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ABSTRACT

We propose precision gating (PG), an end-to-end trainable dual-precision quanti-
zation technique for deep neural networks. PG computes most features in a low
precision and only a small proportion of important features in a higher precision.
Precision gating is very lightweight and widely applicable to many neural network
architectures. Experimental results show that precision gating can greatly reduce
the average bitwidth of computations in both CNNs and LSTMs with negligible
accuracy loss. Compared to state-of-the-art counterparts, PG achieves the same
or better accuracy with 2.4× less compute on ImageNet. Compared to 8-bit uni-
form quantization, PG obtains a 1.2% improvement in perplexity per word with
2.8× computational cost reduction on LSTM on the Penn Tree Bank dataset. Pre-
cision gating has the potential to greatly reduce the execution costs of DNNs on
both commodity and dedicated hardware accelerators. We implement the sampled
dense-dense matrix multiplication kernel in PG on CPU, which achieves up to
8.3× wall clock speedup over the dense baseline.

1 INTRODUCTION

In recent years, deep neural networks (DNNs) have demonstrated excellent performance on many
computer vision and language modeling tasks including image classification, semantic segmenta-
tion, face recognition, machine translation and image captioning (Krizhevsky et al., 2012; He et al.,
2015; Ronneberger et al., 2015; Chen et al., 2016; Zhao et al., 2018; Schroff et al., 2015; Luong
et al., 2015; Vaswani et al., 2017). One visible trend in DNN design is that as researchers strive for
better accuracy, both the model size and the number of DNN layers have increased over time (Xu
et al., 2018). At the same time, there is a growing demand to push deep learning technology to
edge devices such as mobile phones, Internet of Things (IoT) devices, and lightweight drones (Wu
et al., 2019). The limited computational, memory, and energy budgets on these devices create major
challenges for the deployment of large DNN models on the edge.

Neural network quantization is an important technique for improving the hardware efficiency of
DNN execution. Circuits operating at a lower precision are smaller, faster, and consume less energy.
Numerous studies have shown that full-precision floating-point computation is not necessary for
DNN inference — quantized fixed-point models produce competitive results with a small or zero
loss in prediction accuracy (Lin et al., 2016; He et al., 2016; Zhou et al., 2016; 2017). In some cases,
quantization may even improve model generalization by acting as a form of regularization. Existing
studies mainly focus on static quantization, in which the precision of each weight and activation is
fixed at run time (Hubara et al., 2017; He et al., 2016). Along this line of work, researchers have
explored tuning the bitwidth per layer (Wu et al., 2018; Wang et al., 2018a; Dong et al., 2019) as well
as various types of quantization functions (Wang et al., 2018b; Courbariaux et al., 2016; Li et al.,
2016; Zhou et al., 2016). However, static DNN quantization methods cannot exploit input-dependent
characteristics, where certain features during inference may contribute less to the classification result
than others and can be computed in lower precision. For example, in computer vision tasks the pixels
representing the object of interest are typically more important than the background pixels.

In this paper, we propose to reduce the inefficiency of a statically quantized DNN via precision
gating (PG), which computes most features with low-precision arithmetic and only updates few im-
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portant features to high precision. More concretely, PG first executes a DNN layer in low precision
and identifies the output features with large magnitude as important features. It then computes a
sparse update to increase the precision of those important output features. Intuitively, small values
make very little contribution to the DNNs output; approximating them in low-precision is reason-
able. Precision gating enables dual-precision DNN execution at the granularity of each individual
output feature, and therefore greatly reducing the average bitwidth and computational cost of DNNs.
To show the visualization of PG, we refer readers to Appendix A.1.

We further introduce a differentiable gating logic which makes the technique applicable to a greater
variety of network models. Experimental results show that precision gating achieves significant
speed-up and accuracy improvement on both CNNs and LSTMs. Compared to the baseline CNN
counterparts, PG obtains 3.5% and 0.6% higher classification accuracy with up to 4.5× and 2.4× less
computation cost for CIFAR10 and ImageNet, respectively. On LSTM, compared to 8-bit uniform
quantization PG boosts perplexity per word (PPW) by 1.2% with 2.8× less compute on the Penn
Tree Bank (PTB) dataset. Our contributions are as follows:

1. We propose precision gating, which to the best of our knowledge is the first end-to-end
trainable method that enables dual-precision execution of DNNs. Precision gating is also
applicable to a wide variety of network architectures (including both CNNs and RNNs).

