
Under review as a conference paper at ICLR 2020

LEARNING TO RETRIEVE REASONING PATHS OVER
WIKIPEDIA GRAPH FOR QUESTION ANSWERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Answering questions that require multi-hop reasoning at web-scale requires re-
trieving multiple evidence documents, one of which often has little lexical or
semantic relationship to the question. This paper introduces a new graph-
based recurrent retrieval approach that learns to retrieve reasoning paths over the
Wikipedia graph to answer multi-hop open-domain questions. Our retriever trains
a recurrent neural network that learns to sequentially retrieve evidence documents
in the reasoning path by conditioning on the previously retrieved documents. Our
reader ranks the reasoning paths and extracts the answer span included in the best
reasoning path. Experimental results demonstrate state-of-the-art results in two
open-domain QA datasets showcasing the robustness of our method. Notably, our
method achieves significant improvement in HotpotQA fullwiki and distractor set-
tings, outperforming the previous best model by more than 10 points.1

1 INTRODUCTION

Open-domain Question Answering (QA) is the task of answering a question given a large collection
of text documents (e.g., Wikipedia). Most state-of-the-art approaches for open-domain QA (Chen
et al., 2017; Wang et al., 2018a; Lee et al., 2018; Yang et al., 2019) leverage non-parameterized
models (e.g., TF-IDF or BM25) to retrieve a fixed set of documents, where the answer span can be
extracted by a neural machine reading comprehension model. Despite the success of these pipeline
methods in single-hop QA, they often fail to retrieve the required evidence for answering multi-
hop questions e.g., the question in Figure 1. Multi-hop QA usually requires finding more than one
evidence document, one of which often consists of little lexical overlap or semantic relationship to
the original question. However, retrieving a fixed list of documents independently does not capture
relationships between evidence documents through bridge entities that are required for multi-hop
reasoning.

Recent open-domain QA methods learn end-to-end models to jointly retrieve and read docu-
ments (Seo et al., 2019; Lee et al., 2019). These methods, however, face challenges for entity-centric
questions since compressing the necessary information into an embedding space does not capture
lexical information in entities. Cognitive Graph (Ding et al., 2019) incorporates entity links between
documents for multi-hop QA to extend the list of retrieved documents. This method, however, com-
piles a fixed list of documents independently and expects the reader to find the reasoning paths.

In this paper, we introduce a new recurrent graph-based retrieval method that learns to retrieve evi-
dence documents as reasoning paths for answering complex questions. Our method sequentially re-
trieves each evidence document given the history of previously retrieved documents to form several
reasoning paths in a graph of entities. Our method then leverages an existing reading comprehension
model to answer questions by ranking the retrieved reasoning paths. The strong interplay between
the retriever and reader enables our entire method to answer complex questions by exploring more
accurate reasoning paths compared to other methods.

More specifically, our method (sketched in Figure 2) constructs the entity graph offline using
Wikipedia hyperlinks to model the relationships between entities in documents. Our retriever trains
a recurrent neural network to score reasoning paths in this graph by maximizing the likelihood of

1Our code will be publicly available.

1

Under review as a conference paper at ICLR 2020

Q: When was the football club founded in which Walter Otto Davis played at centre forward?

Paragraph 1: [Walter Davis (footballer)]
Walter Otto Davis was a Welsh professional
footballer who played at centre forward for Millwall
for ten years in the 1910s.

Paragraph 2: [Millwall F.C.]
Millwall Football Club is a professional football
club in South East London, … Founded as Millwall
Rovers in 1885.

Figure 1: An example of open-domain multi-hop question from HotpotQA. Paragraph 2 is unlikely
to be retrieved using TFIDF retrievers due to little lexical overlap to the given question.

selecting a correct evidence paragraph at each step and fine-tuning paragraph BERT encodings.
Our reader model is a multi-task learner to score each reasoning path according to its likelihood of
containing and extracting the correct answer phrase. We leverage data augmentation and negative
example mining for robust training of both models.

Our experimental results show that our method achieves the state-of-the-art results on HotpotQA
fullwiki and HotpotQA distractor settings (Yang et al., 2018), outperforming the previous state-of-
the-art methods by more than 10 points absolute gain on the full wiki setting. We also evaluate our
approach on SQuAD Open without changing any architectural designs or hyperparameters, achiev-
ing performance comparable to the state of the art, which suggests that our retrieval method is robust
across different datasets. Additionally, our framework provides interpretable insights into the under-
lying entity relationships used for multi-hop reasoning.

2 RELATED WORK

Neural open-domain question answering Most current open-domain QA methods use a pipeline
approach that includes a retriever and reader. Chen et al. (2017) incorporate a TF-IDF-based re-
triever with a state-of-the-art neural machine reading comprehension model. The subsequent work
improves the heuristic retriever by re-ranking retrieved documents (Wang et al., 2018a;b; Lee et al.,
2018; Lin et al., 2018). The performance of these methods is still bounded by the performance of
the initial retrieval process. In multi-hop QA, non-parameterized retrievers face the challenge of
retrieving the all relevant documents, one or some of which are lexically distant from the question.
Recently, Lee et al. (2019) and Seo et al. (2019) introduce fully trainable models that retrieve a
few candidates directly from large-scale Wikipedia collections. All these methods find evidence
documents independently without the knowledge of previously selected paragraphs or relationships
between documents. This would result in failing to conduct multi-hop retrieval, and therefore, sim-
ilar but irrelevant retrieved evidence documents introduce noisy evidence input for the subsequent
machine reading comprehension model.

Retrievers guided by entity links Most relevant to our work are recent studies that attempt to use
entity links for multi-hop open-domain QA. Cognitive Graph (Ding et al., 2019) retrieves evidence
documents offline using entities in questions and a TF-IDF-based retriever, and trains a machine
reading comprehension model to jointly predict possible answer spans and next hop spans to extend
the reasoning chain. We train our retriever to find reasoning paths directly, limiting the scope of
retrieved documents processed by our reader. Most recently, Entity-centric IR (Godbole et al., 2019)
combines retrieval with entity linking to retrieve paragraphs for multi-hop QA. Unlike our method,
this method does not learn to retrieve reasoning paths and does not study the interplay between
retriever and reader. Moreover, we empirically show significant improvement over both methods.

