truth tσ2
ku
K
k“1 for the

Gaussian noisy policy. For VILD, we report the value of }ck}1{da.
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