2. Precision gating enables DNN computation with lower average bitwidth than other state-of-
the-art quantization methods. Combined with its lightweight gating logic, PG demonstrates
the potential to reduce DNN execution costs in both commodity and dedicated hardware.

3. Unlike prior works that focus only on inference, precision gating achieves the same sparsity
during back-propagation as forward propagation, which dramatically reduces the compu-
tational cost for both passes.

2 RELATED WORK

Quantizing activations. Prior studies show that weights can be quantized to low bitwidth without
hurting much the accuracy (Zhu et al., 2017), but quantizing activations to low bitwidth typically
incurs a large accuracy degradation. The problem is that large outliers in the activations make the
quantization grid sparse under low precision, thus increasing the error. To address the problem,
Choi et al. (2018) propose PACT to reduce the dynamic range of the activations through clipping the
outliers by a learnable threshold, which provides a better quantization scheme for ultra low bitwidth.
PACT is reported to be able to quantize activations to arbitrary bitwidth with better accuracy than
other works. We incorporate PG with PACT to address the same large outlier problem. Moreover,
PG is a dynamic quantization scheme whereas PACT is a static apporach.

Prediction-based execution. To lower the computation cost of a convolutional layer, some prior
works explored the method of predicting ReLU-induced zeros or Max-pooling-induced compute
redundancy in CNNs. For example, Lin et al. (2017); Song et al. (2018) propose zero-prediction
to utilize a few most-significant bits in multipliers to identify the sign of the output elements. The
rationale behind is that negative outputs will be suppressed by the ReLU anyway. The limitations
of this method are that it only applies to ReLU activations and only when the ReLU must follow
directly after the weight layer. As a result, the method cannot be applied to modern CNNs with a
batch norm layer (Ioffe & Szegedy, 2015) before the ReLU or RNNs (which use sigmoid or tanh
as the activation function). Cao et al. (2019) propose SeerNet in which for each convolutional layer
it first executes a duplicated quantized version of that layer to predict the output sparsity induced
by the following ReLU or Max-pooling. It then computes the sparse original full-precision (32-
bit floating-point) convolutional layer to obtain the outputs. Results of the quantized layer are not
reused. Though the original layer is executed sparsely, practically the extra quantized layer induces
higher execution cost.

Feature level precision tuning. There is also prior work that uses different precision at the feature
level. Park et al. (2018) propose value-aware quantization where the majority of data are computed
at reduced precision while a small number of outliers are handled at high precision. Our approach
is significantly different because we apply dual precision for every feature, not only for the outliers.
Hua et al. (2018) propose channel gating to dynamically turn off a subset of channels that contribute
little to the classification result. Precision gating is orthogonal to this pruning technique as channel
gating executes the whole network in the same precision.
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Figure 1: (a) Splitting an input feature I into Ihb, the most-significantBhb bits, and Ilb, the remaining
Blb bits. The total bitwidth is B. (b) PG achieves savings by comparing Ohb to some nonzero value
to do prediction.

3 PRECISION GATING

In this section, we first describe the basic mechanism of precision gating. Then we discuss how to
design the gating logic to accelerate both forward and backward passes. Finally, we incorporate PG
with outlier clipping to reduce the quantization error.

3.1 BASIC FORMULATION

Define a linear layer (i.e. convolutional or fully-connected layers) in a neural network as O = I∗W,
where O, I, and W are the output, input, and weights, respectively. Let I be represented in a B-bit
fixed-point format. As shown in Figure 1a, precision gating partitions I into Ihb, the most-significant
Bhb bits, and Ilb, the remaining Blb bits, where B = Bhb +Blb. More formally, we can write:

I = Ihb << Blb + Ilb (1)
Here << is the shift operator. We can then reformulate a single B-bit linear layer into two lower-
precision computations as:

O = Ohb + Olb = [W ∗ (Ihb << Blb)] + [W ∗ Ilb] (2)
Ohb is the partial sum obtained by using the MSBs of input feature (Ihb) whereas Olb represents the
remaining sum computed with Ilb.