Multi-step (iterative) retrievers Similar to our recurrent retriever, multi-step retrievers explore
multiple evidence documents iteratively. Multi-step reasoner (Das et al., 2019) repeats the retrieval
process for a fixed number of steps, interacting with a machine reading comprehension model by
reformulating the query in a latent space to enhance retrieval performance. Feldman & El-Yaniv
(2019) also propose a query reformulation mechanism with a focus on multi-hop open-domain QA.
These methods do not use the entity-link information during the iterative retrieval process. In con-
trast, our method leverages Wikipedia graph to explore and retrieve documents that are lexically or
semantically distant to questions and significantly outperforms previous work in HotpotQA.

2

Under review as a conference paper at ICLR 2020

Reader

Reader

Figure 2: Overview of our framework.

3 OPEN-DOMAIN QUESTION ANSWERING OVER WIKIPEDIA GRAPH

Overview This paper introduces a new graph-based recurrent retrieval method (Section 3.1) that
learns to find evidence documents as reasoning paths for answering complex questions. We then
extend an existing machine reading model (Section 3.2) to answer questions given a collection of
reasoning paths. Our method uses a strong interplay between retrieval and reading steps such that
the retrieval method learns reasoning paths to narrow down the search space to likely reasoning
paths for the reader, for robust pipeline process. Figure 2 sketches the overview of our QA model.

We formulate the QA task by decomposing the objective function into the retriever objective
Sretr(q, E) that sequentially selects evidence documents to form reasoning paths E and the reader
objective Sread(q, E, a) that finds the answer a in E.

argmax
E,a

S(q, E, a) s.t. S(q, E, a) = Sretr(q, E) + Sread(q, E, a), (1)

3.1 LEARNING TO RETRIEVE REASONING PATHS

Our method learns to retrieve reasoning paths across a graph of Wikipedia paragraphs. Evidence
paragraphs for answering a complex question do not necessarily have lexical overlaps with the ques-
tion, but are likely to be entailed by entities mentioned in the question or first-hop paragraphs. To
capture such multi-hop reasoning paths, our method constructs a graph of Wikipedia documents
using hyperlinks and learns to retrieve the reasoning paths across this graph (Section 3.1.1).

Constructing the Wikipedia graph We use Wikipedia hyperlinks to construct the Wikipedia
graph. Wikipedia hyperlinks connect articles in Wikipedia by following entity links. The nodes
in the graph are the paragraphs in Wikipedia articles, and the directed edges correspond to the hy-
perlinks. We also consider symmetric within-document links, allowing a paragraph to hop to other
paragraphs in the same article. The Wikipedia graph G is densely connected and covers a wide range
of topics that provide useful evidence for open-domain questions.

3.1.1 RECURRENT RETRIEVER

Our method learns to retrieve reasoning paths E given the Wikipedia graph by iteratively selecting
a paragraph in the reasoning chain.

General formulation with a recurrent retriever We use a Recurrent Neural Network (RNN) to
model the reasoning paths for the question q. At the t-th time step (t ≥ 1) our model selects a
paragraph pi among candidate paragraphs Ct given the current hidden state ht of the RNN. We use
BERT’s (Devlin et al., 2018) [CLS] token representation to independently encode each candidate
paragraph pi along with q. We then compute the probability P (pi|ht) that pi is selected. The RNN
selection procedure captures relationships between paragraphs in the reasoning path by conditioning
on the selection history. The process is terminated when [EOE], the end-of-evidence symbol, is

3

Under review as a conference paper at ICLR 2020

selected. This allows capturing reasoning paths with arbitrary length given each question. More
specifically, the process of selecting pi at the t-th step is formulated as follows:

wi = BERT[CLS](q, pi) ∈ Rd, (2)

P (pi|ht) = σ(wi · ht + b), (3)

ht+1 = RNN(ht, wi) ∈ Rd, (4)
where b ∈ R1 is a bias term. Motivated by Salimans & Kingma (2016), we normalize the RNN states
to control the scale of logits in Equation (3) and allow the model to learn multiple reasoning paths.
The details of Equation (4) are described in Appendix. The next candidate set Ct+1 is constructed
to include paragraphs that are linked from the selected paragraph pi in the Wikipedia graph.

Beam search for candidate paragraphs To navigate our retriever in the large-scale graph, we ini-
tialize candidate paragraphs with a TF-IDF-based retrieval and guide the search over the Wikipedia
graph. More specifically, the initial candidate set C1 includes F paragraphs with the highest TF-IDF
scores with respect to the question. We expand Ct (t ≥ 2) by appending the [EOE] symbol.

We additionally use a beam search to explore paths in the directed graph. We define the score
of a reasoning path E = [pi, . . . , pk] by multiplying the probabilities of selecting the paragraphs:
P (pi|h1) . . . P (pk|h|E|). The beam search outputs the top B reasoning paths E = {E1, . . . , EB}
with the highest scores to pass to the reader model i.e., S(q, E, a) = Sread(q, E, a) for E ∈ E.

In terms of the computational cost, the number of the paragraphs processed by Equation (2) is
bounded by O(|C1| + B

∑
t≥2 |Ct|), where B is the beam size and |Ct| is the average size of Ct

over the B hypothesises.