Precision gating works in two phases. In the prediction phase, precision gating performs the compu-
tation Ohb = W∗ (Ihb << Blb). Elements of Ohb greater than a gating threshold ∆ are considered
important. In the update phase, precision gating computes Olb = W ∗ Ilb only for the important
elements and adds it to Ohb. Precision gating’s execution flow is shown in Figure 2: unimportant
output features take only the upper path while important ones are computed as the sum of both paths.
Precision gating can be summarized as:

O =

{
Ohb Ohb ≤ ∆

Ohb + Olb Ohb > ∆
(3)

In essence, precision gating computes important features withB-bit arithmetic and unimportant fea-
tures with only Bhb bits. The importance of each element in the output O is predicted by comparing
the magnitude of its partial sum Ohb to ∆. Let p be the percentage of important activations over
all features. PG saves (1−p)·Blb

B fraction of the compute in the original DNN model. Figure 1b
illustrates which values are executed in high-precision. PG thus achieves dual-precision execution
using a lightweight gating mechanism, and reduces the average bitwidth of computations in a DNN.

3.2 EFFICIENT LEARNABLE GATING LOGIC

In order to automatically determine model and dataset specific threshold ∆, we propose an efficient
end-to-end trainable gating logic. The gating threshold ∆ is specific to each output channel in DNN

3



Under review as a conference paper at ICLR 2020

1

0

1

1

0

0

1

1

1

0

1

1

0

0

1

1

 �

�ℎ�

���

Conv
�

> Δ

�ℎ�

+
���

YES Batch Norm
ReLU

�
�

NO

Conv
�

* Convolutional layers share the same weights.

Prediction Phase

Update Phase

Figure 2: The PG building block in CNN models – Input features are split into Ihb and Ilb. In
the prediction phase, Ihb first convolves with the full precision filters W to obtain Ohb. In the
update phase, if the partial sum Ohb of a feature exceeds the learnable threshold ∆, we will update
that feature to high-precision by adding Olb to Ohb. Otherwise, we skip the update phase, and the
output feature therefore remains computed at ultra low-precision.

layers and learned alongside the DNN weights during training. A larger ∆ indicates that more output
features are computed in low-precision, resulting in greater computational savings but possibly at
the expense of reduced model accuracy. We formulate the problem of optimizing ∆ as minimizing
the original model loss L along with an L2 penalty term:

min
W,∆

L(I, y;W,∆) + σ ‖∆− δ‖2 (4)

Here y is the ground truth label, σ is the penalty factor, and δ is the gating target, a target value for
the learnable threshold. The penalty factor and gating target are hyperparameters which allow a user
to emphasize high computation savings (large σ or δ) or accuracy preservation (small σ or δ).

Training a model with precision gating can be done on commodity GPUs using existing deep learn-
ing frameworks. We implement PG on GPU as the equation O = Ohb + mask � Olb, where
mask = 1Ohb>∆ is a binary decision mask and � represents element-wise multiplication. Dur-
ing forward propagation, most elements in mask are 0. PG therefore saves hardware execution
cost by only computing a sparse Olb in the update phase. In dedicated hardware, MSBs and LSBs
are wired separately. The prediction phase is controlled by a multiplexer, and only computes LSB
convolutions while Ohb exceeds the threshold, thus achieving the savings.

The mask is computed using a binary decision function (i.e. step function), which has a gradient
of zero almost everywhere. To let gradients flow through mask to ∆, we use a sigmoid on the
backward pass to approximate the step. Specifically, we define mask = sigmoid(α(Ohb − ∆))
only on the backward pass following Hua et al. (2018). Here α changes the slope of the sigmoid,
thus controlling the magnitude of the gradients.

3.3 SPARSE BACK-PROPAGATION

A sparse update phase only reduces the computational cost during the inference (forward propa-
gation). We further propose to save the compute during the back-propagation by modifying the
forward function of the PG block. Specifically, we square the mask element-wise.

O = Ohb + mask2 �Olb (5)

Given that mask is a binary tensor, mask2 in Eq. (5) preserves the same value as mask. Thus
the forward pass remains unchanged. During the back-propagation, an additional mask term is
introduced in computing the gradient of O with respect to the gating threshold ∆ in Eq. (6) because
of the element-wise square. Consequently, the update of ∆ only requires the result of mask�Olb

which has already been computed during the forward pass.
∂O

∂∆
≈ ∂O

∂mask

∂sigmoid(α(Ohb −∆))

∂∆
= 2 ·mask�Olb

∂sigmoid(α(Ohb −∆))

∂∆
(6)
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Figure 3: Effect of clipping – A toy example illustrating how a clip threshold helps separating pre-
diction values apart. The first row is quantization and prediction without a clip threshold, while the
second row has a clip threshold. (a) Distribution of floating-point input features Ĩ. (b) Distribution
of I after quantizing Ĩ to 4 bits. (c) Distribution of Ihb which takes the higher 2 bits of I.

The gradient of O with respect to the weights W in Eq. (7) employs the same sparse mask�Olb

as the update of ∆. Therefore, precision gating can reduce the computational cost of both forward-
progagtion (inference) and back-propagation by the same factor.

∂O

∂W
=
∂Ohb

∂W
+ mask2 � ∂Olb

∂W
=
∂Ohb

∂W
+
∂mask�Olb

∂W
(7)

3.4 OUTLIER CLIPPING

Precision gating identifies important features using low-precision computation. One difficulty with
this is that DNN activations are distributed in a bell curve, with most values close to zero and a few
large outliers. The top row of Figure 3(a) shows some activations in blue dots, including a single
outlier. If we quantize each value to 4 bits (second column) and use 2 most-significant bits in the
prediction phase (third column), we see that almost all values are rounded to zero. In this case, PG
can only distinguish the importance between the single outlier and the rest of the values no matter
what ∆ is. Thus the presence of large outliers greatly reduces precision gating’s effectiveness.

To address this, we combine precision gating with PACT (Choi et al., 2018), which clips each layer’s
outputs using a learnable clip threshold. The bottom row of Figure 3 shows how clipping limits
the dynamic range of activations, making values more uniformly distributed along the quantization
grid. Now the 2 most-significant bits can effectively separate out different groups of values based
on magnitude. We apply PACT to precision gating in CNNs, which typically use an unbounded
activation function (ReLU). RNNs typically employ a bounded activation function (tanh, sigmoid),
making PACT unnecessary.

4 EXPERIMENTS

We test precision gating using ResNet-18 (He et al., 2015) and ShiftNet-20 (Wu et al., 2017) on
CIFAR-10 (Krizhevsky & Hinton, 2009), and ShuffleNet V2 (Ma et al., 2018) on ImageNet (Deng
et al., 2009). ResNet is a very popular CNN for image classification, and the other two lightweight
architectures are designed specifically for edge devices. We set the expansion rate of ShiftNet to be
six and choose the 0.5× variant of ShffleNet V2 for all experiments. On CIFAR-10, the batch size is
128, and the models are trained for 200 epochs. The initial learning rate is 0.1 and decayed at epoch
100, 150, 200 by a factor of 0.1 (multiply learning rate by 0.1). On ImageNet, the batch size is 512
and the models are trained for 120 epochs. The learning rate decayed linearly from an initial value
of 0.5 to 0.

We also test an LSTM (Hochreiter & Schmidhuber, 1997) on the Penn Tree Bank (PTB) (Marcus
et al., 1993) corpus. The model accuracy is measured by perplexity per word (PPW), and lower is
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better. Following the configuration used by He et al. (2016) and Hubara et al. (2017), the number
of hidden units in the LSTM cell is set to 300, and the number of layers is set to 1. We follow the
same training setting as described in He et al. (2016), except the learning rate decayed by a factor of
0.1 at epoch 50 and 90. All experiments are run on Tensorflow (Abadi et al., 2016) with NVIDIA
GeForce 1080Ti GPUs. We report the top-1 accuracy for all experiments.

Table 1: Precision gating (PG) on CNN – models tested are
ShiftNet-20 and ResNet-18 on CIFAR-10, and ShuffleNet V2 0.5×
on ImageNet. We compare PG against uniform quantization (UQ),
PACT, and Fix-Threshold. Bavg is the average bitwidth (Bavg =
Bhb + (1 − Sp%) × (B − Bhb)). “fp” is floating-point. “Sp.” is
sparsity.