3.1.2 TRAINING OF THE GRAPH-BASED RECURRENT RETRIEVER

Data augmentation We train our retriever in a supervised fashion using evidence paragraphs an-
notated for each question. For multi-hop QA, we have multiple paragraphs for each question, and
single paragraph for single-hop QA. We first derive a ground-truth reasoning path g = [p1, . . . , p|g|]
using the available annotated data in each dataset. p|g| is set to [EOE] for the termination condition.
To relax and stabilize the training process, we augment the training data with additional reasoning
paths – not necessarily the shortest paths – that can derive the answer. In particular, we add a new
training path g = [pr, p1, . . . , p|g|] by adding a paragraph pr ∈ C1 that has a high TF-IDF score and
is linked to the first paragraph p1 in the ground-truth path g. Adding these new training paths helps
at the test time when the first paragraph in the reasoning path does not necessarily appear among the
paragraphs that initialize the Wikipedia search using the heuristic TF-IDF retrieval.

Negative examples for robustness Our graph-based recurrent retriever needs to be trained to
discriminate between relevant and irrelevant paragraphs at each step. We therefore use negative
examples along with the ground-truth paragraphs; more specifically, we use two types of negative
examples: (1) TF-IDF-based and (2) hyperlink-based ones. For single-hop QA, we only use the type
(1). For multi-hop QA, we use both types, and the type (2) is especially important to find correct
reasoning paths over the linked graph. We typically set the number of the negative examples to 50.

Loss function For the sequential prediction task, we estimate P (pi|ht) independently in Equa-
tion (3) and use the binary cross-entropy loss to maximize probability values of all the possible
paths. Note that using the widely-used cross-entropy loss with the softmax normalization over Ct

is not desirable here; maximizing the probabilities of g and gr contradict with each other. More
specifically, the loss function of g at the t-th step is defined as follows:

Lretr(pt, ht) = − logP (pt|ht)−
∑
p̃∈C̃t

log (1− P (p̃|ht)), (5)

where C̃t is a set of the negative examples described above, and includes [EOE] for t < |g|. We
exclude pr from C̃1 for the sake of our multi-path learning. The loss is also defined with respect to
gr in the same way. All the model parameters, including those in BERT, are jointly optimized.

3.2 READING AND ANSWERING GIVEN REASONING PATHS

Our reader first verifies each reasoning path in E, and finally outputs an answer span a from the
most plausible reasoning path. We model the reader as a multi-task learning of (1) machine reading

4

Under review as a conference paper at ICLR 2020

comprehension, that extracts an answer span from a reasoning pathE using a standard approach (Seo
et al., 2017; Xiong et al., 2017; Devlin et al., 2018), and (2) answer re-ranking, that re-ranks the
retrieved reasoning paths by computing the probability that the path includes the answer.

For the span extraction task, we use BERT (Devlin et al., 2018), where the input is the concatenation
of the question text and the text in E. We share the same model for the re-ranking model, we use
the BERT’s [CLS] representation to estimate the probability of selecting E to answer the question:

P (E|q) = σ(wn · uE) s.t. uE = BERT[CLS](q, E) ∈ RD, (6)

where wn ∈ RD is a weight vector. At the inference time, we select the best evidence Ebest ∈ E by
P (E|q), and output the answer span by Sread:

Ebest = argmax
E∈E

P (E|q), Sread = argmax
i,j, i≤j

P start
i P end

j , (7)

where P start
i , P end

j denote the probability that the i-th and j-th tokens in Ebest are the start and end
positions, respectively, of the answer span. These probabilities are calculated in the same manner as
in Devlin et al. (2018).

Training examples To train the multi-task reader, we use the ground-truth evidence paragraphs
used for training our retriever. The re-ranking task needs to discriminate between relevant and ir-
relevant reasoning paths, and thus we augment the original training data with additional negative
examples to simulate incomplete evidence. In particular, we add paragraphs that appear to be rele-
vant to the given question but actually do not contain the answer to prevent our model from extracting
incorrect spans with high confidence (Clark & Gardner, 2018).

For multi-hop QA, we select one ground-truth paragraph including the answer span, and swap it
with one of the TF-IDF top ranked paragraphs. For single-hop QA, we also use the TF-IDF-based
negative examples, and we simply replace the single ground-truth paragraph with those which do
not include the expected answer string. For the distorted evidence Ẽ, we aim at minimizing P (Ẽ|q).

Multi-task loss function The objective is the sum of cross entropy losses for the span prediction
and re-ranking tasks. The loss for the question q and its evidence candidate E is as follows:

Lread = Lspan + Lno answer = (− logP start
ystart − logP end

yend)− logP r, (8)

where ystartq and yendq are the ground-truth start and end indices, respectively. Lno answer corre-
sponds to the loss of the re-ranking model, to discriminate the distorted paragraphs with no answers.
P r is P (E|q) if E is the ground-truth evidence; otherwise P r = 1 − P (E|q). We mask the span
losses for negative examples, in order avoid unexpected effects to the span predictions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our method in two open-domain Wikipedia-sourced datasets: HotpotQA and SQuAD
Open. More details about our experimental setup can be found in Appendix.

HotpotQA HotpotQA (Yang et al., 2018) is a human-annotated large-scale multi-hop QA dataset.
The answer to a multi-hop question can be extracted from a collection of 10 paragraphs in the
distractor setting, and from the entire Wikipedia in the fullwiki setting. Two evidence paragraphs
are accociated with each question in the train data. The dataset also provides annotations to evaluate
the prediction of supporting sentences. We adapt our retriever to the supporting fact prediction task.

SQuAD Open SQuAD Open (Chen et al., 2017) is composed of questions from the original
SQuAD dataset (Rajpurkar et al., 2016). This is a single-hop QA task, and single paragraph is
accosiated with each question in the training data.

Metrics For the two datasets, we report standard F1 and EM scores to evaluate the overall QA
accuracy to find the correct answers. For HotpotQA, we also report Supporting Fact F1 (SP F1)
and Supporting Fact EM (SP EM) to evaluate the sentence-level retrieval accuracy. To evaluate the
retrieval accuracy for the complex multi-hop reasoning, we use the following metrics: Answer Recall

5

Under review as a conference paper at ICLR 2020

fullwiki distractor
QA SP QA SP

Models F1 EM F1 EM F1 EM F1 EM

SemanticRetrievalMRS (Nie et al., 2019) 58.8 46.5 71.5 39.9 – – – –
Cognitive Graph (Ding et al., 2019) 49.4 37.6 58.5 23.1 – – – –
DecompRC (Min et al., 2019b) 43.3 – – – 70.6 – – –
MUPPET (Feldman & El-Yaniv, 2019) 40.4 31.1 47.7 17.0 – – – –
QFE (Nishida et al., 2019) – – – – 68.7 53.7 84.7 58.8
DFGN (Xiao et al., 2019) – – – – 69.2 55.4 – –
Baseline (Yang et al., 2018) 34.4 24.7 41.0 5.3 58.3 44.4 66.7 22.0
Ours (Reader: BERT wwm) 69.6 56.4 72.3 44.2 78.0 64.2 83.2 54.0
Ours (Reader: BERT base) 65.2 52.1 72.0 43.0 72.6 58.7 82.2 52.8

Table 1: HopotQA development set results: QA and SP (supporting fact prediction) results on
HotpotQA’s fullwiki and distractor settings. “–” denotes no results are available.

(AR), which evaluates the recall of the answer string among top paragraphs (Wang et al., 2018a; Das
et al., 2019), Paragraph Recall (PR), which evaluates the recall of the ground-truth paragraph among
the top retrieved paragraphs, Paragraph Exact Match (P EM), which evaluates if both of the ground
truth paragraphs for multi-hop reasoning are included among the retrieved paragraphs, and Exact
Match (EM), which evaluates if the final answer exactly matches the ground truth answer.

The Wikipedia graph To construct the Wikipedia graph, the hyperlinks are automatically ex-
tracted from the raw HTML source files. Directed edges are added between a paragraph pi and all
of the paragraphs included in the target article. The constructed graph consists of 32.7M nodes and
205.4M edges. For HotpotQA we only use the introductory paragraphs in the graph that includes
about 5.2M nodes and 23.4M edges.

Implementation details We use the pre-trained BERT models (Devlin et al., 2018) using the un-
cased base configuration (d = 768) for our retriever and the whole word masking uncased large
(wwm) configuration (d = 1024) for our readers. We follow Chen et al. (2017) for the TF-IDF-
based retrieval model and use the same hyper-parameters. If not specified, we set the number of the
initial TF-IDF-based paragraphs F to 500 and set the beam size B = 8.

4.2 OVERALL RESULTS

Table 1 compares our method with previous published methods on the HotpotQA development set.
Our method significantly outperforms all the published results across all of the QA evaluation met-
rics under both full-wiki and distractor settings. Notably, our method achieves 10.8 F1 and 9.9 EM
gains compared to state-of-the-art SemanticRetrievalMRS model (Nie et al., 2019). These results
confirm the significance of our recurrent reasoning path retrieval method to avoid independent selec-
tion of paragraphs. Moreover, our method shows significant improvement in predicting supporting
facts. Table 2 further verifies the effectiveness of our method on the official hidden test set.2 In
particular, we outperform all the published and unpublished results by large margins.

Table 3 shows that our multi-path retrieval and re-ranking framework achieves competitive results
on the single-hop QA task, SQuAD. Our model is comparable to the most recent state-of-the-art
model (Wang et al., 2019), and outperforms all other published work by a large margin.

4.3 PERFORMANCE OF REASONING PATH RETRIEVAL

We compare our recurrent retriever with competitive retrieval methods for open-domain QA.

TF-IDF (Chen et al., 2017), the widely used retrieval method that scores paragraphs according to
the TF-IDF scores of the question-paragraph pairs. We simply select the top-2 paragraphs.
Re-rank (Nogueira & Cho, 2019) that learns to retrieve paragraphs by fine-tuning BERT to re-rank
the top F (=20) TF-IDF paragraphs. We select the top-2 paragraphs after re-ranking.
Re-rank 2hop which extends Re-rank to accommodate two-hop reasoning. It first adds paragraphs

2The leaderboard results are at https://hotpotqa.github.io/ (on September 24th, 2019).

6

https://hotpotqa.github.io/

Under review as a conference paper at ICLR 2020

Models QA SP
(*: unpublished) F1 EM F1 EM

SemanticRetrievalMRS 57.3 45.3 70.8 38.7
Cognitive Graph 48.9 37.1 57.7 22.8
Entity-centric IR 46.3 35.4 43.2 0.06
MUPPET 40.3 30.6 47.3 16.7
DecompRC 40.7 30.0 – –
QFE 38.1 28.7 44.4 14.2
Baseline 32.9 24.0 37.7 3.9
Transformer-XH* 60.8 49.0 70.0 41.7
Entity-centric BERT* 53.1 41.8 57.3 26.3
GoldEn Retriever* 48.6 37.9 64.2 30.7
Ours 68.9 56.0 73.0 44.1

Table 2: HopotQA fullwiki test set results: re-
sults on the HotpotQA fullwiki setting on the hid-
den test set on the official leaderboard at the time
of submission (September 24, 2019).

Models F1 EM

DrQA (Chen et al., 2017) – 29.8
R3 (Wang et al., 2018a) 37.5 29.1
multi-step Reasoner (Das et al., 2019) 39.2 31.9
MINIMAL (Min et al., 2018) 42.5 34.7
DENSPI-hybrid (Seo et al., 2019) 44.4 36.2
MUPPET (Feldman & El-Yaniv, 2019) 46.2 39.3
BERTserini (Yang et al., 2018) 46.1 38.6
RE3 (Hu et al., 2019) 50.2 41.9
multi-passaege (Wang et al., 2019) 60.9 53.0
BM25+BERT (Lee et al., 2019) – 33.2
ORQA (Lee et al., 2019) – 20.2
Ours 56.9 49.0

Table 3: SQuAD Open results: we report F1 and
EM scores on the test set of SQuAD Open, fol-
lowing previous work.