Ours Baselines
Precision Gating UQ PACT Fix-Threshold

B/Bhb Sp. Bavg Acc Bits Acc. Acc. B/Bhb Sp. Bavg Acc.
ShiftNet-20 5/3 55.5 3.9 89.1 8 89.1 89.0 5/3 48.8 4.0 74.3
CIFAR-10 5/3 96.3 3.1 88.6 4 87.3 87.5 5/3 67.8 3.6 67.0
(fp 89.4%) 3/1 71.9 1.6 84.5 2 77.8 82.9 3/1 10.1 2.8 64.3
ResNet-18 4/3 78.2 3.2 91.7 8 91.6 91.2 4/3 58.7 3.4 88.3
CIFAR-10 3/2 90.1 2.1 91.2 4 91.1 90.9 3/2 71.0 2.3 74.2
(fp 91.7%) 2/1 71.5 1.3 90.6 2 84.0 90.1 2/1 21.6 1.8 71.9
ShuffleNet 6/4 57.2 4.8 59.7 8 59.1 59.1 6/4 52.6 4.9 33.6
ImageNet 6/4 62.2 4.7 59.3 6 57.8 57.1 6/4 58.5 4.8 32.7
(fp 59.0%) 5/3 41.9 4.1 58.0 5 57.0 56.6 5/3 40.4 4.2 27.7

Table 2: Precision gating
(PG) on CNN – compare PG
against SeerNet under similar
model prediction accuracy. In
SeerNet the average bitwidth
Bavg = Bhb+(1−Sp%)×B.
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B/Bhb 12/8 6/4 8/6
Sp. 49.7 51.1 30.8
Bavg 14.0 6.9 11.5
Acc. 85.4 91.2 58.9

PG

B/Bhb 5/3 3/2 6/4
Sp. 96.3 90.1 62.2
Bavg 3.1 2.1 4.7
Acc. 88.6 91.2 59.3

We replace the conv layers in CNNs and FC layers in LSTM with the proposed PG block. Moreover,
the following hyperparameters in PG need to be tuned appropriately to achieve low average bitwidth
with high accuracy.

• The full bitwidth B – this represents the bitwidth for high-precision computation in PG.
B is set to 5 or less on CIFAR-10, 5 or 6 on ImageNet, and 3 or 4 on PTB.

• The prediction bitwidthBhb – this represents the bitwidth for low-precision computation.
• The penalty factor σ – this is the scaling factor of the L2 loss for gating thresholds ∆.
• The gating target δ – the target gating threshold. We use a variety of values δ ∈ [−1.0, 5.0]

in our experiments.
• The coefficient α in the backward pass – α controls the magnitude of gradients flowing

to ∆. We set α to be 5 across all experiments.

4.1 CNN RESULTS

To compare hardware execution efficiency across different techniques, we compute the average
bitwidth (Bavg) of all features in a DNN model:

Bavg = Bhb + p ∗Blb (8)

where p is the percentage of high-precision activations (i.e. number of important features divided by
total features). The computational cost of DNNs is proportional to the average bitwidth. Our results
on CNNs are presented in Table 1 and Table 2, where sp. stands for sparsity.

We first compare PG against two widely adopted quantization schemes — uniform quantization
(UQ) and PACT (Choi et al., 2018). In Table 1, the 3rd and 4th columns show the average bitwidth
and model accuracy of PG whereas the 5th–8th columns list the bitwidth and corresponding model
accuracy of UQ and PACT. At each row PG achieves better accuracy with fewer average bitwidth
(Bits vs. Bavg). Specifically, PG achieves 6.7% and 1.6% higher accuracy with 1.25× computa-
tional cost reduction , and 6.6% and 0.5% higher accuracy with 1.54× computational cost reduction
than 2-bit UQ and PACT on ShiftNet-20 and ResNet-18 for CIFAR-10 (3rd & 6th rows), respec-
tively. We observe the same trend on ShuffleNet for ImageNet where PG improves the accuracy of
5-bit UQ and PACT by 1.0% and 1.4% with 1.22× computational cost reduction (9th row). It is
also worth noting that PG can recover the accuracy of the floating-point ShiftNet-20, ResNet-18,
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and ShuffleNet with 3.9, 3.2, and 4.7 average bitwidth. This demonstrates that PG, using a learnable
threshold, can identify unimportant features and reduce bitwidth without compromising accuracy.