Models AR PR P EM EM

Ours 86.2 92.6 71.6 51.1
TF-IDF 39.7 66.9 10.0 18.2
Re-rank 55.1 85.9 29.6 35.7
Re-rank 2hop 56.0 70.1 26.1 38.8
Entity-centric IR 63.4 87.3 34.9 42.0
Cognitive Graph 76.0 87.6 57.8 37.6

Table 4: Retrieval evaluation: Comparing
our retrieval method with other methods across
Answer Recall, Paragraph Recall, Paragraph
EM, and QA EM metrics.

Settings F1 EM

full 63.9 51.1
retriever, no recurrent module 52.5 42.0
retriever, no beam search (B = 1) 62.1 49.7
retriever, no link-based negatives 57.1 45.7
reader, no answer re-ranking 61.0 48.6
reader, no negative examples 51.0 40.4

Table 5: Ablation study: evaluating different vari-
ants of our model across F1 and EM on HotpotQA
fullwiki.

linked from the top TF-IDF paragraphs. It then uses the same BERT model to select the paragraphs.
Entity-centric IR is our re-implementation of Godbole et al. (2019) that is related to Re-rank 2hop,
but instead of simply selecting the top two paragraphs, they re-rank the possible combinations of the
paragraphs that are liked to each other.
Cognitive Graph (Ding et al., 2019) that uses the provided prediction results of the state-of-the-art
retrieval model on the HotpotQA development dataset.

Retrieval results Table 4 shows that our recurrent retriever yields significantly better retrieval
scores, leading to almost 14 points P EM and 13.5 QA EM gain over the strongest method in Cog-
nitive Graph. Exploring entity links from the initially retrieved documents help to retrieve the para-
graphs with fewer lexical overlaps. Particularly, Entity-centric IR improves Re-rank 2hop across
both P EM and AR by 8 points. On the other hand, comparing our method with Entity-centric IR
shows the importance of learning to sequentially retrieve reasoning paths in the Wikipedia graph.
Also note that our method even with F = 20 outperforms all the published QA EM scores in Table 1.
4.4 ANALYSIS

Ablation study of our framework To study the effectiveness of our modeling choices, we com-
pare the performance of variants of our framework on the HotpotQA fullwiki setting. We ablate
the retriever with: 1) No recurrent module, removes the recurrence from our graph-based recurrent
retriever, equivalent to the Entity-centric IR setting in Section 4.3. This method selects the path with
the most highest probability path on the graph. 2) No beam search, that uses greedy search (B = 1)
in our recurrent retriever. 3) No link-based negative examples, that trains the retriever model without
adding hyperlink-based negative examples besides TF-IDF-based negative examples.

We ablate the reader model with: 1) No answer re-ranking, that removes Lno answer from Lread and
only takes the best reasoning path to extract the answer span. 2) No negative examples, that trains the
model only with gold paragraphs in the HotpotQA distractor and does not use negative examples.

7

Under review as a conference paper at ICLR 2020

Retriever Reader

Avg. #
of L 1.96 2.21

L = 1 539 403
L = 2 6639 5655
L = 3 227 1347

Table 6: The average length of the
reasoning path selected by our re-
triever and reader for HotpotQA
fullwiki, and the distribution of
length of the reasoning paths se-
lected by the two components.

Football club

foootballer

Centre forward

Millwall Football Club is a professional
football club. Founded as Millwall Rovers
in 1885

Millwall F.C. Walter Otto Davis was a Welsh
professional footballer who played at
centre forward for Millwall for ten years
in the 1910s.

Tranmere Rovers Football Club is an
English professional association football
club founded in 1884, and based in
Birkenhead, Wirral. Welsh

Q: When was the football club founded in which Walter Otto Davis played at
centre forward?

Walter Davis (footballer)

Figure 3: Reasoning examples by our model (red line) and Re-
rank (the bottom two paragraphs). Highlighted text denotes a
bridge entity, and blue-underlined text represents links.

Ablation results Table 5 shows that removing any of the listed components gives notable perfor-
mance drop. The most critical component is our recurrent module, dropping the EM by 9 points. As
shown in Figure 1, one or more documents to answer multi-hop open-domain questions relies on the
entities mentioned in another paragraph. Therefore, without conditioning on the previous time steps,
the model fails to retrieve the complete evidence. Training without hyperlink-based negative exam-
ples results in the second largest performance drop, indicating that the model can be easily distracted
by reasoning paths without a correct answer. Replacing beam search with greedy search gives al-
most equivalent performance drops, which demonstrates that being aware of the graph structure is
helpful to find the best reasoning path.

Performance drop by removing answer re-ranking indicates the importance of verifying the reason-
ing paths in our reader. Not using negative examples to train the reader degrades more than 10
points, due to the reader’s over-confident predictions as discussed in Clark & Gardner (2018).
Analysis on reasoning path length Table 6 shows the average length of the reasoning paths se-
lected by our retriever and reader, and also the number of the examples with reasoning paths whose
length is L = {1, 2, 3} on HotpotQA fullwiki. The table shows that our approach is adaptive to
collect the required evidence. As discussed in Min et al. (2019a), we observe that some questions
can be actually answered based on a single paragraph, and our model is likely too terminate after
selecting single paragraph for such questions. In addition, the average length selected by our reader
is notably larger than the one by our retriever. We expect that the retriever favors a shorter path,
while the reader tends to select longer but more convincing multi-hop path.

Qualitative example of retrieved reasoning paths Figure 3 shows an example where our ap-
proach successfully retrieves the correct reasoning path and answers correctly, while Re-rank fails
to retrieve the two paragraphs. The reasoning path is represented as a red arrow. The top two para-
graphs next to the graph are the introductory paragraphs of the two entities on the reasoning path,
and the paragraph at the bottom shows the wrong paragraph that Re-rank chooses. The “Millwall
F.C.” has fewer lexical overlaps and the bridge entity “Millwall” is not stated in the given question.
Thus, Re-rank chooses a wrong paragraph with high lexical overlaps to the given question.

5 CONCLUSION

This paper introduces a new graph-based recurrent retrieval approach, which retrieves reasoning
paths over the Wikipedia graph to answer multi-hop open-domain questions. Our retriever learns to
directly retrieve evidence documents in the reasoning path given the history of previously retrieved
documents. Subsequently, our reader ranks the reasoning paths, and it determines the final answer
as the one extracted from the best reasoning path. Our experimental results significantly advance
the state-of-the-art on HotpotQA by more than 10 points absolute gain on the fullwiki setting. Our
approach also achieves comparable to the state-of-the-art performance on SQuAD Open, demon-
strating the robustness of our method. In addition to the competitive performance, our method
provides insights of the underlying entity relationships and is more directly interpretable. Future
work involves end-to-end training of our graph-based recurrent retriever and reader for improving
our current two-stage training.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv, abs/1607.06450,
2016.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer open-
domain questions. In ACL, 2017.

Christopher Clark and Matt Gardner. Simple and effective multi-paragraph reading comprehension.
In ACL, 2018.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum. Multi-step retriever-
reader interaction for scalable open-domain question answering. In ICLR, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2018.

Ming Ding, Chang Zhou, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. Cognitive graph
for multi-hop reading comprehension at scale. In ACL, 2019.

Yair Feldman and Ran El-Yaniv. Multi-hop paragraph retrieval for open-domain question answering.
In ACL, 2019.

Ameya Godbole, Dilip Kavarthapu, Rajarshi Das, Zhiyu Gong, Abhishek Singhal, Xiaoxiao Yu,
Mo Guo, Tian Gao, Hamed Zamani, Manzil Zaheer, and Andrew McCallum. Multi-step entity-
centric information retrieval for multi-hop question answering. In EMNLP 2019 Workshop on
Machine Reading for Question Answering, 2019.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dongsheng Li. Retrieve, read, rerank: Towards end-
to-end multi-document reading comprehension. In ACL, 2019.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A
loss framework for language modeling. In ICLR, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

Bernhard Kratzwald and Stefan Feuerriegel. Adaptive document retrieval for deep question answer-
ing. In EMNLP, 2018.

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung Ko, and Jaewoo Kang. Ranking paragraphs
for improving answer recall in open-domain question answering. In EMNLP, 2018.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open
domain question answering. In ACL, 2019.

Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun. Denoising distantly supervised open-
domain question answering. In ACL, 2018.

Sewon Min, Victor Zhong, Richard Socher, and Caiming Xiong. Efficient and robust question
answering from minimal context over documents. In ACL, 2018.

Sewon Min, Eric Wallace, Sameer Singh, Matt Gardner, Hannaneh Hajishirzi, and Luke Zettle-
moyer. Compositional questions do not necessitate multi-hop reasoning. In ACL, 2019a.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Hannaneh Hajishirzi. Multi-hop reading compre-
hension through question decomposition and rescoring. In ACL, 2019b.

Yixin Nie, Songhe Wang, and Mohit Bansal. Revealing the importance of semantic retrieval for
machine reading at scale. In EMNLP, 2019.

Kosuke Nishida, Kyosuke Nishida, Nagata Masaaki, Atsushi Otsuka, Itsumi Saito, Hisako Asano,
and Junji Tomita. Answering while summarizing: Multi-task learning for multi-hop qa with
evidence extraction. In ACL, 2019.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv preprint
arXiv:1901.04085, 2019.

9

Under review as a conference paper at ICLR 2020

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In ACL, pp.
157–163, 2017.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In EMNLP, 2016.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In NeurIPS, 2016.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. In ICLR, 2017.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P Parikh, Ali Farhadi, and Hannaneh Ha-
jishirzi. Real-time open-domain question answering with dense-sparse phrase index. In ACL,
2019.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu Chang,
Gerry Tesauro, Bowen Zhou, and Jing Jiang. R3: Reinforced ranker-reader for open-domain
question answering. In AAAI, 2018a.

Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang, Xiaoxiao Guo, Shiyu Chang, Zhiguo Wang, Tim
Klinger, Gerald Tesauro, and Murray Campbell. Evidence aggregation for answer re-ranking in
open-domain question answering. In ICLR, 2018b.

Zhiguo Wang, Patrick Ng, Ramesh Nallapati, and Bing Xiang. Multi-passage bert: A globally
normalized bert model for open-domain question answering. In EMNLP, 2019.

Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, and Yong Yu. Dynamically
fused graph network for multi-hop reasoning. In ACL, 2019.

Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. In ICLR, 2017.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin.
End-to-end open-domain question answering with BERTserini. In NAACL (Demonstrations),
2019.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In EMNLP, 2018.

APPENDIX

A DETAILS ABOUT MODELING

A Normalized RNN We decompose Equation (4) as follows:

at+1 =Wr[ht;wi] + br, ht+1 =
α

‖at+1‖
at+1, (9)

where Wr ∈ Rd×2d is a weight matrix, br ∈ Rd is a bias vector, and α ∈ R1 is a scalar parameter
(initialized with 1.0). We set the global initial state a1 to a parameterized vector s ∈ Rd, and we also
parameterize an [EOE] vector w[EOE] ∈ Rd for the [EOE] symbol. The use of wi for both the input
and output layers is inspired by Inan et al. (2017); Press & Wolf (2017). In addition, we align the
norm of w[EOE] with those of wi, by applying layer normalization (Ba et al., 2016) of the last layer
in BERT because w[EOE] is used along with the BERT outputs. Without the layer normalization, the
L2-norms of wi and w[EOE] can be quite different, and the model can easily discriminate between
them by the difference of the norms.