We then compare PG with Fix-Threshold, which is an extension of zero-prediction (Lin et al., 2017;
Song et al., 2018). Lin et al. (2017) and Song et al. (2018) explicitly predict ReLU-induced zeros
during inference. To have a fair comparison, we extend their technique to predict an arbitrary fixed
threshold to achieve the same or fewer Bavg as PG, reported as Fix-Threshold in Table 1. For
CIFAR-10, we observe that PG achieves 20.2% and 18.7% higher accuracy with 1.75× and 1.38×
computational cost reduction than Fix-Threshold on ShiftNet-20 and ResNet-18 (3rd & 6th rows),
respectively. The gap in accuracy becomes even larger on ShuffleNet V2 for ImageNet dataset. With
the same or lower average bitwidth, the accuracy of PG is at least 26% higher than Fix-Threshold.
In conclusion, PG consistently outperforms Fix-Threshold at any bitwidth across all networks and
datasets (7th – 9th rows). The reason is that PG learns to adjust the gating thresholds to the clipped
activation distribution so that it predicts with less zero bits.

Table 3: PG with and without
sparse back-propagation (SpBP)
on CNNs

PG PG w/ SpBP

Bavg Sp. Bavg Sp. B/Bhb Acc

ShiftN
et 4.0 49.3 3.9 55.5(↑6.2) 5/3 89.1

3.3 84.0 3.1 96.3(↑12.3) 5/3 88.6

ResNet 3.4 58.2 3.2 78.2(↑20.0) 4/3 91.7

2.2 76.5 2.1 90.1(↑13.6) 3/2 91.2

ShuffleNet 5.3 36.6 4.8 57.2(↑20.6) 6/4 59.7

5.1 43.1 4.7 62.2(↑19.1) 6/4 59.3

Table 4: PG on LSTM – the dataset
used is Penn Tree Bank (PTB). The
metric is perplexity per word (PPW)
and lower is better. Floating-point
PPW is 110.1.

Base PG

Bits PPW B/Bhb Sp. Bavg PPW

8 109.8 4/2 48.4 3.0 108.5
4 110.8 4/2 54.9 2.9 109.3
2 124.9 3/1 53.0 1.9 118.8
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Figure 4: Precision gating (PG) results on CNNs and
LSTM – compare PG against uniform quantization (UQ)
and PACT.

We further compare PG with SeerNet (Cao et al., 2019) in Table 2. SeerNet adds an extra quantized
conv layer to predict a sparse mask for executing the original floating-point layer during inference.
As the code of SeerNet is unavailable, we implement the network in Tensorflow by ourselves and
boost its accuracy by retraining the network. We reduce the average bitwidth of SeerNet while keep-
ing a comparable accuracy as PG. At similar model prediction accuracy, PG achieves 3.5% higher
accuracy with 3.3× and 4.5× less compute on ResNet-18 and ShiftNet for CIFAR-10, respectively.
For ImageNet, PG on ShuffleNet also achieves 0.4% higher accuracy with 2.4× computational cost
reduction than SeerNet. PG outpeforms SeerNet as SeerNet uses the extra quantized layer for pre-
diction only and its outputs are sparse thus inaccurate, while PG reuses the low-precision results and
passes them to outputs anyway.

To quantify the impact of sparse back-propagation described in Section 3.3, we run PG with and
without sparse back-propagation on CNNs. Table 3 compares the sparsity in the update phase of PG
with and without back-propagation under the same model accuracy and average bitwidth. Surpris-
ingly, we find that the sparsity in the update phase of PG with sparse back-propagation is consis-
tently higher than that of PG without sparse back-propagation across all models and datasets. For
both CIFAR-10 and ImageNet, the sparsity increment is between 6% and 21%. We hypothesize that
sparse back-propagation zeros out the gradients flowing to non-activated LSB convolutions in the
update phase, which leads to higher sparsity.

Overall, compared to other prediction based quantization schemes, our method has measurably up to
21.6% higher accuracy than the baseline with lower computational cost or up to 4.5× less compute
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with the same or better accuracy for CIFAR-10. For ImageNet ours has a maximum of 30.3%
higher accuracy with similar computational cost or 2.4× less computational cost with 0.4% higher
accuracy. The results compared to quantization baselines are visualized in Figure 4, which plots
accuracy vs. average bitwidth — uniform quantization (squares), PACT (triangles), and PG (circles)
are shown on separate curves. Results closer to the upper-left corner are better.