10

Under review as a conference paper at ICLR 2020

Question-Paragraph Encoding Equation (2) shows that we compute each paragraph represen-
tation wi conditioned by the question q. An alternative approach is separately encoding the para-
graphs and the question as in Lee et al. (2019); Das et al. (2019); Seo et al. (2019), to directly
retrieve paragraphs without any lexical matching retrieval engines; such a neural retriever suffers
from compressing the necessary information into fixed-dimensional vectors, resulting in low per-
formance on entity-centric questions (Lee et al., 2019). On the other hand, it has been shown that
attention-based paragraph-question interactions improve the retrieval accuracy if the retrieval scale
is tractable (Wang et al., 2018a; Lee et al., 2018). There is a trade-off between the scalability and the
accuracy, and this work aims at striking the balance by jointly using the lexical matching retrieval
and the graphs, followed by the rich question-paragraph encodings.

Yes-No Questions In the HotpotQA dataset, we need to handle yes-no questions as well as ex-
tracting anser spans from the paragraphs. We treat the two special types of the answers, yes and no,
by extending the re-ranking model in Equation (6). More specifically, we extend the binary classifi-
cation to a multi-class classification task, where the positive “answerable” class is decomposed into
the following three classes: span, yes, and no. If the probability of “yes” or “no” is the largest among
the three classes, our reader directly outputs the label as the answer, without any span extraction.
Otherwise, our reader uses the span extraction model to output the answer.

Supporting fact prediction We adapt our recurrent retriever to the sub task of the supporting fact
prediction in HotpotQA (Yang et al., 2018). The task is outputting sentences which support to anser
the question. More specifically, such supporting sentences are annotated for the two ground-truth
paragraphs in the training data. Since our framework outputs the most plausible reasoning path E
along with the answer, we can add an additional step to select supporting facts (sentences) from the
paragraphs in E. We train our recurrent retriever by using the training examples for the supporting
fact prediction task, where the model parameters are not shared with those of our paragraph retriever.
We replace the question-paragraph encoding in Equation (2) with question-sentence encoding for
the task. We then maximize the probability of selecting the ground-truth sequence of the supporting
fact sentences, while setting the other sentences as negative examples. At test time, we use the best
reasoning paths from our paragraph retriever to finally output the supporting facts.

B DETAILS ABOUT EXPERIMENTS

Detailed Dataset Statistics of HotptoQA fullwiki, distractor and SQuAD Open The HotpotQA
training, development, and test datasets contain 90,564, 7,405 and 7,405 questions, respectively. We
train our retriever and reader on the HotpotQA distractor training data, with augmented additional
references and negative examples described in Section 3.1.1 and 3.2. For SQuAD Open, we use
the original training dataset (78,713 questions) as our training data, and the original developmental
dataset (10,570 questions) as our test dataset.

Deriving ground-truth reasoning paths Section 3.1.2 describes our training strategy for our re-
current retriever. To derive the ground-truth reasoning path g, we use the ground-truth evidence
paragraphs associated with the questions in the training data for each dataset. For SQuAD, each
training example has only single paragraph p, and thus it is trivial to derive g as [p, [EOE]]. For the
multi-hop case, HotpotQA, we have two ground-truth paragraphs p1, p2 for each question. Assum-
ing that p2 includes the answer string, we set g = [p1, p2, [EOE]].

Training settings To use the pre-trained BERT models, we used the public code base, pytorch-
transformers,3 written in PyTorch.4 For optimization, we used the code base’s implementation of
the Adam optimizer (Kingma & Ba, 2015), with a weight-decay coefficient of 0.01 for non-bias
parameters. A warm-up strategy in the code base was also used, with a warm-up rate of 0.1. Most
of the settings follow the default settings. To train our recurrent retriever, we set the learning rate
to 3 · 10−5, and the maximum number of the training epochs to three. The mini-batch size is four;
a mini-batch example consists of a question with its corresponding paragraphs. To train our reader

3https://github.com/huggingface/pytorch-transformers.
4https://pytorch.org/.

11

https://github.com/huggingface/pytorch-transformers
https://pytorch.org/

Under review as a conference paper at ICLR 2020

0 100 200 300 400 500
The # of paragraphs

50

55

60

65

70

F1
 s

co
re

Ours
Ours (greedy)
Re-rank

Figure 4: The effects of our graph-based recurrent retriever.

model, we set the learning rate to 3 ·10−5, and the maximum number of training epochs to two. The
mini-batch size is six; a mini-batch example consists of a question with its evidence paragraphs.

C ADDITIONAL RESULTS

C.1 ON THE ROBUSTNESS TO THE INCREASE OF THE PARAGRAPHS

As we discussed in 3.1.1, we could significantly reduce the searching space and thus could scale the
number of initial retrieved candidates. Increasing the number of the initial retrieval often improves
the recall among selected paragraphs. On the other hand, a large number of candidates paragraphs in-
troduces additional noises and may distract models and eventually hurt the performance (Kratzwald
& Feuerriegel, 2018). We compare the performance of three different approaches ((i) ours, (ii) ours
(greedy, without answer re-ranking), and (iii) Re-rank), increasing the number of the initial retrieval
from 10 to 500 (For Re-rank, we compare the performance up to 200 paragraphs). The experimental
results clearly show that our approach (graph-based recurrent retriever with answer re-ranking) has
robustness towards the increase of the initial candidates paragraphs, and thus can constantly yield
performance gains by increasing the number of the initial candidates. Ours (greedy) also shows per-
formance improvements by increasing the initial candidates number from 10 to 300. However, after
a certain number, the greedy approach stops improving the performance. Re-rank starts suffering
from the noises caused by many distracting paragraphs included in the initial candidate paragraphs
at F = 200.

C.2 MORE QUALITATIVE ANALYSIS ON THE REASONING PATH ON HOTPOTQA FULLWIKI

In this section, we conduct more qualitative analysis on the reasoning paths predicted by our model.
Directly retrieving plausible reasoning paths and re-ranking the paths provide us interpretable in-
sights into the underlying entity relationships used for multi-hop reasoning.

As shown in Table 6, our model flexibly selects more than two or only one paragraph for each
question. To understand these behaviors, we conduct qualitative analysis on these “unexpected”
reasoning path cases.

Reasoning path only with single paragraph First, we show an example, where our retriever
selects single paragraph and terminates without selecting any additional paragraphs. Table 7 shows
that, while originally this questions requires a system to read two paragraphs, Before I Go to Sleep
(film) and Nicole Kidman, our retriever and reader eventually choose Nicole Kidman only. The
second paragraph has a lot of lexical overlaps to the given question, and thus, a system may not

12

Under review as a conference paper at ICLR 2020

need to read both of the paragraphs to answer. Min et al. (2019a) also observed that some of the
questions do not necessarily require multi-hop reasoning, while HotpotQA is designed to require
multi-hop reasoning (Yang et al., 2018). In that sense, we can say that our method automatically
detects potentially single-hop questions.

Q: Before I Go to Sleep stars an Australian actress, producer and occasional what??

Before I Go to Sleep (film): Before I Go to Sleep is a 2014 mystery psychological thriller
film written and directed by Rowan Joff and based on the 2011 novel of the same name by S. J.
Watson. An international co-production between the United Kingdom, the United States,
France, and Sweden, the film stars Nicole Kidman, Mark Strong, Colin Firth, and Anne-Marie
Duff.
Nicole Kidman: Nicole Mary Kidman, is an Australian actress, producer and occasional
singer. She is the recipient of several awards, including an Academy Award, two Primetime
Emmy Awards, a BAFTA Award, three Golden Globe Awards, and the Silver Bear for Best
Actress.
Annotated reasoning path Before I Go to Sleep (film)→ Nicole Kidman
Predicted reasoning path: Nicole Kidman

Table 7: An example where our model retrieves a reasoning path with only one paragraph. The
model expects that the question is answerable based on the last paragraph of the annotated reasoning
path.

C.3 QUALITATIVE EXAMPLES OF HOTPOTQA DISTRACTOR

To understand how our retriever, especially the recurrent module, behaves, we conduct qualitative
analysis based on the results on HotpotQA distractor. The distractor contains the two ground-truth
paragraphs, and thus we can analyze the model behaviors in an oracle setting.

Table 8 is one example from the HotpotQA distractor setting to show the effectiveness of our graph-
based recurrent retriever. In this example, P1 and P2 are the ground-truth paragraphs. At the first
time step, the retriever expects that P2 is unlikely to be the evidence, as the retriever is not aware of
a bridge entity, “Pasek & Paul”. If we simply adopt “top-2” strategy as discussed in Section 4.4, P3
with the second highest probability would be selected, resulting in the wrong paragraph selection.
In our framework, our retriever has context from the previous retrieval and thus, at the second time
step, it chooses the correct paragraph, P2, lowering the probability of P3. At the third step, our
model stops the prediction by outputting [EOS]. In 588 examples (7.9%) of the entire distractor
development dataset, the paragraph selection by our graph-based recurrent retriever differs from the
top-2 strategy, which demonstrates the effectiveness of conditioning multi-step retrieval.

We present another example, where only graph-based recurrent retrieval model succeeds finding the
correct paragraph pairs. The second question in Table 8 shows that at the first time step our retriever
successfully finds the first ground-truth paragraph, but did not pay attention to the other ground-
truth paragraph at all, as the retriever is not aware of the bridge entity, “the Russian Civil War”.
Once it recognizes the first one, it finds the second one (P2). Like this, we can see how our model
successfully learns to model relationships between paragraphs to answer the question.

13

Under review as a conference paper at ICLR 2020

Q: Which songwriting duo composed music for ”La La Land”, and created lyrics for ”A Christmas Story:
The Musica”?

P1: A Christmas Story: The Musical is a musical version of the film ”A Christmas
Story ... The musical has music and lyrics written by Pasek & Paul and the book
by Joseph Robinette.

0.98 0.00 0.00
3

P2: Benj Pasek and Justin Paul, known together as Pasek and Paul, are an American
songwriting duo and composing team for musical theater, films, and television. ...
they won both the Golden Globe and Academy Award for Best Original Song for
the song ”City of Stars”.

0.08 0.89 0.00

3

P3: La La Land” is a song recorded by American singer Demi Lovato. It was writ-
ten by Lovato, Joe Jonas, Nick Jonas and Kevin Jonas and produced by the Jonas
Brothers alongside John Fields, for Lovato’s debut studio album, ”Dont́ Forget”
(2008).

0.12 0.00 0.00

Q: Alexander Kerensky was defeated and destroyed by the Bolsheviks in the course of a civil war that
ended when ?

P1: The Socialist Revolutionary Party, or Party of Socialists-Revolutionaries sery”)
was a major political party in early 20th century Russia and a key player in the
Russian Revolution. ... The anti-Bolshevik faction of this party, known as the
Right SRs, which remained loyal to the Provisional Government leader Alexander
Kerensky was defeated and destroyed by the Bolsheviks in the course of the Rus-
sian Civil War and subsequent persecution.

0.95 0.00 0.00

3

P2: The Russian Civil War (November 1917 October 1922) was a multi-party war
in the former Russian Empire immediately after the Russian Revolutions of 1917,
as many factions vied to determine Russiaś political future.

0.00 0.87 0.00
3

P3:Alexander Fyodorovich Kerensky was a Russian lawyer and key political figure
in the Russian Revolution of 1917.

0.08 0.09 0.00

Table 8: An example from HotpotQA distractor. Highlighted text show the bridge entities for multi-
hop, and also the words in red denotes the predicted answer.

14

	Introduction
	Related Work
	Open-domain Question Answering over Wikipedia Graph
	Learning to Retrieve Reasoning Paths
	Recurrent Retriever
	Training of the graph-based recurrent retriever

	Reading and Answering Given Reasoning Paths

	Experiments
	Experimental Setup
	Overall Results
	Performance of Reasoning Path Retrieval
	Analysis

	Conclusion
	Details about Modeling
	Details about experiments
	Additional Results
	On the robustness to the increase of the paragraphs
	More qualitative analysis on the reasoning path on HotpotQA fullwiki
	Qualitative Examples of HotpotQA distractor