4.2 LSTM RESULTS

Besides CNNs, PG works great on RNNs as well. The results on LSTM with PG for the PTB corpus
are reported in Table 4. Here, only the uniform quantization is used as the baseline because PACT,
Fix-Threshold, and SeerNet do not work for sigmoid or tanh activation functions. Although Hubara
et al. (2017) claim that quantizing both weights and activations to 4 bits does not lower PPW, we
observe a significant PPW degradation as B decreases from 8 to 4 bits in our implementation. The
LSTM with 8-bit activations is therefore considered as the full accuracy model. We observe the
same phenomena as in the CNN results that PG enables the 3-bit LSTM cell to improve the PPW by
1.2% and reduce the computational cost by 2.7× compared to 8-bit uniform quantization.

4.3 KERNEL SPEEDUP

The sparse update phase of PG can be implemented efficiently with a new kernel called sampled
dense-dense matrix multiplication (SDDMM). A convolutional layer with PG is then factorized into
a regular low-precision convolution bounded with a low-precision SDDMM. To evaluate the actual
speedup of PG, we implement the SDDMM kernel in Python leveraging a high performance JIT
compiler Numba (Lam et al., 2015) and test it on the ResNet-18 model for CIFAR-10. Table 6 shows
the layer-wise sparsity and the kernel speedup compared to the dense baseline on Intel Xeon Silver
4114 CPU (2.20GHz). With the large sparsity (from 76% to 99%) in each layer induced by PG,
the SDDMM kernel achieves up to 8.3× wall clock speedup over the general dense matrix-matrix
multiplication (GEMM) kernel. The significant wall clock speedup shows an enormous potential of
deploying PG on commodity hardware.

Table 6: SDDMM kernel sparsity and speedup – We report optimized kernel execution time and
wall-clock speedup of each layer in ResNet-18 for CIFAR-10.

Layer ID 1 3 5 7 9 11 13 15 17
Sparsity 85% 94% 87% 76% 98% 99% 91% 98% 97%

Execution Time (ms) 5.4 3.3 4.9 3.6 1.5 1.1 1.5 1.0 1.2
Wall Clock Speedup 3.2× 5.1× 3.3× 2.3× 6.2× 8.3× 3.2× 6.2× 5.2×

For a GPU implementation, we face the challenge in replacing the GEMM kernel with SDDMM
kernel. Popular deep learning framework such as Tensorflow does not incorporate SDDMM as an
built-in operator. However, Nisa et al. (2018) demonstrate that a highly optimized SDDMM kernel
with a similar sparsity shown in Table 6 achieves about 4× speedup over a GEMM kernel. This
shows strong evidence that PG has a potential to obtain high speedup on GPUs as well. Additionally,
our approach is compatible with the specialized accelerator architectures proposed by Lin et al.
(2017) and Song et al. (2018). Due to the enormous sparsity, DNNs with PG are estimated to get at
least 3× speedup and 5× energy efficiency on these dedicated hardware accelerators. We leave the
deployment of the SDDMM kernel on GPU and dedicated hardware to future work.

5 CONCLUSIONS

We propose precision gating, a dynamic dual-precision quantization method that can reduce the
computation and storage costs of DNNs. PG assigns higher precision to important features and
lower precision to the remaining features at run-time. The technique is end-to-end trainable allowing
individual models to learn to distinguish salient and non-salient features. Experimental results show
that PG outperforms state-of-the-art quantization and prediction approaches by a large margin on
both CNN and RNN benchmarks on datasets such as Imagenet and Penn Tree Bank.
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A APPENDIX

A.1 FEATURE VISUALIZATION

In precision gating, we expect that the model will learn to compute features whose prediction values
exceeding the threshold in high-precision while keeping others computed at low precision. In the
image recognition task, we expect that high-precision features are mostly in the region where an
object lies. To provide evidence that the precision gating can effectively learn to identity those
regions, in Figure 5, we visualize the decision maps extracted from the final convolutional layer that
is modified to support precision gating in the ResNet-18 model. A decision map is a gray scale 2D
image that has the same spatial size as the output feature map in the same convolutional layer. The
brighter a pixel is in the decision map, the more probably the same spatial location in the output
feature map will be computed in high precision. The first row contains the original input images in
CIFAR-10, and their corresponding decision maps are shown in the second row. We can see clearly
that in each decision map, the locations of bright pixels roughly align with the object in the original
image, which is exactly what we expect.

Figure 5: Visualization of gating probability – Top: feature maps from the final precision gating
block in ResNet-18 on CIFAR-10. Bottom: probability of computing in high-precision (brighter
pixel means higher probability). PG effectively identifies the location of the object of interest and
increases bitwidth when computing in this region.
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